Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por...

170
Universidad de Concepción Dirección de Postgrado Facultad de Ciencias Forestales-Programa de Doctorado Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol HERIBERTO FRANCO ÁVILA CONCEPCIÓN-CHILE 2011 Profesor Guía: Regis Marcelo Teixeira Mendonca Dpto. de Manejo de Bosques y Medio Ambiente

description

Tesis doctoral sobre pretratamientos de madera de Pinus para la obtención de bioetanol

Transcript of Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por...

Page 1: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Universidad de Concepción

Dirección de Postgrado

Facultad de Ciencias Forestales-Programa de Doctorado

Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por

deslignificación sulfito alcalino/antraquinona para la producción de bioetanol

HERIBERTO FRANCO ÁVILA

CONCEPCIÓN-CHILE

2011

Profesor Guía: Regis Marcelo Teixeira Mendonca

Dpto. de Manejo de Bosques y Medio Ambiente

Facultad de Ciencias Forestales

Universidad de Concepción

Page 2: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido

diluido y por deslignificación sulfito alcalino/antraquinona para la producción de

bioetanol.

Comisión Evaluadora:

Regis Teixeira Mendonça (Profesor guía)Ingeniero Químico, Dr. ___________________________

Juanita Freer Calderón (Profesor co-guía) Químico, Dra. ___________________________

Jaime Gregorio Baeza Hernández (Comisión evaluación)Químico Farmacéutico, Dr. ___________________________

Germán Aroca Arcaya (Comisión evaluación)Ingeniero Civil Bioquímico, Dr. ___________________________

Director de Postgrado:

Eugenio Sanfuentes VS.Ingeniero Forestal, Dr. ____________________________

Decano Facultad de Ciencias Forestales:

Manuel Sánchez Olate Ingeniero Forestal, Dr. ___________________________

ii

Page 3: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

A MIS PADRES:

Heriberto y Adalitza

A MIS HERMANAS

Liriet y Magda

iii

Page 4: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

AGRADECIMIENTOS

A los profesores: Dra. Juanita Freer, Dr. Jaime Baeza, Dr. Regis Teixeira Mendonça, Dr.

Germán Aroca, Dr. André Luis Ferraz, Dra. Adriane Milagres, Dr. Nelson Durán y Dr. Walter

Carvalho por su colaboración en el desarrollo de este trabajo.

A la Secretaría Nacional de Ciencia, Tecnología e Innovación de Panamá (SENACYT) y al

Instituto Para la Formación y Aprovechamiento de los Recursos Humanos (IFARHU) por la

beca doctoral otorgada.

Al programa MECESUP-UCO 702 y a la Dirección de Postgrado de la Universidad de

Concepción por el financiamiento de una beca de pasantía.

Al personal del Laboratorio de Recursos Renovables del Centro de Biotecnología de la UDEC

por su cooperación.

A los compañeros y amigos del Centro de Biotecnología: Claudio Pozo, Claudia Baeza,

Ronald Sáez, Oscar Mayorga, Glenda Maldonado, Susana Muñoz, María G. Aguayo, Pilar

Castillo, Pablo Reyes, Giralda Mena, Samuel Flores y Dr. José Ruiz.

A los amigos de la Escola de Engenharia de Lorena EEL USP -Brasil: Germano Siqueira,

Fernando Masarín, José Moreira, Joseana Rocha, Gina Seabra, Fernanda Mendes, Daniela

Cortez, Paula Esteves, Sérgio Moreira y José Carlos.

A mis amigos: Rodrigo Palominos, Andrea Mora, Angela Montoya, Fabiola Salcedo, Michael

San Martín, Silvia Abadía y María Abdalá.

iv

Page 5: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

ÍNDICE GENERAL v

ÍNDICE DE TABLAS viii

ÍNDICE DE FIGURAS ix

ÍNDICE DE ANEXOS xi

RESUMEN xii

ABSTRACT xiv

I. INTRODUCCIÓN

1.1 Etanol como combustible…………………………………………………….............. 1

1.2 El concepto de una biorefinería………………………………………………………. 2

1.2.1 Procesos de biorefinería en desarrollo………………………………………………. 3

1.3 Pretratamientos de la biomasa lignocelulósica para su conversión a etanol……......... 5

1.3.1. Producción de etanol a partir de material lignocelulósico…………………………. 6

1.4 Hidrólisis con ácido diluido…………………………………………………………... 8

1.5 Pretramiento alcalino con sulfito/antraquinona (ASA)……………………………….. 10

1.6 Hidrólisis enzimática…………………………………………………………………. 11

1.7 Tecnologías para la fermentación de materiales lignocelulósicos……………………. 13

1.8 Materias primas lignocelulósicas: P. radiata y P. caribaea………………………….. 15

1.9 Propuesta del proyecto………………………………………………………………... 18

1.10 Hipótesis……………………………………………………………………………... 18

1.11. Objetivos……………………………………………………………………………... 19

1.11.1 Objetivo general………………………………………………………......... 19

1.11.2 Objetivos específicos…………………………………………………......... 19

v

Page 6: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

II. Pretratamiento con ácido diluido de Pinus radiata para producción de bioetanol utilizando Saccharomyces cerevisiae IR2-9 inmovilizada y un proceso de fermentación y sacarificación simultáneas

2.1 Resumen……………………………………………………………………….............. 20

2.2 Introducción…………………………………………………………………………… 21

2.3 Experimental…………………………………………………………………………... 24

2.3.1 Cultivo de levaduras……………………………………………………………........ 24

2.3.2 Cultivo de levadura en medio suplementado con CaCl2……………………………. 24

2.3.3 Inmovilización de levaduras……………………………………………………….... 25

2.3.4 Pretratamiento de astillas de madera de P. radiata con ácido sulfúrico diluido……. 26

2.3.5 Fermentación de P. radiata pretratado con ácido usando levadura inmovilizada…... 27

2.3.6 Microscopía electrónica de levaduras encapsuladas..................................................... 28

2.4 Resultados y discusión……………………………………………………………….... 28

2.4.1 Inmovilización de S. cerevisiae en alginato de calcio………………….......... 28

2.4.2 Pretratamiento con ácido diluido y SSF de P. radiata pretratado

utilizando S. cerevisiae inmovilizada……………………………………….. 30

2.4.3 SSF de P. radiata pretratado utilizando S. cerevisiae inmovilizada

en alginato de calcio……………………………………………………......... 33

2.4.4 Microscopía electrónica de barrido (SEM) de las cápsulas de alginato

con levadura inmovilizada………………………............................................ 37

2.5 Conclusiones…………………………………………………………………... 39

vi

Page 7: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

III. Pretratamiento al sulfito alcalino/antraquinona y refinamiento en disco de astillas de madera de Pinus radiata y Pinus caribaea para la producción de bioetanol

3.1 Resumen………………………………………………………………………………. 41

3.2 Introducción…………………………………………………………………………… 43

3.3 Materiales y Métodos…………………………………………………………………. 46

3.3.1 Materia prima……………………………………………………………………….. 46

3.3.2 Pretratamiento al sulfito alcalino/antraquinona (ASA)……………………………… 46

3.3.3 Caracterización química de madera y pulpas ASA………………………………...... 48

3.3.4 Hidrólisis enzimática………………………………………………...………………. 49

3.3.5 Hidrólisis y fermentación separadas (SHF) y sacarificación

y fermentación simultáneas (SSF)……………………………………………………. 50

3.4 Resultados y Discusión

3.4.1 Pulpaje ASA y refinamiento en disco………………………………………… 51

3.4.2 Hidrólisis enzimática………………………………………………………….. 53

3.4.3 SHF Y SSF……………………………………………………………………. 57

3.4.4 Fermentación de pulpa de Pinus caribaea proveniente

del proceso ASA/refinamiento en disco………………………………………. 59

3.5 Conclusiones……………………………………………………………………. 60

IV. DISCUSIÓN GENERAL…………………………………………………………....... 62

V. CONCLUSIONES……………………………………………………………………… 69

REFERENCIAS BIBLIOGRÁFICAS………………………………………………........ 70

ANEXOS…………………………………………………………………………………… 86

vii

Page 8: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

ÍNDICE DE TABLAS

Tabla Nº Título de la tabla Página

1.1 Composición química de materiales lignocelulósicos 7

y rendimiento de etanol estimado.

2.1. Células viables de S. cerevisiae después de 24 h de crecimiento 30

en medio de cultivo suplementado con CaCl2.

2.2 Composición del residuo insoluble en agua e hidrolizado del 31

pretratamiento con ácido de astillas de madera de P. radiata.

3.1. Condiciones de cocción del pretratamiento al 47

sulfito alcalino/antraquinona de astillas de madera de pino.

3.2 Composición química (en base a madera) de astillas de 52

madera de pino y pulpas ASA.

3.3 Etanol producido en SSF de pulpas ASA de P. radiata 59

(P-4 refinado a 750 Wh) después de pre hidrólisis con

diferentes tiempos y cargas enzimáticas.

4.1 Producción de etanol obtenida utilizando S. cerevisiae IR2-9 63

inmovilizada en alginato de calcio.

4.2 Producción de etanol obtenida en procesos SSF y SHF de 68

P. radiata y P. caribaea pretratada con ASA/ refinamiento en disco

con S. cerevisiae comercial.

ÍNDICE DE FIGURASviii

Page 9: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura Nº Título de la figura Página

2.1. Superficie de respuesta descrito por el modelo del diseño experimental, 33

el cual representa la retención de glucanos en el residuo insoluble en agua de

astillas de madera de P. radiata en función de la temperatura y el tiempo

de reacción.

2.2 Rendimiento de etanol obtenido de un medio sintético fermentado 34

por levaduras precultivadas por 24 h e inmovilizadas en 3,5% y 8,0%

de alginato de calcio.

2.3 Producción de etanol obtenida de madera de P. radiata pretratadas con 35

ácido diluido.

2.4 Micrografías SEM de partículas de alginato antes del proceso de fermentación. 38

2.5 Micrografías SEM de partículas de alginato con levaduras después 39

del proceso de fermentación.

3.1 Drenabilidad de pulpas ASA de P. radiata a diferentes consumos de 53

energía durante el refinamiento en disco.

3.2 Hidrólisis enzimática de pulpas ASA (P-1, P-2, P-3 Y P-4) obtenidas 54

después de refinamiento en disco a diferentes consumos de energía

(250, 750 y 1600 Wh).

3.3 Efecto de la remoción de lignina después de la cocción ASA en la hidrólisis 55

enzimática de pulpas de P. radiata producidas a diferentes consumos

de energía en refinamiento en disco.

ix

Page 10: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

3.4 Etanol y glucosa residual durante la fermentación (SHF) del hidrolizado 57

de pulpa ASA P-4 (750 Wh de energía de refinamiento).

A.1 Licuadora industrial de 10 L de capacidad utilizada para desfibrar las astillas de 87

P. radiata pretratadas con ASA y posteriormente refinar en refinador de disco.

A.2 Refinador de disco Bauer MD-3000 (REGMED, Brasil). 87

A.3 Astillas de P. radita pretratadas con ácido sulfúrico diluido a 170ºC 89

por 30 min y molidas.

A.4 Microscopía electrónica de barrido (SEM) de pulpa ASA de 89

P. radiata (P-4) refinada.

A.5 Fermentación de medio sintético (50 g/L de glucosa) utilizando 91

levaduras inmovilizadas en membrana de alginato de calcio

A.6. Hidrólisis enzimática (24 h) de pulpa ASA P-4 refinada a 750 Wh 91

en reactor de 1 L con carga de Celluclast de 20 FPU/ g de pulpa

y 40 UI de β-glucosidasa.

A.7 Procesos de fermentación del hidrolizado obtenido de pulpa ASA (P-4) 92

de P. radiata en hidrólisis enzimática por 24, 48 y 72 h en reactor de 1.0 L

y proceso SSF de pulpa ASA (P-4).

ÍNDICE DE ANEXOS

x

Page 11: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Anexos Nº Título del Anexo Página

1 Equipo utilizado en el refinamiento de astillas de madera de 86

P. radiata y P. caribaea pretratadas con ASA.

2 Estado físico de las muestras pretratadas con ácido diluido y ASA 88

3 Proceso de hidrólisis enzimática y fermentación 90

RESUMENxi

Page 12: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

La creciente demanda por combustibles fósiles, su alto costo, la escasa disponibilidad a

mediano plazo y factores ambientales han incrementado el interés por las investigaciones para

desarrollar procesos de producción de bioetanol a partir de materiales lignocelulósicos. En el

presente trabajo se evalúo la bioconversión de astillas de madera de Pinus radiata y Pinus

caribaea para la producción de etanol celulósico. La utilización de estas dos especies

forestales se fundamenta en el hecho de que son especies de interés comercial en zonas de

clima templado y tropical, respectivamente, y que en el futuro pueden utilizarse como materia

prima para la producción de bioetanol. Astillas de madera de P. radiata fueron sometidas a

dos tipos de pretratamientos distintos, uno con ácido sulfúrico diluido y el otro con sulfito

alcalino antraquinona (ASA) seguido de refinamiento en disco, en un rango de temperatura

entre 120 y 170ºC y en intervalos de tiempo entre 1 a 120 min. La muestra que presentó una

mayor cantidad de glucano residual en el material sólido pretratado con ácido diluido fue

sometida a una molienda y a un proceso de sacarificación y fermentación simultánea (SSF), al

10% de consistencia y con una carga enzimática de 20 FPU de Celluclast y 40 UI de

Novozyme por gramo de material. En el proceso se utilizó Saccharomyces cerevisiae

inmovilizada en una membrana de alginato de calcio. La producción de etanol a partir de la

fracción sólida del pretratamiento fue de 153 L/ton y de la fracción líquida de 18 L/ton, para

una producción total de etanol del proceso de 171 L/ton. La mejor condición de pretratamiento

ASA fue obtenida a 170ºC, 45 min de tiempo de reacción, 17,5 g de Na2SO3, 7,5 g de NaOH y

una energía de refinamiento de 1705 Wh/kg. La máxima conversión de celulosa a glucano

para el pretratamiento ASA en hidrólisis enzimática fue de 71% obtenida para la pulpa de P.

radiata. El rendimiento de etanol para procesos de hidrólisis y fermentación por separado

(SHF) y SSF fue de aproximadamente 262 L/ton de madera para P. radiata, siendo aún mayor

(284 L/ton) cuando se utilizó un sistema multienzimático en donde se adicionó mananasa. Para

P. caribaea se obtuvo una producción máxima de etanol de 137 L/ton. En una comparación

entre los dos pretratamiento utilizados, el que presenta mejor resultado para la producción de

etanol a partir de estas dos especies de maderas blandas es el ASA con refinamiento en disco,

mientras que se encontró que el P. cariabaea es una madera con poca factibilidad para la

xii

Page 13: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

producción de etanol por cualquier pretratamiento debido a su alto contenido de extractivos y

una menor cantidad de glucanos en comparación con P. radiata.

