La Generación Espontánea

7
La generación espontánea Los primeros biólogos de la Antigüedad ya habían comprendido fácil y correctamente el modo según el cual el proceso reproductor actuaba en los animales más comunes, y habían observado que la vida de todo nuevo individuo tenía su inicio en el cuerpo femenino o, como mínimo, en los huevos puestos por la madre. Sin embargo, durante muchos siglos fue una convicción común que los animales más pequeños podían nacer de la materia no viva, por generación espontánea. El fundador de esta teoría fue Aristóteles, que, hacia mediados del siglo IV a. C., se dedicó al estudio de las ciencias naturales. El filósofo sostenía que algunas formas de vida, como los gusanos y los renacuajos, se originaban en el barro calentado por el sol, mientras que las moscas nacían en la carne descompuesta de las carroñas de animales. Estas convicciones erróneas sobrevivieron durante siglos hasta que, hacia mediados del siglo XVII, el biólogo italiano Francesco Redi (~1626?-1697) demostró que las larvas de mosca se originaban en la carne tan sólo si las moscas vivas habían puesto previamente sus huevos allí: por consiguiente, sostenía que ninguna forma de vida había podido nacer de la materia inanimada. Redi preparó algunos recipientes de vidrio que contenían carne del mismo origen; entonces cubrió la mitad de estos recipientes con gasa, de modo que pudieran transpirar y dejó abiertos los restantes contenedores. Después de algunos días observó que la carne contenida en los recipientes cubiertos, aun cuando estaba en putrefacción no contenía traza alguna de larvas, al contrario de lo que sucedía con la carne de los recipientes descubiertos, en la que las moscas adultas habían podido poner sus huevos. Este experimento habría podido demostrar definitivamente que la vida sólo podía originarse en otra forma de vida preexistente, pero no fue así: la teoría de la generación espontánea sobrevivió dos siglos más, gracias al apoyo de los medios religiosos partidarios del pensamiento teológico de Aristóteles. En el mismo período, el fisiólogo inglés William Harvey (1578-1657), tras su estudio sobre la reproducción y el desarrollo de los ciervos, descubrió que la vida de todo animal se inicia efectivamente en un huevo, y un siglo después el sacerdote italiano Lazzaro Spallanzani (1729-1799) comprendió la importancia de los espermatozoides en el proceso reproductor de los mamíferos. Aunque estos descubrimientos demostraron la validez de las tesis de Harvey y Spallanzani, durante mucho tiempo se continuó sosteniendo la teoría de la generación espontánea, por lo menos en el caso de los animales muy pequeños, como los microorganismos hasta que en 1861, gracias a Louis Pasteur (1822-1895) y a sus experimentos sobre las bacterias, fue definitivamente refutada. Pasteur cultivó bacterias en una solución nutritiva contenida en unos cuantos balones de vidrio; los balones estaban provistos de un cuello largo en forma de S, desprovisto de tapón, que impedía el paso de los microorganismos externos. Después de una prolongada ebullición, observó que la solución estaba desprovista de toda forma de vida y que estas condiciones se mantenían durante varios meses. Con esta experiencia, Pasteur descubrió el principio de la esterilización, además de otros procedimientos que todavía se utilizan hoy para

description

La Generación Espontánea

Transcript of La Generación Espontánea

Page 1: La Generación Espontánea

La generación espontánea

Los primeros biólogos de la Antigüedad ya habían comprendido fácil y correctamente el modo según el cual el proceso reproductor actuaba en los animales más comunes, y habían observado que la vida de todo nuevo individuo tenía su inicio en el cuerpo femenino o, como mínimo, en los huevos puestos por la madre. Sin embargo, durante muchos siglos fue una convicción común que los animales más pequeños podían nacer de la materia no viva, por generación espontánea. El fundador de esta teoría fue Aristóteles, que, hacia mediados del siglo IV a. C., se dedicó al estudio de las ciencias naturales.

El filósofo sostenía que algunas formas de vida, como los gusanos y los renacuajos, se originaban en el barro calentado por el sol, mientras que las moscas nacían en la carne descompuesta de las carroñas de animales. Estas convicciones erróneas sobrevivieron durante siglos hasta que, hacia mediados del siglo XVII, el biólogo italiano Francesco Redi (~1626?-1697) demostró que las larvas de mosca se originaban en la carne tan sólo si las moscas vivas habían puesto previamente sus huevos allí: por consiguiente, sostenía que ninguna forma de vida había podido nacer de la materia inanimada. Redi preparó algunos recipientes de vidrio que contenían carne del mismo origen; entonces cubrió la mitad de estos recipientes con gasa, de modo que pudieran transpirar y dejó abiertos los restantes contenedores.

