Manufactura Aeronautica

5
Tipos de materiales Aluminio Acero Titanio Materiales compuestos - Fibra carbono - Vidrio Para el aion se utiliza diferentes tipos de aluminios, según la posición de las alas y lo que se ocupe, aparte del tipo del aluminio existe un detivado posterior al tipo de aluminio que dice que tratamiento tiene el aluminio ( ejemplo:2024-T3). Tipos de aluminio a utilizar 2024: Es una aleación de cobre con magnecio que es la mejor para efectos de fatiga, es tratada con t3 y t4, y por lo general se utiliza en la parte baja de las alas y en las partes altas del estabilizador, se utiliza en menor porción en la piel del avión para mayor resistencia. 7075: También aleación cobre con magnesio pero con zinc , esta es utilizada en la parte alta de los aviones y en la parte baja de los estabilizadores y se hace toda la estructura del avión, tiene tratamiento de t73 7178: Aleacion cobre magnecio y Zinc, suele utilizarse para condiciones de fuerte compresión, por lo general se trata con 7075-t6 356: Piezas fundidas ALLOYS PRODUCT FORMS MAJOR APLICATIONS USAGE RATIONALE

description

Manufactura Aeronautica

Transcript of Manufactura Aeronautica

Page 1: Manufactura Aeronautica

Tipos de materiales

Aluminio

Acero

Titanio

Materiales compuestos

- Fibra carbono- Vidrio

Para el aion se utiliza diferentes tipos de aluminios, según la posición de las alas y lo que se ocupe, aparte del tipo del aluminio existe un detivado posterior al tipo de aluminio que dice que tratamiento tiene el aluminio ( ejemplo:2024-T3).

Tipos de aluminio a utilizar

2024:

Es una aleación de cobre con magnecio que es la mejor para efectos de fatiga, es tratada con t3 y t4, y por lo general se utiliza en la parte baja de las alas y en las partes altas del estabilizador, se utiliza en menor porción en la piel del avión para mayor resistencia.

7075:

También aleación cobre con magnesio pero con zinc , esta es utilizada en la parte alta de los aviones y en la parte baja de los estabilizadores y se hace toda la estructura del avión, tiene tratamiento de t73

7178:

Aleacion cobre magnecio y Zinc, suele utilizarse para condiciones de fuerte compresión, por lo general se trata con 7075-t6

356:

Piezas fundidas

ALLOYS PRODUCTFORMS

MAJORAPLICATIONS

USAGE RATIONALE

2024-T3 PLATE/EXTRUSION LOWER WING SURFACE UPPER HORIZONTAL TAIL SURFACE

HIGH FATIGUE AND FRACTURE PROPERTIES WITH ADEGUATE TENSILE STRENGTH AND CORRISION PROPERTIES

7178/7075-T6 PLATE/EXTRUSION LOWER WING SURFACE UPPER

HIGH COMPRESSION YIELD WITH

Page 2: Manufactura Aeronautica

HORIZONTAL TAIL SURFACE

ADEQUATE FATIGUE, FRACTURE AND CORROSION PROPERTIES

2024-T3 SHEET BODY HIGH FATIGUE AND FRACTURE PROPERTIES WITH ADEQUATE STRENGTJ (TENSIBLE, COMPRESSION AND SHEAR) AND CORROSION PROPERTIES

7075-T6 PLATE/EXTRUSION VERTICAL TAIL HIGH STRENGTH (TENSILE, COMPRESSION AND SHEAR) WIH ADEGUATE FATIGUE FRACTURE AND CORROSION PROPERTIES

7178/7075-T6 EXTRUSION KEEL BEAM CHORD HIGH COMPRESSION STRENGTH WITH ADEGUATE FATIGUE CORROSION AND FRACTURE PROPERTIES

7075-T13 FORGING/EXTRUSION WING AND BODY BULKHEADS AND FITTINGS

EXCELLENT RESISTANCE TO STRESS AND EXFOLIATION CORROSION AND EXFOLIATION CORROSION AND ADEQUATE STRENGTH, FATIGUE AND FRACTURE PROPETIES

356/A356/A357 CASTING HIDRAULIC MANIFOLDS AND CONTROL LINKAGES

LOWER COST THAT FORGINGD WITH ADEQUATE PROPETILES

Page 3: Manufactura Aeronautica

24 de febrero de 2015

MATERIALS – AMUMINUM ALLOY HEAT TREATMENT

Aluminum Alloy Heat Treatment

The primary operations or processes in the heat treatment of an aluminum alloy are solution heat treatment and age hardening.

Solution treatment consists of heating the aluminum part to 800 to 900 degress Fahrenheit (depending on the alloy), holding at that temperatura long enough to alllow constituents to enter into solid solution, and then part rapidly enough to hold the constituents in solution. Occasionally parts are queched in hot water to reduce the resultant part distortion or warp. Hot water quenching should not be allowed with 2024 alloys since the reduced cooling rate lowers the resistance of 2024 material to exfoliation corrosión.

The part is then aged to increase its strength. Some alloys will naturally age ar room teperature whitch must be artificially age at room temperatura which generally requires 96 hours. Other alloys and tempers must be artificially aged in an oven. The artificial aging temperaturas vary from 250 to 350 degrees F. depending on the alloy and temper condition desired over a much shorter time. An abbreviated chart of the aluminum temper designation system is shown.

The only heat treat designations that Boeing or the Airlines can accomplish are the –T42, -T62 or the –T73 conditions.

-T6:

STANDARD HEAT TREATED DESIGNATION

1:

INDICATES MINOR STRAIGHTENING USE TO MEET STRAIGHTNESS AND FLATNESS TOLERANCES. THIS DIGIT IS A O IF NO STRAIGHTENING IS ALLOWED.

1:

MATERIAL WAS STRETCHED TO ACCOMPLISH STRESS RELIEF THE DIGIT 2 WOULD BE USED HERE WHEN COMPRESSIVE METHODS ARE USED.

5:

INDICATES MATERIAL HAS BEEN STRESS RELIEVED

TEMPEPR DESIGNATION

-T3: solution heat-treated and naturally aged to a substantially stable condition. Applies to products which are cold worked to improve strength after solution heat-treatment.

-T4: solution heat-treated and naturally aged to a substamtially stable condition. Applies to products which are not cold worked after solution head-treatment.

-T42: solution heat-treated and naturally aged by the user. Applies to 2024-0 and 6061.0.

Page 4: Manufactura Aeronautica

-T62: solution heat-treated and artificially aged by user. Applies to a numer of alloys such as 2024, 6061, and 7075 which have been heat-treated and aged by the user.

-T73: solution heat-treated and overaged. This temper applies to several 7000 series alloys and indicates a greater degree of overaging required for higher stress corrosión resistance. Material in this temper is also immune to exfoliation corrosión. As applied to the 7075 or 7175 temper ir virtually immune to stress corrosión.

MATERIALS – STATIC STRENGTH

The static strength requirements of metallic structure can best be explained through the use of stress-strain curves.

The modulus of elasticity (E) is the slope of the curve in the elastic range during which the strain is directly proportional to the stress.

The tensile yield strength (Fty) is the stress level at which the metal reaches its máximum measurable elastic as a permanent deformation of .002 in/in.

The ultimate tensile strength (Ftu) is the máximum stress level observed prior to fracture or failure of the metal.