xiii

Page 14: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

ABSTRACT

The growing demand for fossil fuels, the high cost, the limited availability in the medium

term, and environmental factors, have increased the interest in research to develop processes

for producing bioethanol from lignocellulosic materials. This work evaluated the

bioconversion of wood chips of Pinus radiata and Pinus caribaea to produce cellulosic

ethanol. The use of these two forest species is based on the fact that they are commercially

important species in temperate and tropical zones, respectively, and in the future could be used

as feedstock for bioethanol production. P. radiata wood chips were subjected to two types of

different pretreatments, one with dilute sulfuric acid and the other with alkaline

sulphite/anthraquinone (ASA) in a temperature range between 120 and 170°C and time

between 1 to 120 min, followed by disk refining. The sample pretreated with dilute acid that

presented a higher amount of residual glucans in the solid fraction was subjected to a grinding

process and simultaneous saccharification and fermentation (SSF) at 10% consistency of

solids and an enzyme loading of 20 FPU Celluclast and 40 IU of Novozyme per gram of

material. In this process, it was used Saccharomyces cerevisiae immobilized in calcium

alginate membrane. The ethanol yield from the solid fraction of pretreatment was 153 L/ton

and from the liquid fraction was 18 L/ton, for a total ethanol yield of 171 L/ton. Best ASA pre-

treatment condition was obtained at 170°C, 45 min reaction time, 17.5 g of Na2SO3, 7.5 g

NaOH and refining energy consumption of 1705 Wh/kg. The maximum conversion of glucans

to glucose for enzymatic hydrolysis of ASA pretreatment was 71% for the pulp obtained from

P. radiata. The ethanol yield by separate hydrolysis and fermentation processes (SHF) and

SSF was approximately 262 L/ton wood for P. radiata, being even higher (284 L/ton) when

using a multienzymatic system where mannanase was added. For P. caribaea a maximum

ethanol yield of 137 L/ton was obtained. From the two pre-treatment used, the one with best

results for ethanol production from these two softwoods species was ASA with disk refining,

whereas it was found that P. cariabaea wood has a low feasibility for ethanol production due

to its high content of extractives and a low glucans content as compared with P. radiata.

xiv

Page 15: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

CAPITULO I: INTRODUCCIÓN

1.1 Etanol como combustible

Razones ambientales, económicas y de independencia energética han motivado la realización

de investigaciones en los últimos años en fuentes de energía renovables (Mosier et al., 2005).

El 82% de la energía que se consume en el mundo es proveniente de los combustibles de

origen fósil como el petróleo, gas natural y carbón, sin embargo, estas fuentes son finitas y se

proyecta que el petróleo puede estar agotado dentro de 50 años, el gas natural dentro de 45

años y el carbón cerca de 200 años, si se sigue consumiendo al nivel actual (Soetaert et al.,

2009).

La producción de etanol a partir de biomasa lignocelulósica es una opción para reducir la

dependencia de la sociedad del uso de combustibles fósiles como el petróleo y reducir la

contaminación ambiental. El etanol puede ser producido sintéticamente desde el etileno o por

conversión microbial de biomasa a través de la fermentación (Jasnick et al., 2002). Brasil ha

desarrollado a partir de 1975 el programa PROALCOOL con el propósito de reducir la

importación de petróleo por la producción de etanol de la caña de azúcar y ha tenido aspectos

positivos tanto ambientales, como económicos y sociales. El PROALCOOL es considerado

como el más importante programa de energía de biomasa en el mundo (Goldemberg et al.,

2004). El etanol también puede ser producido de materias primas celulósicas, como: madera,

residuos forestales y papeleros, sólidos municipales y residuos de cultivos agrícolas

(Demirbas, 2005). La producción estimada de etanol para el año 2011 es de 88.7 billones de

litros, de los cuales 79 billones son producidos en América, principalmente de maíz (49%) y

caña de azúcar (33%) (GRFA, 2011).

Para la producción de etanol de biomasa se han obtenido avances en el pretratamiento por

hidrólisis catalizada por ácidos y en el uso de enzimas para la sacarificación de celulosa,

además de la utilización de bacterias genéticamente modificadas para la fermentación de

azúcares de 5 y 6 átomos de carbono a etanol, con lo cual se ha logrado aumentar el

rendimiento y reducir los costos de producción (Wyman, 1999). Sin embargo, se requiere de

avances en el fraccionamiento de la biomasa para su máximo aprovechamiento y en la 1

Page 16: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

reducción del costo de producción de etanol hasta un punto de ser competitivo con los

combustibles fósiles, sin la necesidad de subsidiar su producción.

1.2. El concepto de una biorefinería

El incremento en los precios del petróleo y las proyecciones sobre la disponibilidad del mismo

en las próximas décadas hace necesario el establecimiento de alternativas que reduzcan el

rápido consumo de fuentes de energía fósiles, como lo son el petróleo, gas natural, carbón,

entre otros. La sustitución de la dependencia de la economía global, basada en el consumo de

petróleo a una economía basada en la obtención de energías limpias a partir de materias

primas renovables como residuos agrícolas, cultivos energéticos y madera, requiere de sistema

de producción seguros, sustentables económica y ecológicamente, y que sean duraderos. En

ese sentido surge como una alternativa y, en forma análoga a la refinería de petróleo, el

concepto de biorefinería, que es una planta que produce una amplia variedad de productos

finales que puede incluir energía (en varias formas), materias primas de químicos (como por

ejemplo precursores de plásticos), ingredientes de alimentos y compuestos farmacéuticos. El

valor total de los productos puede hacer el proceso económica y ambientalmente viable

(Harris, 2005). Las biorefinerías de primera generación son las plantas que utilizan como

materia prima caña de azúcar, remolacha azucarera y granos que contienen almidón, tienen

una capacidad de procesamiento fija y producen etanol, co-productos alimenticios y CO2

(Kamm et al., 2006; Cherubini, 2010). Las biorefinerías de segunda generación utilizan como

materia prima materiales lignocelulósicos, como los residuos agrícolas, forestales y de la

industria, y plantaciones de lignocelulósicos dedicadas al uso bioenergético. Pueden ser

convertidos a biocombustibles y otros sub-productos por diferentes rutas (termoquímica,

bioquímicas, combinadas) y producen una variedad de productos finales dependiendo de la

demanda. Las biorefinerías basadas en materia prima lignocelulósica todavía requieren el

desarrollo y optimización de las tecnologías principalmente en el campo del fraccionamiento

de la biomasa y la utilización industrial de la celulosa, hemicelulosa y lignina. Los elementos

esenciales para el éxito en el establecimiento de una biorefinería son: capacidad de disponer de

múltiples materias primas, procesamiento de la materia prima por enzimas para transformarlas

2

Page 17: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

a azúcares fermentables y sub-productos, biotransformación la cual convierta las azúcares a

productos deseados y co-productos los cuales son usados en el proceso, reciclados a través del

proceso o comercializados (Dean et al., 2006). Los beneficios del uso de biomasa en

comparación con el petróleo en la producción de combustibles líquidos y compuestos

químicos orgánicos, resulta en beneficios ambientales como: las fuentes de biomasa son

renovables con períodos de rotación cortos, lo cual permite que el carbono enviado a la

atmósfera por la combustión del combustible sea reciclado por el crecimiento de las plantas en

la siguiente producción de biomasa; las fuentes de biomasa pueden ser obtenidas localmente

sin necesidad de importación; la creación de fuentes de trabajo para la producción y

refinamiento de la biomasa, la producción y conversión de biomasa a combustibles líquidos y

químicos orgánicos involucra pasos de procesamiento que generalmente reducen los tóxicos

asociados con la producción petroquímica (Pimentel, 2003; Hill et al., 2006). El punto de

partida para el establecimiento de biorefinerías que se ha propuesto en países de Norteamérica

y Europa consiste en expandir plantas de producción de pulpa para producción de bioetanol y

productos de valor agregado. Un ejemplo de este proceso sería la extracción de hemicelulosas

antes de que las astillas de madera sean pulpeadas en el digestor y convertir esas azúcares a

ácido acético o etanol; en la misma vía se podría manufacturar bio-productos a partir de los

licores del pulpaje. Un factor clave en este punto es la conversión del licor negro del pulpaje a

syngas a través de procesos de gasificación y la conversión de syngas a combustibles líquidos,

productos químicos y otros materiales de alto valor agregado (Agenda 2020 Technology

Alliance; 2006). La tecnología para producir etanol a partir de granos es madura y avanzada,

pero a partir de madera está menos desarrollada. Muchos estudios se han centrado en estudiar

las maderas duras, blandas y residuos agrícolas para la producción de etanol.

1.2.1 Procesos de biorefinería en desarrollo

Existen varios procesos de producción de etanol, en su mayoría a nivel de laboratorios y

plantas piloto, como:

-Iogen se utilizan residuos agrícolas y de maderas duras; se basa en un proceso enzimático de

hidrólisis con altos costos asociados a los niveles de enzimas requeridos, al costo de

producción y capital altos. Sin embargo, esta compañía además de producción de etanol,

3

Page 18: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

comercializa enzimas para varias aplicaciones y en su planta demostrativa ha producido a

partir del pretratamiento a explosión de vapor e hidrólisis enzimática de paja de trigo:

1.628.407 L de etanol entre 2004-2011 (http://iogen.ca).

-BC Internacional : utiliza microorganismos modificados genéticamente (Zimomonas sp.),

para fermentación simultánea de hexosas y pentosas; dos pasos de hidrólisis ácida pueden ser

utilizado para maderas blandas, evitando la degradación de las hemicelulosas a furfural y su

posterior fermentación a etanol. Los dos pasos de hidrólisis aumentan el costo de capital y

operación de la planta.

-Arkenol : se basa en la hidrólisis de la madera con H2SO4 concentrado; la reacción es rápida

y es llevada a bajas temperaturas y presiones, resultando en una menor degradación de los

productos; sus desventajas son los altos costos de construcción de la planta, debido a la

utilización de H2SO4 concentrado, múltiples pasos en el proceso, pérdidas de ácido, altos

niveles de residuos y altos costos de operación.

-ACOS: involucra la solubilización de todos los componentes lignocelulósicos, usando una

solución acuosa de acetona con una pequeña cantidad de ácido, la reacción es llevada a

temperaturas cercanas a los 200ºC y presiones de 40 bar, tiempos de reacción de 0,5 horas. Las

ventajas de este proceso implican la posibilidad de utilizar una amplia variedad de materias

primas: maderas duras, blandas, residuos agrícolas y granos, que pueden ser procesados con

las mismas condiciones, bajos costos de capital y operación de la planta, pero se encuentra

todavía en estado de laboratorio. Investigaciones y desarrollos en el campo de la biorefinería

son necesarios emprender para incrementar el conocimiento científico de las fuentes de

biomasa, mejorar sistemas sustentables de desarrollo, cosecha y procesamiento de la biomasa;

mejorar la eficiencia y rendimiento en la conversión y procesos de distribución y tecnologías

para el desarrollo de nuevos materiales; crear la regulación ambiental necesaria para

incrementar el desarrollo y uso de los nuevos productos obtenidos a través de estos procesos

(Kamm et al., 2004).

-LIGNOL: (http://www.lignol.ca/) es una tecnología de biorefinería que integra la

combinación de dos procesos genéricos, en la que primero se realiza un paso de pretratamiento

organosolv basado en etanol, que incluye la separación de la lignina, hemicelulosas y 4

Page 19: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

extractivos de la fracción celulósica de biomasa maderera y la recuperación de múltiples co-

productos (furfural, ácido acético, extractivos, hemicelulosas, lignina de baja masa molecular),

mientras que en un segundo paso se realiza la sacarificación enzimática y fermentación que

convierte la celulosa a etanol, o potencialmente cualquier otra plataforma química azucarera.

La fracción celulósica es altamente susceptible a hidrólisis enzimática con rendimientos de

azúcar superiores a 90% en 12-24 h y con cargas de enzimas de 10-20 FPU (Arato et al.,

2005). Este proceso usa una mezcla de etanol y agua en una relación de 50:50 (p/p) a 200ºC y

400 psi para extraer la lignina de las astillas de madera o cualquier otra biomasa

lignocelulósica (Pan et al., 2005).

-ZeaChem: (http://www.zeachem.com/) utiliza un proceso híbrido de procesamiento

termomecánico para fraccionar la biomasa y la utilización de un proceso bioquímico

(acetogénico) altamente eficaz para fermentar xilosa y glucosa, sin generación de CO2

1.3. Pretratamientos de la biomasa lignocelulósica para su conversión a etanol

El objetivo principal del fraccionamiento de biomasa lignocelulósica desde el punto de vista

de una biorefinería es obtener cada uno de sus componentes principales (celulosa,

hemicelulosas y lignina) en su máxima producción y pureza, y obtener la mayor cantidad de

ingresos de ellos. La eficiencia en el proceso debe evitar la degradación y pérdida de valor de

sus componentes, permitiendo el máximo aprovechamiento de la celulosa, mediante

substituciones químicas, aplicaciones termoplásticas y de otros polímeros a partir de la lignina

y aplicaciones sucroquímicas de las hemicelulosas (Overend et al., 1987). La solubilización de

azúcares que son convertidos a productos de valor por microorganismos y en combinación con

procesos químicos, en los cuales se obtienen también algunas pentosas derivadas de las

hemicelulosas, tiene un alto valor por sí mismo (Kim, 2005). Varias tecnologías de

pretratamiento, que incluyen métodos físicos como la molienda que se realiza para disminuir

el tamaño de partícula de la biomasa e incrementar el área superficial de la misma;

pretratamientos químicos con álcali, ácidos, gases, agentes oxidantes, solventes orgánicos, con

el objetivo de deliginificar y solubilizar hemicelulosas; pretratamientos biológicos con hongos

de pudrición blanca (Pycnoporus cinnabarinus), Trichoderma reesei, Aspergillus niger,

5

Page 20: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Ganoderma asutrale. y Phellinus sp. SKM2102), con la finalidad de delignificar y reducir el

grado de polimerización de los carbohidratos, pretratamientos combinados como el pulpaje

alcalino asociado con explosión a vapor, molienda seguido de tratamientos ácidos o alcalinos

han sido evaluadas (Bjerre et al., 1996; Sczodrak et al., 1996; Tabka et al., 2006; Muñoz et al.,

2007; Hendriks et al., 2008; Hayes, 2009; Baba et al., 2011). Algunos pretratamientos

fisicoquímicos de biomasa son considerados como opciones en un corto plazo: utilizando

explosión a vapor para fraccionar residuos agrícolas (Ballesteros et al., 2002), gasificación de

aserrín de madera blanda por H2O supercrítica (Yoshida et al., 2004), hidrólisis con H2SO4

(Kim et al., 2000, Ferrerira et al., 2011), explosión a vapor catalizada por H2SO4 (Emmel et

al., 2003, Kumar et al., 2010; Won-Lee et al., 2011), pretratamiento con ácido diluido en dos

etapas de madera blanda (Söderström et al., 2003). Recientemente, se ha reportado que el

pretratamiento al sulfito ácido (llamado pretratamiento al sulfito para superar la recalcitrancia

de lignocelulósicos, SPORL) con reducción de tamaño en refinador de disco de astillas de

madera de Picea mejora significativamente la conversión de celulosa a glucosa, alcanzándose

un 90% de conversión y un bajo consumo de energía en la reducción de tamaño del material

pretratado de 19 kJ/kg de madera no tratada (Zhu et al., 2010).