Después de algunos días observó que la carne contenida en los recipientes cubiertos, aun cuando estaba en putrefacción no contenía traza alguna de larvas, al contrario de lo que sucedía con la carne de los recipientes descubiertos, en la que las moscas adultas habían podido poner sus huevos. Este experimento habría podido demostrar definitivamente que la vida sólo podía originarse en otra forma de vida preexistente, pero no fue así: la teoría de la generación espontánea sobrevivió dos siglos más, gracias al apoyo de los medios religiosos partidarios del pensamiento teológico de Aristóteles.

En el mismo período, el fisiólogo inglés William Harvey (1578-1657), tras su estudio sobre la reproducción y el desarrollo de los ciervos, descubrió que la vida de todo animal se inicia efectivamente en un huevo, y un siglo después el sacerdote italiano Lazzaro Spallanzani (1729-1799) comprendió la importancia de los espermatozoides en el proceso reproductor de los mamíferos. Aunque estos descubrimientos demostraron la validez de las tesis de Harvey y Spallanzani, durante mucho tiempo se continuó sosteniendo la teoría de la generación espontánea, por lo menos en el caso de los animales muy pequeños, como los microorganismos hasta que en 1861, gracias a Louis Pasteur (1822-1895) y a sus experimentos sobre las bacterias, fue definitivamente refutada.

Pasteur cultivó bacterias en una solución nutritiva contenida en unos cuantos balones de vidrio; los balones estaban provistos de un cuello largo en forma de S, desprovisto de tapón, que impedía el paso de los microorganismos externos. Después de una prolongada ebullición, observó que la solución estaba desprovista de toda forma de vida y que estas condiciones se mantenían durante varios meses. Con esta experiencia, Pasteur descubrió el principio de la esterilización, además de otros procedimientos que todavía se utilizan hoy para destruir los microorganismos, y demostró así que ninguna forma de vida puede originarse espontáneamente de la materia inorgánica, sino únicamente de la vida preexistente (onine vivum ex vivo) éste es el denominado proceso de la biogénesis.

Fin de la teoría de la generación espontánea

Cien años después del descubrimiento de los microorganismos por Leewenhock, se atribuía el origen de los mismos a la descomposición de la materia orgánica (generación espontánea).

Transcurría el año 1745 cuando un sacerdote irlandés, Tuberville Needham, alegaba en favor de esa teoría el siguiente experimento: colocó jugo de cordero en un frasco taponado, lo mantuvo durante media hora en la ceniza caliente, con el objeto de destruir a los gérmenes (microorganismos que podrían encontrarse en la superficie o interior del frasco, o en el líquido), luego retiró la fuente de calor y comprobó que al cabo de un tiempo el caldo se poblaba de microorganismos, lo que según Needham solo podía provenir de la génesis espontánea.

Para comprobar si el experimento era correcto o no, el italiano Spallanzani repitió la operación veinte años después tomando nuevos recaudos, como taponar correctamente los frascos y someterlos a altas y prolongadas temperaturas. En estas nuevas condiciones, los resultados fueron distintos, ya que no aparecieron los microorganismos en los caldos de cultivo.

Page 2: La Generación Espontánea

Needham contestó a Spallanzani, que con la ebullición prolongada de sus experiencias había destruido la "fuerza vital" contenida en los cultivos, y como el investigador italiano no pudo demostrar que la ebullición no había alterado el aire dentro del recipiente, se consideró como correcta la primera experiencia. Transcurría la segunda mitad del siglo XIX, y el problema de la generación espontánea aún estaba esperando solución; hasta que Pasteur se vio frente a la necesidad de probar que los seres asociados a la fermentación procedían del aire.

Basándose en las frustradas experiencias anteriores, fabricó filtros de algodón, e hizo pasar el aire a través de los mismos, luego disolvió el algodón y el sedimento formado en el fondo del vaso reveló la presencia de numerosos cuerpos microscópicos redondos y alargados, que se asemejaban a organismos observados con anterioridad en las sustancias en estado de fermentación. Por otra parte en el algodón de filtro a través del cual había pasado el aire previamente filtrado, no se encontró cuerpo alguno. Con esta experiencia Pasteur comprobó la existencia de organismos en el aire, pero sin poder probar si estaban vivos o muertos.