1.3.1. Producción de etanol a partir de material lignocelulósico

Las materias primas para producción de bioetanol pueden ser clasificadas dentro de tres tipos:

1) materia prima que contiene sacarosa (caña de azúcar, sorgo dulce y remolacha), 2)

materiales que contienen almidón (maíz, trigo, cebada) y 3) biomasa lignocelulósica: madera,

paja y gramíneas (Balat et al., 2007). En la tabla 1.1 se presenta la composición química y

etanol estimado de algunas materias primas lignocelulósicas (Chandel et al., 2007). La

producción de etanol de materiales lignocelulósicos consiste de varias etapas de

fraccionamiento, conversión y recuperación: hidrólisis enzimática, fermentación, separación

de productos y post pretratamiento de la fracción líquida (Hendriks et al., 2008). El bioetanol

puede ser producido a partir de materia prima lignocelulósica por ser la materia prima más

promisoria por su bajo costo, pero la producción a escala comercial todavía no ha sido

implementada; su fortaleza en comparación con el etanol obtenido a partir de maíz, azúcar de

caña, trigo o gramíneas, es que no estaría en conflicto con el hecho de estas materias primas se 6

Page 21: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

utilizan como alimentos para el ser humano. Además, el costo ambiental asociado a la

producción de etanol a partir de maíz es de 23 centésimos de dólar por galón, debido a la

erosión del suelo que causa el cultivo intensivo, al uso de fertilizantes nitrogenados,

insecticidas y herbicidas, que ayudan a aumentar la contaminación de las fuentes de agua

(Pimentel et al., 2003; Balat et al., 2007).

Tabla 1.1. Composición química de materiales lignocelulósicos y rendimiento de etanol estimado.

La biomasa lignocelulósica como residuos agrícolas, madera y cultivos energéticos es un

material de interés en la producción de bioetanol debido a ser las fuentes más abundantes en la

Tierra. La producción global de biomasa es de aproximadamente 200 x 109 t por año; esta

cantidad de biomasa lignocelulósica puede producir hasta 442 billones de litros/año de etanol.

La producción potencial de etanol a partir de residuos de cosechas puede producir 491

millones de litros de etanol/año, que puede reemplazar a 335 x 109 L de gasolina (32% del

consumo global de gasolina), cuando se utiliza mezcla con 85% de gasolina y 15% de etanol

(E85) (Szczodrak et al., 1996). Por otra parte, los residuos de la fermentación ricos en lignina,

los cuales son un subproducto del proceso de producción de etanol, pueden generar 458 TWh

de electricidad (cerca de 3,6% de la producción mundial de electricidad) y 291 x 109L/año de

vapor (Kim et al., 2004). Cultivos lignocelulósicos perennes como especies de corta rotación y

gramíneas, son interesantes fuentes de materia prima debido a sus bajos costos de producción, 7

Page 22: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

alto rendimiento, buena sustentabilidad para terrenos de baja calidad y bajo impacto ambiental

(Balat et al., 2007). A pesar de las numerosas investigaciones que se realizan para la

producción de bioetanol de biomasa lignocelulósica, muchos de los procesos ensayados,

todavía se encuentran a escala de laboratorio o piloto. La primera planta para producir etanol

de biomasa lignocelulósica basada en el proceso SSF fue puesta en operación en Pittsburg en

1976, con una producción de 567,8 L/día; otras plantas pilotos se han construido en asociación

con el National Renewable Energy Laboratory: New Energy Company Inc (Golden, USA),

Amoco Corporation, Tenessee Valley Authority. En 1983 en Japón inició operaciones planta

piloto para procesar 720 kg de material diariamente. En 1988 en Soustons, Francia se

construyó una planta para procesar 4 t/h de madera de chopo y producir entre 160-190 kg de

etanol a partir de 1000 kg de madera seca (Szczodrak et al., 1996). Otros proyectos de

producción de etanol a escala demostrativa y comercial se encuentran en proyección entre

ellos la construcción de una planta a escala comercial por el Grupo Mossi & Ghisolfi en

Crescentino, Italia con capacidad de producir 50 millones de litros/año utilizando enzimas

Novozymes y con tecnología para convertir una amplia variedad de materias primas

lignocelulósicas, se espera que la planta inicie operaciones en 2012; Abengoa 2G Etanol opera

desde septiembre de 2009 una planta demostrativa en Salamanca, España con capacidad de

procesar 70 toneladas diarias de lignocelulósicos y producir 5 millones de litros de etanol por

año. En USA, Japón y algunos países de Europa también desarrollan un gran número de

proyectos de plantas de etanol celulósico (http://www.biofuelstp.eu/cell_ethanol.html).

1.4. Hidrólisis con ácido diluido

La hidrólisis con ácido diluido ha sido desarrollada para el pretratamiento de materiales

lignocelulósicos, específicamente de residuos agrícolas como rastrojo de maíz, paja de arroz y

de trigo (Zhu et al., 2008; Balat, 2011). El pretratamiento de biomasa lignocelulósica con

H2SO4 a temperaturas superiores a 180ºC, puede alcanzar altas tasas de reacción, mejora

significativamente la hidrólisis de la celulosa y los xilanos pueden disolverse en un 90% en los

primeros minutos del período de reacción (Esteghlalian et al., 1997; Mosier et al., 2005). La

hidrólisis con ácido diluido puede ser aplicada en un paso a temperaturas menores de 200ºC,

8

Page 23: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

con producción de un 80% de hemicelulosa, pero la mayor producción de glucosa se obtiene a

temperaturas más altas de 220ºC, teniendo el inconveniente de que se forman compuestos

inhibidores de la fermentación como furfural, 5-hydroximetilfurfural, ácido levulínico, ácido

acético, ácido fórmico, ácido urónico. Para hidrólisis de sacarosa a una temperatura de 160ºC,

0,1% (m/m) de H2SO4 y 12 min de tiempo de reacción se obtiene un 90% de glucosa residual,

pero para temperaturas de 200ºC, 2.0% de ácido y 8 min de tiempo de reacción sólo 10% de

glucosa residual se obtiene del tratamiento, con la consecuencia del aumento de inhibidores

(Bower et al., 2007). Se ha demostrado la inhibición de un 20% de la hidrólisis enzimática de

material sólido prehidrolizado de abeto al cual se le ha adicionado prehidrolizado debido a la

presencia de ácidos alifáticos, derivados furanos y compuestos fenólicos (Tenborg et al.,

2001). Es preferible realizar el pretatamiento con ácido diluido en dos pasos utilizando

temperaturas de 120-170ºC, teniendo como ventajas las siguientes: alta producción de

azúcares prevaleciendo la alta solubilización de hemicelulosas en el primer paso y de glucosa

en el segundo paso de hidrólisis, el consumo de energía puede ser minimizado, la solución de

azúcares resultante puede ser más concentrada, menos degradación de azúcares y formación

de pocos compuestos inhibidores de la fermentación en la segunda etapa de hidrólisis; la

recuperación de pentosas y hexosas provenientes de las hemicelulosas alcanza entre el 80-95%

del total de azúcares disponibles, mientras que la producción de glucosa alcanza entre el 40-

60% del total disponible (Taherzadeh et al., 2007). Se ha reportado hidrólisis con ácido para

los cuales se ha utilizado rangos de temperatura de reacción entre 100 y 210ºC,

concentraciones de H2SO4 entre 0,5 y 80% (p/p) y tiempos de reacción entre 2 y 30 min, para

la producción de etanol de Picea glauca (Kim et al. 2005), mezcla de madera de Quercus

humilis, Betula pendula y Acer rubrum (Iranmahboob et al., 2002), Pupulus spp. (Yat et al.,

2008) y Abies alba (Larsson et al., 1999). Pretratamiento con 0.8% de ácido sulfúrico diluido,

180ºC y 15 min de Acacia dealbata molida con un tamaño de partícula de 0.8-1.0 mm produce

para un proceso de sacarificación y fermentación separadas (SHF), 10.31 g de etanol/L con 72

h de hidrólisis enzimática a 50ºC y 24 h de fermentación a 30ºC, y 7.53 g de etanol/L para 48

h de un proceso de sacarificación y fermentación simultáneas (SSF) suplementado con el

surfactante polietilenglicol 4000 (Ferreira et al., 2011). Tratamientos con ácido sulfúrico

diluido (3% v/v) de madera de Prosopis juliflora combinado con un proceso de delignificación

con Na2SO3 (5% p/v) y NaClO2 (3% p/v) e hidrólisis enzimática, produce después de la 9

Page 24: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

hidrólisis enzimática un hidrolizado con 37.47 g/L de azúcares y una producción máxima de

etanol con S. cerevisiae de 18.52 g/L y un rendimiento de etanol de 0.49 g por g de material

pretratado, equivalente a 0.21 g de etanol/ g de biomasa (Gupta et al., 2009). Para los

materiales lignocelulósicos de P. juliflora y Lantara camara se obtuvo una sacarificación

entre 39.5 y 48%, cuando se aplicó un pretratamiento con ácido sulfúrico diluido al 3% (v/v),

45 min y 121ºC (Gupta et al., 2011).

1.5. Pretramiento alcalino con sulfito/antraquinona (ASA)

El pulpaje kraft es el proceso de pulpaje químico predominante en el mundo, en el cual se

utiliza Na2S y NaOH para degradar la lignina en la madera (Chakar et al., 2004). Como

alternativas al pulpaje kraft existen procesos como soda/antraquinona (AQ), sulfito/AQ y

sulfito alcalino/AQ (Dimmel, 1996). El pulpaje a la soda es un proceso bien comprendido el

cual permite procesar diferentes materiales lignocelulósicos, pero tiene la desventaja de que

los licores de cocción fuertemente alcalinos descomponen los carbohidratos mediante

reacciones de peeling e hidrólisis alcalina. El NaOH disuelve los compuestos fenólicos de la

lignina, mientras que en las estructuras no fenólicas de la lignina se produce el rompimiento de

enlaces β-éter. En investigaciones de pulpaje de alto rendimiento, las tecnologías del pulpaje

semiquímico al sulfito han sido desarrolladas en combinación con procesos de refinamiento

presurizado o atmosférico; típicamente el tratamiento al sulfito extensivo (cargas de sulfito

>10%) es acoplada con refinamiento atmosférico y se refiere como pulpaje al sulfito

quimiomecánico (SCMP o CMP), mientras que pretratamientos con baja carga de sulfito (<

6%), normalmente acoplado con refinamiento presurizado es referido como pulpaje

quimiotermomecánico CMTP (Xu, 2003). Comparando el pulpaje kraft utilizado a escala

industrial para la obtención de pulpa y pasta papelera con otros procesos a la soda, como por

ejemplo con el pulpaje kraft/AQ se obtiene para el último proceso una disminución en los

rechazos, un descenso en el número kappa a la misma carga de álcali activo. Los procesos

soda-AQ resultan en el mismo o en un mayor rendimiento de pulpa clasificada que las pulpas

kraft de referencia, manteniendo los mismos porcentajes de rechazo y número kappa, pero con

una disminución en las propiedades mecánicas de la pulpa y en su viscosidad. En los procesos

10

Page 25: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

de pulpaje ASAM, el licor de cocción contiene Na2SO3, NaOH y antraquinona en metanol

acuoso, el cual es un excelente solvente de la lignina y de sus productos de degradación,

suprimiendo la condensación de la lignina por metilación de sus grupos reactivos (Patt et al.,

1991; Khristova et al., 2006). La utilización de licor de cocción con soluciones de NaOH y

Na2SO3 a las cuales se les agrega pequeñas cantidades de antraquinona (C14H8O2) ha

demostrado ser muy efectiva para promover la estabilización oxidativa de los polisacáridos ,

antes que ocurran las reacciones de peeling y al mismo tiempo lograr una tasa de

delignificación alta, han dado como resultado rendimientos de pulpa altos, con bajo contenido

de lignina y la presencia de azúcares poco degradados (Huang et al., 2007; Patt et al., 2006).

La utilización de una concentración de álcali baja y una concentración de sulfito relativamente

alta (pero mucho más baja que la utilizada en los procesos de pulpaje kraft), son

indispensables en las fases iniciales del proceso de delignificación (Santiago et al., 2007;

Shatalov et al., 2007; Abrantes et al., 2007). Bajo condiciones similares de cocción se ha

reportado un rendimiento de pulpa de 47,0 y 49,3 %, número kappa de 20,9 y 19,6 para

pulpaje kraft y ASA, respectivamente, de Eucalyptus citriodora (Khristova et al., 2006). Al

obtenerse en el proceso ASA un alto rendimiento de pulpa y una alta tasa de delignificación,

representaría una opción a ser evaluada desde el punto de vista técnico y económico para ser

utilizado como pretratamiento para materiales lignocelulósicos destinados a lograr una alta

producción de etanol durante la sacarificación y fermentación simultáneas.

1.6. Hidrólisis Enzimática

La hidrólisis enzimática es realizada por enzimas celulasas que tienen una alta especificidad

por el sustrato. Los productos de la hidrólisis completa es la glucosa. La hidrólisis enzimática

de substratos lignocelulósicos generalmente se efectúa a pH 4.8 y temperaturas de 45-50ºC.

Tanto bacterias como hongos pueden producir celulasas para la hidrólisis de materiales

lignocelulósicos, estos microorganismos pueden ser aeróbicos o anaeróbicos, mesofílicos o

termofílicos, entre los cuales se puede mencionar las especies: Clostridium, Cellulomonas,

Streptomyces, Trichoderma, Aspergillus, Sclerotium. Los factores que afectan la hidrólisis

enzimática de celulosa incluyen el tipo de substrato, actividad de las celulasas, cristalinidad de

11

Page 26: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

la celulosa, accesibilidad al área superficial, protección de la celulosa por la lignina, la

heterogeneidad de las partículas de biomasa, la protección de la celulosa por las hemicelulosas

y las condiciones de operación: temperatura y pH (Sun et al., 2002; Sczordrak et al., 1996).

Las celulasas comprenden tres tipos de enzimas: 1) endoglucanasas EG, endo 1,4 D-

glucanohidrolasa (EC 3.2.1.4,), la cual rompe los enlaces internos β-1,4-glucosídicos de la

celulosa, 2) exoglucanasas o celobiohidrolasas: 1,4-β-D-glucano celobiohidrolasa (EC

3.2.1.91) la cual degrada los oligomeros de celulosa promoviendo la remoción de unidades de

celobiosa de los extremos finales libres (extremos reductores y no reductores de las cadenas de

celulosa); y 3) β-glucosidasas (EC 3.2.1.21), las cuales hidrolizan los celo-oligosacáridos

(celobiosa) a glucosa. Se ha comprobado que la accesibilidad a la celulosa es incrementada

con celulasas y endoglucansas mediante el incremento de la actividad química de la celulosa

porque las enzimas hidrolíticas decrecen el grado de polimerización de la celulosas y rompen

una porción de enlaces de hidrógeno en la celulosa (Cao et al., 2006). La tasa de hidrólisis de

celulosa también es incrementada por una disminución de la cristalinidad de la celulosa, por la

remoción de hemicelulosas que cubren algunos sitios del substrato susceptibles a la celulasa

en la celulosa y la delignificación de materiales lignocelulósicos (Yoshida et al., 2008). La

hidrólisis enzimática en presencia de 10 mg/L de la fracción de lignina soluble aislada de

Pseudotsuga menziesii puede inhibir hasta 84% la actividad de β-1,4-endoglucanase III

recombinante de un complejo enzimático de Penicillium sp., hasta 39% de la actividad

enzimática de xilanasa recombinante y hasta 11% de la actividad de preparaciones de β

glucosidasa, sugiriéndose que los mecanismos de inhibición enzimática involucran la

absorción de la enzima en los componentes particulados mayores de la lignina e interacciones

de tipo iónico por la presencia de grupos funcionales (COOH, OH y CO), parcialmente

cargados en la superficie de las enzimas y en la lignina (Berlin et al., 2006). El tamaño de

partícula de los substratos lignocelulósicos afecta la hidrólisis enzimática porque para

substratos como pulpa kraft de abeto refinada, se ha reportado una mejor absorción de enzimas

por gramo de substrato en comparación con pulpa no refinada debido al incremento en el área

superficial específica por la presencia de finos, los cuales tienen un volumen de poro menor

que las fibras gruesas, permitiendo una mayor eficiencia en los estados iniciales de hidrólisis

enzimática (Mooney et al., 1999). En hidrólisis enzimática de materiales lignocelulósica, se ha

reportado una relación lineal (incremento de 5 a 30% de contenido de sólidos) entre la 12

Page 27: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

concentración de sólidos y el descenso en la conversión de celulosas, atribuyéndose dicho

efecto de inhibición del producto principalmente al incremento en la concentración de glucosa

y celobiosa en el medio de hidrólisis, sin entenderse claramente el mecanismo que la causa, y

descartándose problemas de mezcla del substrato insoluble o por el contenido de lignina o

hemicelulosas (Kristensen et al., 2009). Por otra parte también se ha reportado que la xilosa,

xilooligómeros y xilano son inhibidores más fuertes de las celulasas, en la misma

concentración molar que la glucosa o celobiosa (Qing et al., 2010).

1.7. Tecnologías para la fermentación de materiales lignocelulósicos

Es ampliamente conocido que la levadura S. cerevisiae ha sido el microorganismo más

ampliamente utilizado para la fermentación de hexosas. S. cerevisiae puede producir etanol de

glucosa y manosa si la concentración de azúcares es alta en el medio de fermentación y

cuando la levadura crece bajo condiciones anaeróbicas. S. cerevisiae es un organismo muy

eficiente en la fermentación y ha sido empleada por largo tiempo en la producción industrial

de etanol. Otros microorganismos estudiados para la producción de etanol son: Pichia stipitis,

Z. mobillis, Candida Shehatae, Klebsiella planticola y Zygosaccharomyces (Martín et al.,

2003; Tolan et al., 1987; Delgenes et al., 1996). En general el desarrollo de la fermentación a

gran escala incluye: 1) la selección del organismo: basada en las características del substrato,

características de formación de subproductos, viabilidad para su reciclaje, características

fisiológicas; 2) ingeniería celular y metabólica con el objetivo de mejorar las propiedades

existentes del microorganismo y para permitir que la fermentación ocurra bajo ciertas

condiciones y 3) desarrollo del proceso de fermentación: incluye la optimización de los

parámetros de cultivo (Van Hoek et al., 2003). Existen tecnologías de sacarificación y

fermentación que difieren en la configuración o etapas en las que se realizan, dentro de ellas

está la sacarificación y fermentación simultánea (SSF), cuando la hidrólisis enzimática y la

fermentación se realiza en forma secuencial recibe el nombre de sacarificación y fermentación

por separado (SHF), la sacarificación y co-fermentación de hexosas y pentosas (SSCF) y el

bioprocesamiento consolidado de biomasa (CBP). En el proceso SSF se integra la hidrólisis

enzimática de celulosa a glucosa, catalizada por la acción sinérgica de celulasas y β-

13

Page 28: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

glucosidasa, con la síntesis fermentativa de etanol. La hidrólisis enzimática y la fermentación

se realizan en un mismo reactor, lo que disminuye el costo del proceso, además tiene la

ventaja de evitar la inhibición de las enzimas por productos finales del proceso (Philippidis et

al., 1992; Olofsson et al., 2008). Una dificultad del proceso SSF es que la temperatura óptima

para la hidrólisis enzimática siempre es superior a la temperatura óptima a la cual se realiza la

fermentación por microorganismos, por lo que es necesario buscar una condición óptima de

temperatura para ambos procesos de hidrólisis enzimática y fermentación que se realizan al

mismo tiempo. Una opción para superar esta dificultad es realizar una prehidrólisis a una

temperatura óptima para las enzimas y posteriormente disminuir la temperatura y adicionar la

levadura (Öhgren et al., 2007). Al comparar procesos de SHF y SSF se ha reportado para paja

de trigo pretratada con explosión a vapor que el rendimiento de etanol, obtenido con S.

cerevisiae para el proceso SSF (72 h) es dos veces más alta que para el proceso SHF en el que

se utilizó 48 h de sacarificación y 72 h de fermentación (Chen et al., 2007). Una de las ventjas

del proceso SHF es que cada paso puede ser realizado a sus condiciones óptimas de operación

(Sánchez et al., 2008). Una ruta alternativa para la producción de bioetanol es la utilización de

microorganismos que pueden convertir la biomasa a azúcares fermentables y fermentar las

azúcares resultantes a etanol en un proceso conocido como CBP. El

CBP combina sacarificación simultánea de lignocelulosa con la fermentación de los azúcares

resultantes, en un proceso de un solo paso mediado por un microorganismo o un consorcio

microbial, que pueden ser levaduras, bacterias u hongos que han sido mejorados

genéticamente para producir celulasas y ser etanologénicos, dentro de los microorganismos

propuestos se encuentra S. cerevisiae (levadura), Clostridium thermocellum y Zimomonas

mobilis (bacterias) y el hongo Trichoderma reesei (Xu et al., 2009). Los microorganismos

candidatos a ser utilizados en el proceso deben tener características específicas que incluyen

producción/estabilidad de enzimas, crecimiento balanceado en hexosas y pentosas, tolerancia a

los inhibidores del pretratamiento, máximo rendimiento del producto y tasas de producción, y

tolerancia a solventes; la estrategia dominante para la ingeniería de una eficiente biocatálisis

para la producción de etanol por CBP es la de expresar múltiples componentes de un sistema

celulolítico de un hongo o bacteria en S. cerevisiae (Elkins et al., 2010; La Grange et al., 2010,

Xu et al., 2010).

14

Page 29: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Fermentación continua de hidrolizado de residuos forestales de abeto con levaduras

floculantes S. cerevisiae CBS 8066 alcanzó una concentración de 0,34 g/L de etanol

(Purdwadi et al., 2007). Para fermentación fed-batch de hidrolizado de abeto con S. cerevisiae

TMB 3000 se ha reportado una producción de etanol de 0,46 g/L (Peterssonet al., 2007).

Producción de etanol por un proceso de sacarificación y fermentación simultánea (SSF),

tomando en consideración la fermentación por S. cerevisiae de glucosa y manosa con

pretatramiento de explosión a vapor catalizado con SO2 de Salix (madera dura), abeto (madera

blanda) y residuo de la cosecha de maíz ha sido reportada en 239; 292 y 215 L/ t métrica,

respectivamente, correspondiendo a 69,2; 71,4 y 68,6% del valor teórico, basado en el

contenido de hexosas en la materia prima (Sassner et al., 2007). Se ha reportado la producción

de etanol de diversos materiales lignocelulósicos a partir de tratamiento de explosión a vapor

catalizado con H2SO4 por el método de sacarificación y fermentación simultánea (SSF),

utilizando levadura Kluyveromyces marxianus CECT 10875, con rendimientos de etanol para

chopo, eucalyptus, paja de trigo y bagazo de sorgo dulce de: 19,0; 17,0; 18,1 y 16,2 g/L, para

un período de 72-82 h de fermentación (Ballesteros et al., 2004). Para madera pretratada con

hongos de pudrición blanca y etanólisis de madera blanda Cryptomeria japonica, se ha

reportado en procesos de SSF a 35ºC con S. cerevisiae AM12 y por 72 h de fermentación, una

producción de etanol de 9,82 g/L (3,11% de rendimiento en base al máximo teórico) y 8,94

g/L (28.3% en base al máximo rendimiento teórico), para la pulpa de la madera pretratada con

Ceriporiopsis subvermispora FP-90031-sp y Phellinus sp. por 8 semanas y etanólisis a 200ºC

por 60 min en una solución acuosa al 60% de etanol (Baba et al., 2011). En un proceso de SHF

de madera pretratada con ácido sulfúrico diluido y delignificada con 5% (p/v) de Na2SO3 y 3%

(p/v) de NaClO2 de Prosopis juliflora se reportó una producción de etanol de 18,52 g/L

después de 16 horas de fermentación de la mezcla del licor ácido y el hidrolizado enzimático

que contenía una concentración inicial de glucosa de 37,47 g/L (Gupta et al., 2009).

1.8. Materias primas lignocelulósicas: P. radiata y P. caribaea

Los requerimientos de materias primas para el desarrollo del concepto de biorefinería plantea

una problemática entre la utilización de algunos cultivos agrícolas que hasta hace algunos años

15

Page 30: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

sólo fueron utilizados para la alimentación de las personas y animales para producir

biocombustibles y con esta medida disminuir la producción destinada al fin alimenticio y al

existir poca disponibilidad en el mercado internacional los precios de estos cultivos como el

maíz, trigo, caña de azúcar, remolacha azucarera, entre otros, van a aumentar

considerablemente provocando el desabastecimiento y con ello el surgimiento del dilema ético

de biocombustibles o alimentos. La opción más viable es la de utilizar especies forestales

como materia prima para las biorefinerías. Una especie forestal importante que se ha cultivado

a escala comercial con éxito en Nueva Zelanda, Chile, Australia, Sur África, Argentina,

España, Grecia e India es el P. radiata D. Don, una especie originaria del Sur de California,

USA y que crece en un intervalo de temperatura de -5 a 41ºC (http.//www.ag-network-

chile.net). P. radiata puede sobrevivir en áreas con poca lluvia y en suelos pobres. En Chile, el

área donde se ubican las plantaciones son entre Constitución (Región del Maule) y Valdivia

(Región de Los Ríos), donde las temperaturas mínimas alcanzan -5ºC y el promedio anual de

lluvias es de 1000 a 2000 mm, alcanzando tasas de crecimiento de 20 m3/há y densidad de la

madera de 450 kg/m3 (McDonald et al., 2008). En Chile, el consumo industrial de P. radiata

fue de 3,7 millones de m3 en 1970, en 2003 fue de 22,1 millones de m3 y se prevé una

expansión en su consumo hasta alcanzar los 45 millones de m3 en el año 2030. La superficie

de P. radiata plantada en Chile es de 1 457.224 há. (http://www.corma.cl/corma_info.asp?

idq=426). Los principales usos de la madera de P. radiata son la producción de pulpa química

y madera aserrada (Pérez et al., 2003). Representa una oportunidad para Chile darle el mayor

uso posible a la biomasa lignocelulósica y poder destinar algunas áreas degradadas o que no

tienen uso agrícola para expandir las plantaciones forestales de P. radiata con fines

energéticos, aprovechando las condiciones climáticas y el conocimiento silvicultura

acumulado a través de décadas de establecimiento de plantaciones con fines comerciales. En

regiones semiáridas del sur de Australia con precipitaciones anuales entre 300-600 mm de

lluvia y alta salinidad, se han estudiado plantaciones de P. radiata de corta rotación (3-5 años)

con fines bioenergéticos obteniéndose un rendimiento máximo a los 3 años con una

producción de biomasa de 15,4 t/há para una densidad inicial de plantación de 4000 árboles/há

(Sochacki et al., 2007).

16

Page 31: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Pinus caribaea Morelet es una especie que ha tenido gran interés mundial debido a su rápido

crecimiento que alcanza una altura de 6 a 8 m en 3 años, 35 m en 40 años y 40 cm de diámetro

a los 25 años, con rendimientos de 21 a 43 m3/há (hasta los 13 años). Tiene la ventaja de

crecer en suelos someros, arcillosos o arenosos, con mal drenaje, con gran cantidad de grava,

infértiles, ácidos, suelos con abundante hierro y en sitios con exposición constante al viento. P.

caribaea variedad hondurensis es un árbol originario de la zona tropical de Centroamérica y

es el pino tropical de más amplia distribución geográfica, encontrándose en Quintana Roo y

Yucatán en México, Nicaragua, Honduras, Belices, Islas Bahamas y Cuba, se ha introducido

en más de 50 países. Las temperaturas medias en donde crece oscilan entre los 22-28ºC, con

máximas de 37ºC y mínimas esporádicas de 5ºC. La precipitación fluctúa entre los 1000 y

1800 mm y puede tolerar hasta 3900 mm (Barret et al., 1962; Macario et al., 1998). P.

caribaea ha experimentado una buena adaptabilidad y tasas iniciales de crecimiento mejores

que especies nativas en Centroamérica en suelos degradados y con contenido de materia

orgánica menores a 1% (Calvo-Alvarado et al., 2007). La acumulación de humus en suelos

con plantaciones de P. caribaea Morelet incrementa la habilidad de almacenar nitrógeno,

carbono, fósforo y azufre en el suelo hasta los 2 m de profundidad, mediante el enlace de

nutrientes orgánicamente, incrementando la fertilidad del suelo y permitiendo reemplazar estas

plantaciones para usos agrícolas o de pastoreo si fuera necesario en el futuro (Lilienfein et al.,

2001). Una desventaja de la especie es su característica de presentar un volumen de corteza

considerablemente alto, lo cual puede afectar su aprovechamiento, aunque sus rendimientos

sean altos se ha informado en plantaciones de 6 años ubicadas en Turrialba, Costa Rica de un

volumen de corteza de 32%, para árboles con 12 m de altura, 18 cm de diámetro altura pecho

(dap) y un incremento medio anual en volumen total con corteza de 43 m 3/há./año (Salazar,

1985). La densidad básica de madera de P. caribaea Morelet en árboles de 5 años de edad ha

sido de 407 kg/ m3 y para árboles de 25 años de 488 kg/m3; rendimiento total de pulpa kraft de

55,1% (árboles de 5 años) y 50,4% (árboles de 25 años), con rechazos de 8,2 y 1,1 %,

respectivamente, ha sido informada en plantaciones establecidas en la sabana de Afaka,

Kaduna Nigeria (Oluwafemi, 2007).