Teniendo en cuenta lo anterior, realizó el siguiente experimento: colocó en un frasco una infusión de una sustancia fermentable; al cuello largo y estrecho le dio forma de S, dejándolo abierto. El frasco y su contenido fueron mantenidos a la temperatura de ebullición durante un largo tiempo, luego se retiró la fuente de calor, y así permaneció por días, semanas y meses, sin que su contenido fermentase; luego, cuando le cortó el cuello, quedando el interior del mismo expuesto a la invasión del aire atmosférico, observó la fermentación del caldo, demostrando, el análisis al microscopio, la presencia de microorganismos.

BIOGÉNESIS

En el mismo siglo XVII, otro médico y biólogo llamado Francisco Redi, realizo varios experimentos sobre la generación espontánea y planteó su desacuerdo con esta teoría. Redi llevó a cabo un experimento para poder comprobar que la hipótesis de la generación espontánea no es cierta. Su experimento consistió en colocar cuatro frascos que contenían carne, algunas serpientes, peces y anguilas y los selló completamente. También colocó cuatro frascos más que contenían los mismo a elementos, pero esta vez los dejó abiertos. Después de unos días los frascos abiertos presentaron gusanos y otros organismos mientras que los frascos sellados permanecieron intactos y sin la presencia de formas vivientes. Redi concluyó que la vida sólo puede surgir de una vida preexistente y esta teoría se le conoce como "biogénesis". A pesar del experimento de Redi, la teoría de la generación espontánea no fue derrotada, ya que esta hipótesis se había creído cierta durante mucho tiempo y no era fácil dejarla de lado tan rápidamente. El biólogo holandés, Antón van Leeuwenhoek, perfecciona, pocos años después del experimento de Redi, un microscopio simple y con él examina varias sustancias en la cuales encuentra organismos vivientes muy pequeños y que no se conocía de su existencia anteriormente. Este hecho dio nuevas esperanzas a la teoría de la generación espontánea. Leeuwenhoek no se dedicó a buscar soluciones ni a apoyar uno u otra teoría, él sólo dio a conocer sus observaciones y dejó los experimentos a otros. En 1745, John Needham, realiza un experimento, en el cual calentó varias sustancias que contenían pequeñas partículas de alimentos, los selló y volvió a calentar y luego de unos días observó formas vivientes. Este experimento sirvió para reafirmar la teoría de la generación espontánea. Sin embargo, años más tarde, Lazzaro Spallanzani, llevó a cabo otro experimento que consistió en llenar varios envases con jugos vegetales, los cuales selló y calentó hasta que hirvieran por una hora. Luego de esto no se observaron formas vivientes, resultado que cuestionó el experimento de Needham, pero no lo derrotó, ya que éste expuso que Spallanzani había destruido el principio activo de las sustancias, por lo que su experimento no tenía validez. Para el año 1860, el francés, Luis Pasteur se interesó en este problema del origen de la vida. Este importante biólogo demostró que en el aire se pueden encontrar numerosos microorganismos y que cualquier materia no viviente puede contaminarse a causa de estas bacterias presentes en el aire y pudo comprobar que estos organismos no aparecían si las soluciones de los alimentos han sido cuidadosamente esterilizadas. A pesar de los importantes experimentos de Pasteur, la teoría de la generación espontánea todavía no era derrotada y el argumento de Needham acerca de la destrucción del principio activo no se le había podido encontrar respuesta alguna. Pero luego de una encontrada controversia que duró algunos años, Pasteur pudo dar muchas respuestas gracias a su experimento de los matraces con cuello de cisne. Pasteur llena de varios líquidos, como levadura de cerveza, agua de levadura de cerveza con azúcar, orine, jugo de remolacha y agua de pimienta, algunos matraces con el cuello alargado y curveado en forma de cuello de cisne, los cuales fueron hervidos pero permitiendo la entrada de aire a través de estos cuellos. Mientras el líquido se enfriaba se podía observar como en la curvatura humedecida del