17

Page 32: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

1.9 Propuesta del proyecto

En esta investigación se propuso la obtención de etanol a partir de materiales lignocelulósicos

como lo son las especies de maderas blandas que crecen en distintas zonas climáticas: P.

radiata y P. caribaea, mediante el desarrollo de tecnologías de pretratamiento con ácido

diluido y sulfito alcalino/antraquinona, que sirvan de base para la futura optimización y

escalamiento de dichos procesos. La sacharificación del material pretratado obtenido fue

realizada enzimáticamente y la fermentación se realizó con la levadura S. cerevisiae libre o

inmovilizada en alginato de calcio.

1.10 Hipótesis

Dos hipótesis distintas e independientes fueron planteadas en función del tipo de

pretratamiento utilizado.

Hipóteis 1:

El uso de Saccharomyces cerevisiae IR2-9a inmovilizadas en alginato de calcio

permite la obtención de mayores rendimientos de bioetanol desde madera de P. radiata

pretratada con ácido diluido en comparación con el uso de células libres.

Hipótesis 2:

El proceso de pretratamiento con sulfito alcalino/antraquinona y refinamiento en disco

de maderas de P. radiata y P. caribaea conducen a la obtención de un material con

menor contenido de lignina y altamente fibrilado que genera altos rendimientos de

conversión en la hidrólisis enzimática y fermentación para producción de bioetanol.

18

Page 33: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

1.11 OBJETIVOS

1.11.1 Objetivo general

Evaluar procesos de pretratamiento con ácido diluido de P. radiata y al sulfito

alcalino/antraquinona de P. radiata y P. caribaea que permitan recuperar y convertir la

mayor cantidad de azúcares para la producción de etanol por sacarificación enzimática

y fermentación.

1.11.2 Objetivos específicos

Determinar condiciones de pretratamiento con H2SO4 diluido de madera de P. radiata

que permitan alta recuperación de azúcares fermentables en el residuo sólido y la

fracción líquida.

Evaluar el uso de Saccaromyces cerevisiae IR2-9a inmovilizada en membranas de

alginato-calcio en el proceso SSF de la fracción líquida y sólida de P. radiata

pretratado con H2SO4 diluido.

Evaluar el pretratamiento al sulfito alcalino/antraquinona (ASA) seguido de

refinamiento en disco en astillas de P. radiata y P. caribaea como forma de obtener un

material altamente fibrilado apto para la sacarificación enzimática y fermentación.

Evaluar el rendimiento de etanol de P. radiata y P. caribaea en función de los

procesos de pretratamiento aplicados.

19

Page 34: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

CAPÍTULO II:

Pretratamiento con ácido diluido de Pinus radiata para producción de bioetanol

utilizando Saccharomyces cerevisiae IR2-9a inmovilizada y un proceso de fermentación y

sacarificación simultáneas*

2.1 Resumen

La producción de bioetanol a partir de materiales lignocelulósicos requiere la utilización de

microorganismos adaptados para fermentar en condiciones donde la alta consistencia del

substrato, temperatura y concentración de inhibidores son comúnmente encontradas. La

inmovilización de levaduras en cápsulas de alginato de calcio ha sido reportada que mejora la

protección de las levaduras e incrementa la eficiencia en los procesos de fermentación. En este

trabajo fue investigado el uso de Saccharomyces cerevisiae inmovilizada en alginato de calcio

y su comportamiento en la sacarificación y fermentación simultáneas (SSF) de astillas de

Pinus radiata pretratadas con ácido diluido. Los resultados demuestran que cuando las

levaduras inmovilizadas son utilizadas, la producción de bioetanol de la madera pretratada fue

más alta que cuando se utilizaron levaduras libres durante el proceso SSF. Se obtuvo una

producción máxima de etanol a partir de astillas de madera pretratadas con ácido diluido y

molidas de 153 L/ton de madera. La sumatoria del etanol producido de P. radiata pretratado

con ácido diluido de la fracción líquida y sólida del pretratamiento fue de 171 L/ton de madera

de un valor máximo teórico de 236 L/ton de madera pretratada.

Palabras claves: Pinus radiata, bioetanol, pretratamiento con ácido diluido, levadura

inmovilizada, sacarificación y fermentación simultáneas.

* El contenido del capítulo fue aceptado para su publicación como artículo en el “Journal of The Chilean Chemical Society” con el título: Diluted acid pretreatment of Pinus radiata for bioethanol production using immobilized Saccharomyces cerevisiae IR2-9 in a simultaneous saccharification and fermentation process. Autores: Heriberto Franco, Regis Teixeira Mendonça, Priscyla D. Marcato, Nelson Durán, Juanita Freer y Jaime Baeza.

20

Page 35: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

2.2 Introducción

Los altos precios y la escasez inevitable del petróleo, el impacto ambiental causado por

emisiones de CO2 y la expansión progresiva de la civilización han dado lugar a una intensa

investigación para el desarrollo de fuentes de energías alternativas, incluyendo el etanol a

partir de biomasa renovable, como lo son la madera o residuos forestales y agrícolas. La

biomasa lignocelulósica puede ser transformada por procesos químicos o biológicos con el

objetivo de romper los enlaces físicos y químicos de las fibras vegetales y sus componentes

para producir biocombustibles y biomateriales como el bioetanol, metano, bioplásticos, entre

otros (Mosier et al., 2005).

El pretratamiento hidrolítico con ácidos minerales diluidos es uno de los principales procesos

usados para fraccionar la biomasa forestal, con el propósito de mejorar la digestibilidad

enzimática y solubilizar azúcares para su posterior fermentación. Los principales objetivos de

los pretratamientos son la solubilización de la lignina y hemicelulosas, reducción de la

cristalinidad de la celulosa y el incremento del área superficial disponible y el volumen de

poros del substrato para permitir la subsecuente hidrólisis enzimática con alta producción de

azúcares fermentables (Sun et. al, 2002; Esteghlalian et al., 1996).

En el pretratamiento con ácido diluido, las hemicelulosas son hidrolizadas primero, seguido

por la solubilización de celulosa y lignina. La celulosa presente en el residuo sólido puede ser

posteriormente hidrolizada por medio de procesos con ácidos o enzimas. La relación entre las

variables del proceso como la temperatura, tiempo de reacción, concentración de ácido y

composición del substrato son esenciales en la determinación de las condiciones óptimas del

pretratamiento de una materia prima específica para incrementar la liberación de monómeros y

disminuir la formación de inhibidores (Martínez et al., 1995; Kim et al., 2005).

La hidrólisis enzimática puede ser realizada por separado del proceso de fermentación y recibe

el nombre de hidrólisis y fermentación separadas (SHF), la hidrólisis enzimática de la celulosa

realizada junto con los microorganismos fermentativos se refiere a la sacarificación y

fermentación simultáneas (SSF), la sacarificación simultánea de celulosa y hemicelulosas y la

co-fermentación de glucosa y xilosa es conocida como proceso de sacarificación y co-

fermentación simultáneas (SSCF) (Almeida et al., 2004).21

Page 36: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

El desarrollo de procesos continuos para la fermentación alcohólica, para reducir los costos e

incrementar la producción de etanol, condujo la investigación de procesos de fermentación en

la cual se utilizan células libres, floculantes o levaduras inmovilizadas. La fermentación con

células libres ofrece algunas ventajas en comparación con las células inmovilizadas, como la

gran área de contacto entre las células y el substrato, y el manejo de tecnología existente en los

procesos industriales. Entre las desventajas están el alto costo del reciclaje microbial, alto

riesgo de contaminación y susceptibilidad de los microorganismos a las variaciones

ambientales (Vasconcelos et al., 2004). El uso de polímeros sintéticos o naturales para

inmovilizar levaduras, como alginato de calcio, carragenina-oligoquitosano, quitosano-

carboximetilcelulosa, poliamida, entre otros, permite la protección de las células de los

inhibidores manteniendo una alta concentración de células en las cápsulas, mejorando la

estabilidad térmica, manteniendo un largo período de estabilidad operacional de la levadura

encapsulada y obteniendo una alta producción de etanol que en las fermentaciones con células

de levaduras libres (Blazejak et al., 2002; Talebnia et al., 2005).

S. cerevisiae es la levadura de uso frecuente en la industria del alcohol (vino, bebidas

alcohólicas y combustibles) para la fermentación de azúcares de diferentes tipos de materias

primas tales como las uvas y otras frutas, cereales, caña de azúcar, y materiales

lignocelulósicos. La levadura se utiliza también en investigaciones de enlaces de bio-

elementos (por ejemplo, cadmio, magnesio y calcio) en los microorganismos debido a la

facilidad de su cultivo y producción de biomasa en un tiempo relativamente corto (Bekatorou

et al., 2001; Almeida et al., 2004).

Para la conservación de colonias de levaduras o su inmovilización para usar en procesos de

fermentación es necesario mantener una alta viabilidad y estabilidad genética del

microorganismo para disminuir contaminaciones. La liofilización (secado por congelamiento o

sublimación es un proceso que permite la conservación de células de levaduras a temperatura

ambiente (18-20ºC). Sin embargo, un decrecimiento en la viabilidad de las levaduras ha sido

observado y agentes crio protectores (azúcares, albúmina, leche, polioles, miel y amino

ácidos) son usados con el objetivo de evitar el daño celular en el proceso liofilización

(Kierstan et al., 1977; Abadias et al., 2001).

22

Page 37: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

El encapsulamiento de células en geles de alginato es frecuente por las condiciones suaves

utilizadas y la simplicidad del procedimiento para preparar las cápsulas, y varios reportes

empleando este compuesto están disponibles (Kierstan et al., 1977; Willaert et al., 1999).

Existen varios estudios en relación a la composición de alginato y su estabilidad para la

inmovilización celular (Martinsen et al., 1989; Cheong et al., 1993). Yamagiwa et al. (1993;

2004) probó el procedimiento de preparación en dos pasos por recubrimiento de las esferas de

alginato de calcio con células por alginato simple como una doble capa para mejorar la

estabilidad del gel. Ruggeri et al. (1991) han realizado goteo de poliacrilamida sobre las

esferas de alginato con células para mejorar la estabilidad estructural. Se observó que Eudragit

RL 100 (un copolímero de resina acrílica) recubriendo las esferas de alginato con células

encapsuladas, resulta en un 15% de mayor difusión del substrato y la fuga de células fue

considerablemente reducida. Nagashima et al. (1984) operaron una planta piloto de 40.000 L

de capacidad, utilizando células de levadura encapsuladas en alginato, con una tasa de

producción constante de alcohol de 8.5 a 9.0% por volumen. Usando células de S. cerevisiae

encapsuladas en Ca-alginato, Iamuna et al. (2004) reportaron una rápida fermentación de una

solución con alta concentración de azúcar, obteniendo 20% (peso/volumen) de alcohol en 30

h.

Una alta producción de etanol ha sido reportada para procesos SSF de hidrolizado de residuos

de maíz y maderas blandas con S. cerevisiae inmovilizadas en alginato (Hoyer et al., 2009;

Zhao et al., 2009). Para S. cerevisiae ha sido encontrado que las células libres o inmovilizadas

alcanzan una completa fermentación al mismo tiempo, pero la tasa de crecimiento de las

células suspendidas es más bajo que el de las células inmovilizadas cuando la concentración

de etanol es mayor a 0.42 M (Jamai et al., 2001).

Basado en los antecedentes presentados, el objetivo de este estudio fue evaluar el uso de

células de S. cerevisiae liofilizadas e inmovilizadas en alginato de calcio en la producción de

bioetanol por SSF de astillas de madera de P. radiata pretratadas con ácido sulfúrico diluido.

23

Page 38: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

2.3 Experimental

2.3.1 Cultivo de levaduras

S. cerevisiae (cepa IR2-9a) fue obtenida de la colección del Laboratorio de Recursos

Renovables del Centro de Biotecnología de la Universidad de Concepción, Chile (Araque et

al., 2008). La levadura fue previamente seleccionada y adaptada para el crecimiento a

temperaturas de 40-42ºC y fue mantenida en placas Petri con medio sólido compuesto por: 50

g/L de glucosa (Sigma Aldrich, Alemania), 5 g/L de extracto de levadura (Himedia RM 0227,

India), 5 g/L de peptona de soya (Becton Dicjinson and Company, USA), 1 g/L de KH 2PO4

(Sigma-Aldrich, Alemania), 0,5 g/L de MgSO4.7H2O (Fluka-Chemika Suiza), 1 g/L NH4Cl

(Sigma-Aldrich, Alemania) y 20 g/L de agar (Merck KGaA, Alemania) (Liu et al.,

2009).Todos los medios de cultivo usados en este estudio fueron autoclavados a 121ºC por 20

min. Cinco colonias del cultivo fueron usadas para inocular 10 mL de medio líquido e

incubado en un agitador por 24 h a 40 ºC y 150 rpm. Las células precultivadas (10 mL) fueron

usadas para inocular 50 mL de medio de cultivo y fueron incubadas por 24, 48, 72 y 96 h, con

el objetivo de evaluar la producción de biomasa a diferentes periodos de cultivo. Después del

periodo de incubación, las muestras fueron centrifugadas a 3500 rpm por 15 min. El

sobrenadante fue eliminado y la biomasa fue lavada dos veces con 50 mL de una solución de

0.9% NaCl. La biomasa de levadura fue transferida a un matraz de fondo redondo de 250 mL,

congelada por 12 h y liofilizada hasta la eliminación completa de agua (aproximadamente 18

h). La levadura liofilizada fue almacenada en tubos plásticos de centrífuga a temperatura

ambiente hasta su uso posterior.

2.3.2 Cultivo de levadura en medio suplementado con CaCl2

El medio líquido tamponado de citrato de sodio 0.05 M pH 4.8 conteniendo 50 g/L de glucosa,

5 g/L de extracto de levadura, 5 g/L de peptona de soya, 1 g/L de KH 2PO4, 0,5 g/L de

MgSO4.7H2O, 1 g/L de NH4Cl, fue suplementado con CaCl2.H2O (Sigma-Aldrich,

Alemania).en concentraciones de 3,5, 5,8 y 8,0% (p/v), equivalentes a 1,3, 2,1 y 2,9% de Ca 2+.

Para cada concentración de Ca2+ se realizó ensayos por triplicado en matraces Erlenmeyer de

24

Page 39: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

125 mL que contenían 10 mL de medio suplementado con CaCl2 y 40 mg de levadura

liofilizada precultivada por 24, 48, 72 o 96 h. Los matraces fueron sellados e incubados a

40ºC, 150 rpm por 24 h. Alícuotas de 1 mL de medio de cultivo fueron tomadas al final del

ensayo para el conteo de células viables. El ensayo se realizó para observar si el tiempo de

precultivo de la levadura y la exposición a concentraciones de CaCl2 similares a los utilizados

para la formación de las cápsulas tienen alguna influencia en la viabilidad de las células de

levaduras.

2.3.3 Inmovilización de levaduras

La inmovilización de levaduras fue realizada de la siguiente manera: se preparó alginato de

sodio (3%) por dilución de 1,5 g de alginato de sodio (Sigma-Aldrich, Alemania) en 50 mL de

agua bajo agitación. Soluciones de calcio fueron preparadas disolviendo 3,5 g y 8,0 g de

CaCl2.H2O en 100 mL de agua destilada. Se adicionó 100 mg de levadura liofilizada a 20 mL

de solución de alginato en un vaso de 100 mL. La solución de levadura fue bombeada a través

de una bomba peristáltica (2 mL/min) a la solución de calcio (3,5 g o 8,0 g/100 mL) bajo

agitación. Las cápsulas de alginato formadas fueron almacenadas en 40 mL de una solución de

CaCl2 en un frasco plástico de 100 mL con tapón de rosca y mantenido en refrigeración a 4ºC

hasta su uso. La cantidad de células viables encapsuladas en cada partícula fue determinada

por disolución de dos partículas en 10 mL de una solución de citrato de sodio 0,1 M a pH 4,8

seguido por diluciones seriales, plaqueo y conteo de colonias de células viables. La cantidad

de células totales y viables de levadura, fue determinada por el método de diluciones seriales y

conteo en el hemocitómetro. La cantidad de células viables por medio de plaqueo en platos

Petri con medio sólido fueron realizados por el siguiente proceso: 1 mL de muestra fue

adicionada a 9 mL de agua nanopure en tubos de ensayo. La solución fue homogenizada y

diluciones sucesivas en una relación 1/10 fueron realizadas. Una alícuota de 0,1 mL de la

muestra con microorganismos fue adicionada dentro de un plato Petri conteniendo medio de

cultivo sólido y fueron propagadas con una varilla de vidrio. El conteo de colonias fue

realizado después de 24 h de crecimiento a 40ºC. El conteo de células totales fue realizado por

distribución de 0,1 mL de solución con microorganismos en una cámara de Neubauer. El

25

Page 40: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

número de microorganismos presentes en la muestra fue contado. Las lecturas fueron

realizadas en triplicado para cada muestra.

2.3.4 Pretratamiento de astillas de madera de P. radiata con ácido sulfúrico diluido

Astillas de madera de P. radiata D. Don (tamaño promedio de 2,5 x 2,0 x 0,7 cm) fueron

provistas por una planta de celulosa ubicada en la Región del Bío Bío. El pretratamiento con

ácido fue realizado en un reactor Parr de 3,78 L con ácido sulfúrico de acuerdo al diseño

factorial de puntos estrellas conformado por 17 experimentos. El punto estrella fue distribuido

a una distancia de 1 del punto central y el valor de las variables temperatura, tiempo y pH

fueron codificadas como: -1 (valor bajo), +1 (valor alto) y 0 (punto central). La influencia de

las variables fue determinada por medio de la metodología de superficie de respuesta y la

validación estadística fue realizada por test de ANOVA con 95% de intervalo de confianza.

Las condiciones del pretratamiento fueron las siguientes: 50 g de astillas de madera (base

seca), relación licor/madera: 4/1 (v/p), temperatura de 120ºC (nivel -1) y 170ºC (nivel +1),

tiempo de pretratamiento de 1 min (nivel -1) y 60 min (nivel +1), pH del licor de 1,0 (nivel -1)

y 2,5 (nivel +1). El diseño corresponde a un cuboidal circunscripto central compuesto (CCC).

Un diseño CCC proporciona predicciones de alta calidad en el espacio del diseño, pero

requiere ajuste de los factores que se encuentran fuera del rango en la parte factorial

(Muhammad et al., 2002; NIST/SEMATECH, 2011).

Previo al pretratamiento, las astillas fueron pesadas y colocadas en un vaso de 500 mL con

200 mL de agua nanopure por 24 h. Posteriormente, el agua fue drenada y las astillas fueron

pesadas para determinar la cantidad de agua absorbida y determinar la cantidad de solución

ácida que debería ser adicionada para alcanzar el pH del pretratamiento. Después de la

reacción, el reactor fue enfriado, abierto y el licor fue filtrado. Los sólidos fueron sumergidos

en 200 mL de agua destilada por 60 min y filtrados. La fracción líquida (hidrolizado más

lavado de astillas) fue combinada, aforada a 500 mL con agua destilada y caracterizada

químicamente por HPLC para la determinación de azúcares. Las astillas pretratadas fueron

secadas al aire para la determinación del rendimiento y una fracción fue molida y

26

Page 41: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

caracterizada para el contenido de carbohidratos y lignina por hidrólisis ácida con 72% de

ácido sulfúrico siguiendo la metodología publicada anteriormente (Ferraz et al., 2000).

2.3.5 Fermentación de P. radiata pretratado con ácido usando levadura inmovilizada

La eficiencia de la levadura inmovilizada en la fermentación primero fue evaluada en un

medio sintético compuesto por 50 g/L de glucosa, 5 g/L de extracto de levadura, 5 g/L de

peptona de soya, 1 g/L de KH2PO4, 0,5 g/L de MgSO4.7H2O, 1 g/L de NH4Cl, tamponado con

0,05 M de solución de citrato de sodio pH 4.8. En matraces Erlenmeyer de 250 mL se adicionó

30 mL de medio y 300 mg de levadura encapsulada. Los matraces fueron sellados y la

fermentación fue realizada en un agitador a 40ºC, 150 rpm por 72 h.

P. radiata pretratado fue bioconvertido a bioetanol por un proceso de sacarificación y

fermentación simultánea usando enzimas celulasas y levaduras inmovilizadas.

Aproximadamente 3 g (peso seco) del residuo sólido (40/60 mesh) (muestra número 6 del

diseño experimental) fueron pesados y colocados en un matraz Erlenmeyer con 30 mL de

medio tamponado (suplementado con sales pero sin la adición de una fuente adicional de

glucosa). A esta suspensión se le adicionó una carga de enzima de 20 FPU de Celluclast (80

FPU/mL) y 40 UI de Novozymes β-glucosidasa (234 UI) por gramo de material en base. La

levadura inmovilizada que se adicionó al medio de fermentación fue equivalente a 100 mg de

levadura/g de material sólido y el número de células viables fue de aproximadamente 1 x 10 7.

El etanol producido fue medido a las 6, 24, 48 y 72 h de fermentación por cromatografía

gaseosa en un equipo Perkin Elmer autosystem XL-Head space, con detector FID y una

columna HPS-MS de 30 m. Se supuso para la producción de etanol teórico máxima una

producción de 0,51 g de etanol/g glucosa, considerando que toda la glucosa presente en el

material pretratado estaba disponible para la fermentación.

La fracción líquida del pretratamiento con ácido de la muestra número 6 del diseño

experimental (licor enriquecido de hemicelulosas) también fue fermentado. Una alícuota de 30

mL fue ajustada a pH 4.5 con una solución 4 M de KOH y tamponada con 0,05 M de citrato

de sodio a pH 4,8. El hidrolizado fue suplementado con una carga de 10 FPU de Celluclast y

27

Page 42: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

10 UI de Novozyme β-glucosidasa. Las condiciones de fermentación, muestreo y análisis

fueron hechos como se describió previamente. Todos los experimentos fueron realizados por

triplicado.

2.3.6 Microscopía electrónica de levaduras encapsuladas

La morfología de las levaduras encapsuladas en alginato fue estudiada utilizando un

Microscopio Electrónico de Barrido (SEM) Jeol-JSM-6360 LV) y se llevó a cabo a un voltaje

de 20 kV y las muestras fueron previamente cubiertas con oro/paladio al vacío por

pulverización usando un aparato BAL-TEC´s. Imágenes de electrones secundarios fueron

obtenidas. Este método permite la visualización de posibles cambios superficiales en las

macrocápsulas después del proceso de fermentación (Wen-tao et al., 2005; Jamai et al., 2001).

2.4 Resultados y discusión

2.4.1 Inmovilización de S. cerevisiae en alginato de calcio

S. cerevisiae cultivada por 24 a 96 h reportó un contenido de células totales de 2,8-7,8 x 1010

células/mL de las cuales 1,5-3,8 x 108 fue determinada como células viables. Después de la

liofilización, el número de células viables se redujo a un valor promedio de 4,0 x 106

células/mL. Como es bien conocido, la liofilización es un proceso ampliamente utilizado para

preservar alimentos y microorganismos, sin embargo, la tasa de congelamiento y el uso de

agentes de protección son también factores críticos involucrados en el proceso que afectan la

viabilidad y estabilidad de microorganismos (Bekatorou et al., 2001; Abadias et al., 2001). Los

resultados demuestran que el cultivo de levaduras por un periodo entre 24 a 48 h provee

suficiente cantidad de células viables para futuros procesos de inmovilización y para la

formación de cápsulas con un diámetro más uniforme que cuando se utilizan células libres sin

liofilizar. Para la optimización del cultivo de S. cerevisiae en microcápsulas de alginato-

quitosano-alginato y fermentación de glucosa, fue reportada la mejor densidad inicial de

28

Page 43: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

células de 3 x 106 células/mL para la proliferación, metabolismo y producción de etanol (Wen-

tao et al., 2005).

Cuando la determinación de células viables se realizó en las levaduras encapsuladas, se

observó que la levadura encapsulada en alginato de calcio produce menor número de colonias

de levadura que las levaduras libres que fueron crecidas sin estar en contacto con soluciones

de calcio. Por lo tanto, fue necesario determinar si el uso de soluciones de ciertas

concentraciones de CaCl2 para la formación de las cápsulas con alginato puede tener algún

efecto negativo en el futuro crecimiento de la levadura y en el número de células viables

después del encapsulamiento. Para evaluar esto, algunos ensayos fueron desarrollados en

medio líquido suplementado con CaCl2 y utilizando levadura liofilizada obtenida después de

24 a 96 h de precultivo. El tiempo de incubación fue de 24 h, después de lo cual las células

viables fueron contadas (Tabla 2.1). Se observó que a bajas concentraciones de CaCl2.2H2O en

el medio de cultivo (3,5%) la levadura precultivada por 24 h tiene un número similar de

células viables que las levaduras precultivadas a 48, 72 y 96 h. A altas concentraciones de

CaCl2.2H2O (5,8 y 8,0%), el número de células viables decrece notoriamente, indicando que la

cantidad de calcio puede inhibir el crecimiento de las levaduras, sin embargo, no hay ninguna

indicación de si afectaría la producción de etanol durante el proceso de fermentación. Este

resultado puede ser explicado porque el número de células viables en las cápsulas es del orden

de 106 y se ha informado de que una población inicial de aproximadamente 105 se recomienda

para la inmovilización de S. cerevisiae en alginato de calcio y que el 70% del Ca2+ liberado de

las cápsulas se encuentra en el medio de fermentación a las 24 h del proceso de fermentación,

después de 72 h no es detectado calcio liberado de las cápsulas, una preincubación de las

cápsulas en el medio nutriente antes de la fermentación, puede reducir significativamente la

cantidad de Ca2+ en el caldo de fermentación (Ogbonna et al., 1989).

Tabla 2.1. Células viables de S. cerevisiae después de 24 h de crecimiento en medio de cultivo suplementado con CaCl2.

29

Page 44: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Células viables

CaCl2.2H2O Levadura precultivada

por 24 h

Levadura precultivada

por 48 h

Levadura precultivada

por 72 h

Levadura precultivada

por 96 h

3,5% 6,9x1010 4,8x1010 3,5x1010 1,8x1010

5,8% 2,0x108 2,9x106 1,3x106 9,1x109

8,0% 7,5x105 9,0x105 8,5x106 1,4x107

2.4.2 Pretratamiento con ácido diluido y SSF de P. radiata pretratado utilizando S.

cerevisiae inmovilizada

La composición química de P. radiata utilizada en este estudio fue de 44,1+0,7% glucanos,

21,4+0,9 hemicelulosas, 29,1+0,1 lignina y 2,8+0,1% extractivos solubles en etanol/tolueno.

Pretratamiento con ácido diluido de astillas de madera de P. radiata se realizó siguiendo el

diseño experimental donde las respuestas a los parámetros evaluados (temperatura, tiempo y

pH) fue la concentración de glucosa en el material pretratado (fracción sólida). Los resultados

fueron evaluados mediante la metodología de superficie de respuesta. En la Tabla 2.2 se

muestran los resultados obtenidos para los 17 experimentos generados por el diseño

experimental.

30

Page 45: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Tabla 2.2 Composición del residuo insoluble en agua e hidrolizado del pretratamiento con ácido de astillas de madera de P. radiata.