Page 3: La Generación Espontánea

cuello del matraz podían encontrarse organismos vivos que entraban con el aire y se depositaban en ese lugar sin entrar al líquido dentro del recipiente, manteniéndolo intacto. En este experimento se demostró que se mantenía la capacidad para mantener la vida, se le permite la entrada del principio activo del aire a los recipientes y aún no se observa ningún organismo vivo en las soluciones, las bacterias, que provienen del aire se depositan en la curvatura del cuello y una vez que se rompe este cuello, la solución se contamina y es cuando aparecen los organismos. Gracias al experimento de Pasteur la teoría de la biogénesis toma fuerza, pero esta hipótesis todavía presenta interrogantes que se debían responder. Una de las preguntas que nacen de la teoría de la biogénesis es si todos los seres vivos tienen un antepasado común, y de ser así, cómo es posible que existan una variedad tan grande de organismos. Aunque esta pregunta es respondida en gran parte por la teoría de la evolución, pero de todas formas nos queda otra importante interrogante que argumenta que si la vida es originada por otro organismo vivo, de dónde se originó la primera forma viviente. Para responder esta pregunta se han realizado también varias hipótesis. Una de ellas es que la vida llegó a la tierra en forma de bacterias, partículas de polvo o meteoritos provenientes del Universo, pero esta teoría no es tan válida ya que con ella sólo se explica el origen de la vida en este planeta, más no el origen de donde este organismo provino. El otro inconveniente de esta teoría es que estas partículas tuvieron que soportar grandes cambios de temperatura y de radiación, lo que hace que se cuestione que estos organismos hayan sido tan resistentes. Otra teoría que se plantea es si los primeros seres vivos fueron formas autótrofas, es decir, que eran capaces de sintetizar su propia sustancia nutritiva. Algunos autótrofos usan la energía del sol para elaborar sus sustancias nutritivas otros utilizan energía que proviene de las reacciones químicas. De acuerdo a esta hipótesis la primera forma viva fue un ser que pudo ser capaz de elaborar su propio alimento. Esta hipótesis también presenta inconvenientes, ya que los autótrofos son organismos bastante complejos, por lo que se entiende que los primeros seres vivos fueron desde un primer momento sistemas complejos, lo que difiere de la teoría de la evolución que asegura que todo organismo complejo proviene de uno más simple. Puede aceptarse el hecho de que estos organismos simples fueran evolucionando lentamente hasta ser más complejos, lo que hace que esta teoría no sea totalmente falsa o incorrecta. La teoría de los autótrofos sostiene dos posiciones; la de un organismo complejo que se origino en un ambiente simple y la de un organismo simple que se origino en un ambiente complejo. La otra teoría es la de si los seres vivos se originaron de formas heterótrofas, es decir, aquellas que no pueden elaborar su propio alimento, aunque puede ser capaz de elaborar algunos compuestos, pero depende de una fuente externa para su alimentación. El hombre y casi todos los animales somos heterótrofos. Esta hipótesis sostiene entonces que organismos muy simples evolucionó muy lentamente a partir de materia no viviente bajo condiciones ambientales específicas. La teoría de la evolución de Darwin está muy ligada a estos planteamientos. Darwin sostuvo que podía concebirse la idea de que en una pequeña laguna tibia en donde se encontraran sales fosfóricas y amoníacas, luz, calor y electricidad, se hubiera podido formar, a través de procesos químicos, un compuesto proteínico donde se hubiesen podido crear cambios complejos

La teoría sintética de la evolución

La combinación de la teoría de la evolución de Charles Darwin (1809-1882) con los principios de la genética mendeliana se conoce como la síntesis neodarwiniana o la teoría sintética de la evolución. Esta teoría intenta relacionar la teoría de la evolución con la paleontología, la sistemática y la genética. Los principales representantes de las síntesis fueron el genetista Theodosius Dobzhansky (1900-1975), el zoólogo Ernst Mayr (1904-2005), el paleontólogo George G. Simpson (1902-1984) y el botánico George Ledyard Stebbins, todos ellos de los Estados Unidos, y el zoólogo Julian Huxley (1887-1975) de Inglaterra. Dobzhansky propuso que la evolución puede percibirse como un cambio de frecuencias génicas en el seno de una población. Mayr propuso, en su libro Sistemática y origen de las especies, dos nociones que permiten comprender cómo se forman las nuevas especies: el concepto biológico de especie y el modelo de especiación geográfica. Simpson aplicó a los fósiles las ideas de Dobzhansky sobre la evolución. Para los defensores de la teoría sintética, la evolución de las especies resulta de la interacción entre la variación genética que se origina en la recombinación de alelos y las mutaciones, y la selección natural. Huxley, hijo de Thomas "el bulldog" de Darwin y hermano del escritor Aldous, propuso en 1942 el término "síntesis". Durante los pasados 60 años, la teoría sintética ha dominado el pensamiento científico acerca del proceso de evolución y ha sido enormemente productora de nuevas ideas y nuevos experimentos, a medida que los biólogos trabajaban para desentrañar los detalles del proceso evolutivo. Algunos aspectos de la teoría sintética fueron puestos en tela de juicio recientemente, en parte como resultado de nuevos avances en el conocimiento de los mecanismos genéticos