Composición fracción sólida (%) Composición fracción líquida (%)

Muestra

Temperatura (ºC)

pH Tiempo (min)

Sólidos Lignina Glucanos Hemicelulosas Glucanos Hemicelulosas Ácido acético

Ácido fórmico

1 120 1 0 86,7 28,3 38,2 12,6 0,2 1,8 0,2 0,0

2 145 1,75

30 84,4 27,6 37,9 11,7 0,2 2,0 0,1 0,1

3 145 1,75

30 81,2 26,7 38,5 8,2 0,3 2,9 0,2 0,2

4 145 1,75

30 81,5 26,7 36,9 8,9 0,2 2,9 0,2 0,2

5 120 2,5 0 92,6 24,4 39,8 18,6 0,0 0,8 0,0 0,0

6 170 1,75

30 71,6 26,1 37,4 2,4 1,1 7,4 0,6 0,4

7 145 1 30 69,1 26,8 36,6 1,3 1,6 6,0 0,6 0,5

8 170 1 60 68,9 24,4 31,4 0,0 1,0 0,6 0,0 0,0

9 170 2,5 60 76,5 27,2 34,6 4,8 1,3 3,0 0,0 0,0

10 170 2,5 0 63,6 21,8 39,7 7,1 0,4 1,1 0,1 0,1

11 145 1,75

60 84,9 27,8 35,2 8,8 0,0 0,0 0,3 0,3

12 145 2,5 30 86,4 26,6 36,0 12,8 0,0 0,0 0,0 0,0

13 120 2,5 60 89,2 25,7 35,3 15,7 0,0 0,0 0,0 0,0

14 120 1,75

30 89,1 27,5 38,4 13,3 0,0 0,6 0,1 0,1

31

Page 46: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

15 120 1 60 86,5 26,5 37,2 9,8 1,5 10,0 1,0 0,4

16 145 1,75

0 88,3 27,4 39,4 5,9 0,0 0,9 0,1 0,0

17 170 1 0 68,1 26,3 39,1 0 3,2 4,6 1,1 1,1

32

Page 47: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

La Ecuación 1 demuestra una relación lineal entre la glucosa en el material pretratado que

fue validado por un test ANOVA al 95% de nivel de confianza, donde Y es la glucosa (%)

en el residuo sólido después de la prehidrólisis con ácido. T es el temperatura de reacción

(ºC) y t es el tiempo de residencia en el reactor (min).

Y (%) = 22,02+0,11 + 0,01+0,15 T – 1,24+0,15 t (Eq. 1)

Los valores del test de ANOVA que dan validez estadística al modelo fueron R2= 0,85,

Q2= 0,78, validación del modelo 0,91 y reproducibilidad del modelo 0,77. Un R2

(coeficiente de correlación múltiple) con valores más altos de 0,75 indican un modelo

óptimo (Chauhan et al., 2004). El valor F del modelo es de 33,16 y el valor de la falta de

ajuste F es 0,74. Altos valores de F y una falta de ajuste no significativa indican que el

modelo tiene un buen ajuste. El modelo puede explicar el 85% de variación en la respuesta.

El análisis estadístico demuestra que el pH de la solución ácida utilizada (pH 1 a 2,5) no es

una variable que tiene influencia directa en el proceso de acuerdo al modelo estadístico.

Este resultado es similar al reportado para el modelamiento y optimización del

pretratamiento con ácido diluido de álamo en la cual la temperatura y la concentración de

ácido son los principales factores que afectan la recuperación de azúcares del

pretratamiento. Sólo a altas temperaturas (180ºC) es cuando el incremento en la

concentración de ácido tiene algún efecto en la concentración de azúcares recuperados del

pretratamiento (Esteghlalian et al., 1996).

En la Figura 2.1 se muestra la superficie de respuesta para la concentración de glucosa en

el residuo sólido pretratado en función del tiempo y la temperatura de reacción. No se

obtuvó una respuesta máximizada, debido a las condiciones no severas a la que se

realizaron los experimentos y produjo un residuo sólido con poca variación en el contenido

de glucano que fue la respuesta evaluada. La cantidad de glucosa retenida en la fracción

sólida varía entre 31,4 a 39,7 % la cual representa de 70 a 90% de la glucosa presente en la

madera. La producción de sólidos después del pretratamiento varió entre 63-89%. El

contenido de lignina en las astillas pretratadas varió entre 21 a 28% (Tabla 2.2). Estos

resultados son similares a los obtenidos para madera de álamo molida y pretratada en una

unidad de pretratamiento al vapor usando altas temperaturas de vapor con 3% de SO2,

190ºC y 2 min de tiempo de reacción donde la glucosa recuperada en el sólido insoluble en

agua fue de 87% (Monavari et al., 2009). La fracción líquida fue compuesta principalmente

33

Page 48: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

por hemicelulosas, lo cual es consistente con el hecho de que la prehidrólisis ácida a

temperaturas entre 120-170ºC permite hidrolizar mayoritariamente hemicelulosas con poca

solubilización de lignina y celulosa(Taherzadeh et al., 2007). .

Figura 2.1. Superficie de respuesta descrito por el modelo del diseño experimental, el cual

representa la retención de glucanos en el residuo insoluble en agua de astillas de madera de

P. radiata en función de la temperatura y el tiempo de reacción.

2.4.3 SSF de P. radiata pretratado utilizando S. cerevisiae inmovilizada en alginato de

calcio

Levaduras precultivadas por 24 h e inmovilizadas en alginato de calcio, utilizando

soluciones a un 3,5% y 8,0% de CaCl2 y 3% (p/v) de alginato de sodio fueron primero

evaluadas en el medio de fermentación sintético conteniendo 50 g /L de glucosa (Figura

A.5, Anexo III). La máxima producción de etanol fue 64% y 74% del valor teórico para las

levaduras inmovilizadas en 3,5% y 8,0% en alginato de calcio, respectivamente (Figura

2.2).

34

Page 49: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura 2.2 Rendimiento de etanol obtenido de un medio sintético fermentado por

levaduras precultivadas por 24 h e inmovilizadas en 3,5% (triángulos) y 8,0% (cuadrados)

de alginato de calcio.

No se encontró glucosa residual en el medio al final del proceso de fermentación indicando

que además de su bioconversión a etanol, la glucosa es también utilizada por la levadura

para el crecimiento celular y mantención. Una fase de retardo fue observada para la SSF

con levaduras inmovilizadas en 3,5% de alginato de calcio después de 24 h de

fermentación. En el caso de las levaduras encapsuladas en 8,0% de alginato de calcio se

observó una baja producción de etanol al inicio de la fermentación, pero después de 36 h la

producción de etanol fue más alta que para las levaduras encapsuladas en 3,5% de alginato

de calcio. Esta diferencia en el rendimiento de etanol puede ser explicada por las

diferencias en la permeabilidad de la matriz de inmovilización con diferentes

concentraciones de calcio, implicando un comportamiento diferente en la adsorción de

glucosa y la excreción de etanol. La resistencia a la difusión de las estructuras de células

inmovilizadas puede ser beneficiosa para el crecimiento del microorganismo y su actividad

limitando la concentración local de algún producto de inhibición (Junter et al., 2002).

Considerando que la levadura inmovilizada fue adecuada para su uso en la fermentación, la

muestra número 6 del prehidrolizado de astillas de madera de P. radiata (Figura A.3,

Anexo 2) que contenía 37% de glucano, 26% de lignina y 2% de hemicelulosas (en base

madera), según lo informado en la Tabla 2.2, fue usado para producción de bioetanol por

35

Page 50: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

SSF utilizando levadura inmovilizada. Una consistencia de 10% (3 g de madera pretratada

y molida en 30 mL de medio) fue utilizada. La cantidad de etanol máxima posible de

obtener de la muestra considerando la conversión completa de glucosa en etanol con una

producción de 51% es de 238 L/ton de madera pretratada. La madera pretratada fue

fermentada por un proceso SSF utilizando un medio suplementado con celulasas y con

levadura inmovilizada. Cuando la madera pretratada y molida fue sometida a SSF con

células de levaduras libres una producción de etanol de 22% del valor teórico fue obtenida

(52 L de etanol/ton de madera pretratada). Por otra parte, cuando la fermentación fue

realizada con levadura inmovilizada en alginato de calcio (precultivada por 24 h,

liofilizada e inmovilizada en 3,5% o 8,0% de alginato de calcio) la producción de etanol

fue significativamente incrementada (Figura 2.3). Los resultados demuestran que el

resultado de la fermentación en levadura inmovilizada en 3,5% de alginato de calcio fue

ligeramente superior comparado con las células libres y una producción de etanol de 29%

fue obtenida después de 48 h de SSF. Cuando el proceso SSF de astillas de P. radiata

hidrolizadas y molidas fue realizado con levaduras inmovilizadas en 8,0% de alginato de

calcio, la producción de etanol fue significativamente incrementada alcanzando 65% (153

L/ton de madera pretratada) del valor máximo teórico.

Figura 2.3. Producción de etanol obtenida de madera de P. radiata pretratadas con ácido

diluido utilizando levaduras libres (cuadrados) y levaduras precultivadas por 24 h e

inmovilizadas en 3,5% (círculos) y 8,0% (triángulos) de alginato de calcio.

36

Page 51: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

La diferencia en el mejor rendimiento de a fermentación en las cápsulas formadas con 8%

de CaCl2 comparado con las cápsulas formadas con 3,5% de CaCl2 puede ser explicado por

la diferencia en las características de difusión de la membrana que pueden ofrecer mayor

protección a las levaduras inmovilizadas a la presencia de etanol exógeno producido en el

medio de fermentación y a inhibidores como la lignina contenida en el prehidrolizado

utilizado para el proceso SSF. El resultado obtenido es comparable al obtenido en donde

Picea abies (una madera blanda) fue pretratada en dos etapas con ácido diluido (180-200ºC

por 10-2 min con 0,5-2% de H2SO4) seguido por SSF a un 2% de consistencia de substrato

y una producción e etanol del 65% (Söderström et al., 2003).

La fracción líquida del material prehidrolizado con ácido (enriquecido de hemicelulosas)

usado previamente en el proceso SSF, también fue fermentado con levaduras

inmovilizadas para evaluar la factibilidad del glucano y hemicelulosas C-6 de ser

fermentadas a etanol. La cantidad de azúcares C-6 en este hidrolizado fue de 8%

aproximadamente la cual puede generar 50 L de etanol/ton de madera. La fermentación de

la fracción líquida con levadura inmovilizada produce una conversión máxima de azúcares

en etanol de 36% o 18 L/ton de madera. El ácido acético en el hidrolizado está presente en

una concentración de 0,6% (0,6 g de ácido acético/100 g de madera base seca) y el ácido

fórmico en una concentración de 0,4%. Estas concentraciones de inhibidores de la

fermentación son bajas en comparación con los reportados para la fermentación de la

fracción líquida del pretratamiento con H2SO4 de madera blanda Picea abies, con

concentraciones (g/100 g de materia en base seca) de ácido acético, furfural e

hidroximetilfurfural de 1,6, 0,3 y 0,6, respectivamente. Bajo estas condiciones de

concentración de inhibidores la producción después de la fermentación de la fracción

líquida del pretratamiento fue de 94% del la producción de etanol teórica, indicando que no

ocurre inhibición (Söderström et al., 2003).

La suma del etanol producido del pretratamiento con ácido de P. radiata para la fracción

sólida y líquida fue de 171 L/ton de madera. La producción de etanol de madera pretratada

por autohidrólisis con 1% de ácido sulfúrico seguido por hidrólisis enzimática y

fermentación fue reportada en un rango de 202-240 L/ton de madera (Szczodrak et al.,

1996; Demirbas, 2005). La bacteria Zymomonas mobilis la cual permite fermentar azúcares

C-5 y C-6, fue considerada para evaluar un proceso conceptual de producción de etanol a

través del software BioRefinOpt. Considerando un 75% de conversión de carbohidratos a

37

Page 52: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

monómeros del pretratamiento con ácido de P. taeda, la máxima producción de etanol fue

estimada en 300 L/ton de madera (Frederick et al., 2008). Para madera blanda de Picea

abies pretratada con SO2 a 215ºC por 5 min y SSF con una carga enzimática de 28 UI/g de

celulosa de Novozyme 188 β-glucosidasa y 32 FPU/g de celulosa de Celluclast y

concentración de substrato de 5% ha sido reportada una producción máxima de etanol de

68% del teórico basado en la glucosa y manosa presente en la madera original (Stenberg et

al., 2000).

Nuestros resultados demuestran que las levaduras inmovilizadas presentan potencial para

ser utilizadas en la fermentación de materiales lignocelulósicos pretratados, algunas

variables en el proceso (severidad del pretratamiento, carga de enzimas y levaduras,

relación sólido/líquido en el proceso SSF, entre otros) deben ser optimizados para

incrementar la producción de etanol y hacer viable la técnica. Por otra parte, en

experimentos preliminares de fermentación de medio sintético conteniendo

concentraciones de glucosa de 50 g/L fue observado que la levadura inmovilizada en

alginato de calcio puede ser reutilizada hasta 3 veces, manteniendo una producción de

etanol de aproximadamente 70% de la producción máxima de etanol. Esto representa una

ventaja del proceso que permite abaratar los costos comparados con procesos en donde se

utilizan células libres.

2.4.4 Microscopía electrónica de barrido (SEM) de las cápsulas de alginato con

levadura inmovilizada

La morfología de las cápsulas con levadura inmovilizada fue analizada por microscopia

electrónica de barrido. El encapsulamiento de las levaduras cambia la superficie de las

partículas incrementando su rugosidad como se demuestra en la Figura 2.4. Además, el

encapsulamiento de las levaduras incrementa el tamaño de las partículas de 1540 µm a

1970 µm indicando lo que demuestra que la levadura efectivamente fue encapsulada.

38

Page 53: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura 2.4. Micrografías SEM de partículas de alginato antes del proceso de fermentación:

A) x45, B) x150, C) x700, D) x4500. Microscopía electrónica A y B muestran la superficie

lisa de las partículas de alginato de calcio sin levadura. SEM C y D demuestran la

rugosidad de la superficie de las cápsulas con S. cerevisiae inmovilizada.

Después del proceso de fermentación, las partículas con levadura fueron también

analizadas por SEM. Este proceso cambia la superficie de las partículas, pero no cambia el

tamaño de la partícula (aproximadamente 1567 µm) como se muestra en la Figura 2.5.

Probablemente, debido a la producción de etanol y a la permeación por la pared de las

partículas, pequeñas cavidades (40 µm) aparecen en la superficie de las cápsulas.

39

Page 54: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura 2.5. Micrografías SEM de partículas de alginato con levaduras después del proceso

de fermentación: A) x45, B) x150, C) x700, D) x4500. Microscopía electrónica de barrido

A y D muestran una alta porosidad en la superficie de la cápsula con levadura inmovilizada

después de la fermentación.

2.5 Conclusiones

El uso de S. cerevisiae IR2-9a inmovilizada en alginato de calcio, demostró una buena

producción de etanol para un medio sintético de fermentación (glucosa) y para la fracción

líquida y sólida del pretratamiento con ácido diluido de astillas de madera de P. radiata. La

mejor producción de etanol fue obtenida con levaduras encapsuladas en 8% de CaCl 2 y 3%

de alginato. Después de la fermentación, las cápsulas no muestran una variación del

tamaño, lo cual indica una baja tasa de crecimiento de la levadura inmovilizada. La

producción de etanol de la fracción líquida y sólida del pretratamiento con ácido diluido

fue del 65% del valor máximo teórico en relación a las hexosas presentes en las astillas de

madera de P. radiata, esta producción es buena para un proceso de pretratamiento con

ácido diluido en una etapa. Para futuras investigaciones puede usarse este proceso de

40

Page 55: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

hidrólisis con ácido diluido combinado con una segunda etapa de hidrólisis con agentes

oxidantes que permitan incrementar la accesibilidad de las enzimas al substrato e

incrementar la producción de azúcares fermentables para obtener una mayor producción de

etanol.