Page 4: La Generación Espontánea

producidos por los rápidos progresos en biología molecular y, en parte, como resultado de nuevas evaluaciones del registro fósil. Sin embargo, las controversias actuales, que se refieren principalmente al ritmo y a los mecanismos del cambio macroevolutivo y al papel desempeñado por el azar en la determinación de la dirección de la evolución, no afectan a los principios básicos de la teoría sintética. En cambio, prometen proporcionarnos una comprensión mayor que la actual acerca de los mecanismos evolutivos. Ernst Mayr define al darwinismo como una concepción opuesta al finalismo que otorga a la selección natural un papel importante en la evolución, como una nueva visión del mundo, como anticreacionismo y como nueva metodología. Según Mayr las especies además de constituir las unidades básicas de clasificación representan también las unidades básicas de la evolución.

Teoría de la panspermia

¿Pudo generarse la vida en el espacio exterior? La teoría de la panspermia plantea el origen cósmico de la vida. Es posible que la vida se originara en algún lugar del universo y llegase a la Tierra en restos de cometas y meteoritos. Recupera una vieja idea de Anaxágoras, enunciada en la antigua Grecia del s. VI a.C.

El máximo defensor de la panspermia, el sueco Svante Arrhenius, cree que una especie de esporas o bacterias viajan por el espacio y pueden "sembrar" vida si encuentran las condiciones adecuadas. Viajan en fragmentos rocosos y en el polvo estelar, impulsadas por la radiación de las estrellas.

Hace 4.500 millones de años, la Tierra primitiva era bombardeada por restos planetarios del joven Sistema Solar, meteoritos, cometas y asteroides. La lluvia cósmica duró millones de años. Los cometas, meteoritos y el polvo estelar contienen materia orgánica. Las moléculas orgánicas son comunes en las zonas del Sistema Solar exterior, que es de donde provienen los cometas. También en las zonas interestelares. Se formaron al mismo tiempo que el Sistema Solar, y aún hoy viajan por el espacio.

Pero, ¿resistirían unas bacterias las condiciones extremas de un viaje interplanetario? Condiciones extremas de temperatura, radiación cósmica, aceleración, y sobrevivir el tiempo suficiente para llegar a otro planeta. Por no hablar de la entrada en la atmósfera. Los expertos creen que sí.

Asteroides, ¿semillas de vida?

La vida bacteriana es la más resistente que se conoce. Se han reanimado bacterias que estuvieron bajo el hielo ártico durante decenas de miles de años. Bacterias llevadas a la Luna en 1967 por la Surveyor 3 se reanimaron al traerlas de vuelta tres años más tarde. Y si un meteorito fuera lo suficientemente grande, la elevada temperatura que alcanza al entrar en la atmósfera no afectaría a su núcleo.

La teoría de la panspermia cobró fuerza hace unos años cuando, al analizar el meteorito marciano ALH 84001, aparecieron bacterias fosilizadas de hace millones de años. Aunque no podemos saber con certeza si ya estaban allí cuando impactó contra la Tierra. También en el meteorito Murchison se hallaron muestras de las moléculas precursoras del ADN.

La panspermia tiene dos versiones. Para la panspermia dirigida, la vida se propaga por el universo mediante bacterias muy resistentes que viajan a bordo de cometas. La panspermia molecular cree que lo que viaja por el espacio no son bacterias sino moléculas orgánicas complejas. Al aterrizar en la Tierra se combinaron con el caldo primordial de aminoácidos e iniciaron las reacciones químicas que dieron lugar a la vida. La hipótesis de la panspermia es posible, aunque no necesaria para explicar el origen de la vida sobre la Tierra.

Si la panspermia es correcta, en estos momentos las semillas de la vida continuarían viajando por el espacio y la vida podría estar sembrándose en algún otro lugar del Cosmos.