Agradecimientos

Se agradece el soporte financiero del Fondo Nacional de Desarrollo Científico y

Tecnológico (FONDECYT, proyecto número 1070492 y del CNPq/FAPESP, Brasil). H.

Franco agradece al Programa Nacional de Investigadores 2005-2010 de SENACYT-

IFARHU Panamá por la beca de doctorado otorgada.

41

Page 56: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

CAPÍTULO III:

Pretratamiento al sulfito alcalino/antraquinona y refinamiento en disco de astillas de madera de Pinus radiata y Pinus caribaea para la producción de bioetanol*

3.1 Resumen

Astillas de maderas de Pinus radiata y Pinus caribaea fueron pretratadas por cocción al

sulfito alcalino/antraquinona (ASA) seguido de refinamiento en disco para la producción

de pulpas con bajo contenido de lignina y alta fibrilación. Las pulpas producidas con

diferente grado de delignificación y refinadas a diferentes consumos de energía en el

refinador de disco fueron usadas en procesos de sacarificación y fermentación por separado

(SHF) o sacarificación y fermentación simultáneas (SSF). La delignificación de las pulpas

ASA estuvo entre 25 y 50%, con una baja pérdida de celulosa (medida como glucanos)

siendo la pérdida máxima de 13%. El rendimiento de pulpa fue entre 70-78% para las

pulpas de P. radiata y de 60% para la pulpa de P. caribaea. Las pulpas obtenidas después

del refinamiento en refinador de discos con diferentes consumos de energía (570 Wh/kg,

1705 Wh/kg y 3635 Wh/kg) fueron evaluadas en ensayos de hidrólisis enzimática con

celulasas. La conversión de glucano a glucosa obtenida varió entre 20 y 70% de acuerdo al

grado de delignificación y fibrilación de las pulpas. La mejor pulpa ASA de P. radiata

usada en experimentos de SHF y SSF con 10% de consistencia del substrato produjo una

concentración máxima de etanol de aproximadamente 20 g/L lo cual representa sobre 90%

de conversión de glucosa en base pulpa y una cantidad estimada de etanol de 260 L/ton de

madera. La pulpa de P. caribaea también presenta un buen rendimiento en la hidrólisis

enzimática y fermentación pero debido al bajo contenido de celulosa presente en la

madera, sólo fue obtenida una producción de 140 L/ton de madera. En términos generales,

la cocción ASA seguida de refinamiento en disco demostró ser un pretratamiento eficiente,

42

Page 57: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

el que genera un substrato poco lignificado y altamente fibrilado, que permite que la

producción de etanol de madera blanda con alto rendimiento de conversión.

Palabras claves: pretratamiento ASA, refinamiento en disco, hidrólisis enzimática, Pinus

radiata, Pinus caribaea.

*El contenido del capítulo fue enviado como artículo al Journal of Chemical Technology & Biotechnology con el título: Alkaline sulfite/anthraquinone pretreatment followed by disk refining of Pinus radiata and Pinus caribaea wood chips for biochemical ethanol production. Autores: Heriberto Franco A., André Ferraz, Adriane M.F. Milagres, Walter Carvalho, Juanita Freer, Jaime Baeza y Regis Teixeira Mendonça.

43

Page 58: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

3.2 Introducción

Los biocombustibles son un importante substituto de los combustibles derivados del

petróleo que pueden ser obtenidos de varias fuentes de biomasa. En años recientes varios

países y regiones alrededor del mundo (Brasil, USA, Canadá, Japón, China y Europa) están

desarrollando su mercado interno de biocombustibles y estableciendo planes para usar

estos como un combustible simple o como un aditivo oxigenado de la gasolina (Mussatto

et al., 2010). Los biocombustibles son generalmente considerados por ofrecer muchos

beneficios potenciales, incluyendo la seguridad energética, balance comercial, bajas

emisiones de gases de efecto de invernadero, reducción de las emisiones contaminantes del

aire, desempeño de los vehículos, inversión económica en el sector agrícola, empleos y

desarrollo comunitario, sustentabilidad, renovabilidad y biodegradabilidad (AIE, 2004;

Demirbas, 2009). La demanda mundial de etanol en 2015 es estimada entre 65 y 90

millones de litros. La producción de etanol para combustible en Brasil y USA es estimada

entre 28 a 35 billones de litros, y 23 a 28 billones de litros, respectivamente (Gnansounou,

2009). En la actualidad, la demanda mundial de etanol se deriva principalmente del maíz

en USA y de la caña de azúcar en Brasil. Otras fuentes de biomasa pueden ser utilizadas

para la producción de etanol: madera, gramíneas, especies maderables de corta rotación,

bagazo, residuos de madera, aserrín, residuos agrícolas y residuos de papel. En la

actualidad la biomasa potencial anual es de 6,49 billones de toneladas, de las cuales 2,48

están siendo utilizadas, el exceso de biomasa, 4,01 billones de toneladas, puede ser usado

para la producción de biocombustibles (Gupta et al., 2010). El bioetanol producido de

biomasa lignocelulósica es una alternativa interesante, como materia prima lignocelulósica

no compite con los cultivos alimenticios y son menos costosos que las materias primas

agrícolas (Alvira et al., 2010). La biomasa lignocelulósica es más recalcitrante a la acción

microbial y enzimática que la biomasa no maderable para la producción de etanol a través

44

Page 59: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

de la plataforma bioquímica. Esto es particularmente cierto para especies de maderas

blandas debido a su complejidad estructural y química (Zhu et al., 2010). Para la

conversión de madera a etanol, un proceso complejo de pretratamiento para cambiar los

biopolímeros (especialmente celulosa) a azúcares fermentables es requerido. El principal

objetivo de cualquier pretratamiento es alterar o remover los impedimentos estructurales y

de composición para la hidrólisis, y los procesos subsecuentes de degradación para

permitir una mayor digestibilidad, mejorando la tasa de hidrólisis enzimática e

incrementando el rendimiento de azúcares (Mosier et al., 2005). Los pretratamientos

químicos tienen como objetivo principal mejorar la accesibilidad de las enzimas a la

celulosa por solubilización de hemicelulosas y lignina, y disminuir el grado de de

polimerización y cristalinidad de los componentes celulósicos (Cardona et al., 2006).

Todos los procesos de pulpaje químicos de uso comercial hoy en día, involucran la

remoción de lignina para producir pulpa para varios productos de papel, entonces estos

procesos pueden ser considerados como potenciales métodos de pretratamiento (Chandra et

al., 2007).

El uso de licores de cocción con NaOH y Na2SO3 como en el pulpaje quimico-

termomecánico (CTMP) o con la adición de pequeñas cantidades de antraquinona como en

el pulpaje al sulfito alcalino/antraquinona (ASA) han probado ser efectivos en la

solubilización e incremento de la hidrofilicidad de la lignina, como también, promoviendo

la estabilización oxidativa de los polisacáridos y al mismo tiempo alcanzando una alta tasa

de delignificación lo cual resulta en altos rendimientos pulpables (Patt et al., 2006; Huang

et al., 2008). El método convencional de manufactura de pulpa CTMP es basado en la pre

impregnación de astillas de maderas blandas con 2-3% de una solución alcalina de sulfito

de sodio antes de la cocción seguida de refinamiento en disco presurizado. El tratamiento

45

Page 60: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

al sulfito de astillas de madera resulta en la sulfonación de lignina, lo cual causa

solubilización y ablandamiento de la matriz de lignina y consecuentemente afecta el plano

de ruptura de la fibra y la defibración de las astillas de madera, lo cual da una pulpa

caracterizada por una mayor y más flexible fracción de fibras largas. La desintegración de

fibras individuales a fragmentos de fibras y finos en el pulpaje CMTP provee una alta área

específica y el contenido de lignina en la superficie de la fibra expuesta es relativamente

bajo (Vena, 2005; Höglund, 2009). Las condiciones del pretratamiento alcalino también

incrementan la hidrofilicidad de la fibra por generación de nuevos grupos carboxílicos y la

sulfonación de la lignina, particularmente en las regiones ricas en lignina entre las fibras

(Johansson et al., 1997; Konn et al., 2007). El pretratamiento al sulfito para superar la

recalcitrancia de la lignocelulosa (proceso SPORL por sus siglas en inglés) aplicado a

picea ha sido reportado que produce un rendimiento de conversión de glucanos a glucosa

de 91% y un total de monosacáridos recuperados (pentosas y hexosas) de 88% (Shuai et

al., 2010). La hidrólisis enzimática de pulpas SPORL de pino rojo con una carga de

enzimas de 14,6 FPU de Celluclast y 22,5 CBU de Novozyme 188 por gramo de substrato

resultó en un rendimiento de glucosa de 40% en base al peso de madera de pino rojo (Zhu

et al., 2009). Pinus contorta pretratado con ASA retiene 88% de glucano de la madera en

el substrato sólido y la hidrólisis enzimática produce 88% de glucosa al 10% de

consistencia de substratos sólidos (Tian et al., 2010).

Basado en los antecedentes presentados, este estudio fue realizado para evaluar las

condiciones de pretratamiento de astillas de madera de P. radiata con el proceso ASA

seguido de refinamiento en disco, hidrólisis enzimática y fermentación del substrato sólido

para la producción de bioetanol. Adicionalmente, el mismo proceso fue evaluado para una

especie de pino tropical, P. caribaea. El uso de ambas especies de maderas blandas se

46

Page 61: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

justifica porque P. radiata es ampliamente usada en procesos de pulpaje y distribuida en

regiones templadas (incluyendo Chile), mientras que P. caribaea es una especie que sólo

crece en climas tropicales. En esta vía, es importante realizar la comparación de la

producción de estas especies con potencial de ser utilizadas en plantaciones bioenergéticas.

3.3 Materiales y Métodos

3.3.1 Materia prima

La madera de P. radiata y P. caribaea fue astillada y seleccionada a un tamaño de

aproximadamente 2,0 cm x 2,5 cm x 0,5 cm. Las astillas de madera fueron secadas al aire

hasta alcanzar 10% de humedad (p/p), y almacenadas en bolsas plásticas hasta su uso.

Astillas de madera de P. radiata (árboles de aproximadamente 11 años) fueron provistas

por una industria chilena de pulpa localizada en la Región del Bío Bío. P. caribaea con una

edad estimada de 25 años fue colectada en plantaciones localizadas en Chiriquí, Panamá.

3.3.2 Pretratamiento al sulfito alcalino/antraquinona (ASA)

Varios pretratamientos ASA (P) de astillas de pino fueron realizados bajo diferentes

condiciones de cocción como se detalla en la Tabla I. P-1 fue realizado en 3 matraces

Erlenmeyer cada uno con 200 g de astillas de madera, una razón licor/madera 6:1 (v/p) y

0.1 % (p/p) de antraquinona. La impregnación de las astillas fue realizada aplicando vacío

al matraz por 30 min. Los matraces con las astillas y el licor fue introducido en un

autoclave donde la reacción fue realizada a 120ºC por 120 min. Las astillas para los

pretratamientos ASA P-2, P-3 y P-4 fueron impregnadas de la misma forma que P-1 pero

al finalizar los 30 min, las astillas y el licor fueron transferidos a un reactor de acero

inoxidable. El reactor fue cerrado y colocado en un baño de silicona con termocupla y

47

Page 62: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

calentamiento regulado por una fuente de poder. La cocción fue realizada a 170ºC y el

tiempo de cocción de acuerdo a los datos mostrados en la Tabla 3.1. Para alcanzar la

temperatura de cocción se utilizó una rampa de calentamiento de 3 ºC/min. Para cada

condición, 4 reactores independientes fueron usados hasta obtener la cantidad suficiente de

material pretratado para los siguientes pasos del proceso.

Tabla 3.1. Condiciones de cocción del pretratamiento al sulfito alcalino/antraquinona de

astillas de madera de pino.

Muestra Experimento NaOH(%, b. p.)*

Na2SO3

(%, b. p.)*Temperatura

(oC)Tiempo de

cocción (min)

P. radiata P-1 8,5 16,5 120 120

P-2 8,5 16,5 170 30

P-3 7,5 17,5 170 30

P-4 7,5 17,5 170 45

P, caribaea P-5 7,5 17,5 170 45

*b.p. = en base peso seco de madera.

Después de cada reacción, el licor fue drenado y la biomasa residual fue lavada con agua

corriente en abundancia. El material residual fue desintegrado en una licuadora industrial

(Figura A.1, Anexo I) de 10 L (Metvisa, BMG Brasil) por 1 h con 8 L de agua. Después de

la desintegración, la biomasa fue lavada dentro de una columna de PVC de 1 m de largo

por 150 mm de diámetro con una malla de 200 mesh al final de la columna, para evitar la

pérdida de finos (partículas de menos de 0,2 mm). Los finos que pasan a través de la malla

son nuevamente recirculados en la parte superior de la columna. La recirculación del

filtrado permite la formación de una capa de fibras en la base de la columna que retiene los

finos. La recirculación del agua es detenida cuando el agua de lavado está libre de

turbiedad. Después de este punto, se adicionó más biomasa a la columna y agua fresca es

48

Page 63: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

pasada a través de la biomasa hasta que el agua de lavado alcance un pH neutral. El

material lavado fue centrifugado con el objetivo de determinar la humedad de la pulpa la

cual fue de aproximadamente 70%. El agua liberada durante la centrifugación fue

colectada y utilizada como agente de dilución en el siguiente proceso de refinamiento en

disco. El material pretratado fue suspendido en agua a un volumen final de 25 L

(aproximadamente 2,0% de consistencia) y refinado en un refinador de disco Bauer MD-

3000 (REGMED, Brasil) con una separación de disco de 0,1 mm (Figura A.2, Anexo I). El

refinamiento fue realizado a 570 Wh/kg, 1705 Wh/kg y 3635 Wh/kg de consumo de

energía por el refinador de disco. Las muestras refinadas fueron analizadas para determinar

el grado de fibrilación por el procedimiento del Canadian Standard Freeness (Norma

TAPPI T227 om-04) y centrifugados al 30% de consistencia para su posterior uso.

3.3.3 Caracterización química de madera y pulpas ASA

Aproximadamente 3 g de madera molida (40/60 mesh) fue extraída con etanol 95% por 16

h en un aparato Soxhlet y a un reflujo de 3 ciclos/h. La madera libre de extraíbles y las

muestras de pulpa ASA fueron hidrolizadas con 72% (p/p) de ácido sulfúrico a 30ºC por 1

h (300 mg de muestra y 3 mL de H2SO4). El ácido fue diluido a una concentración final de

4% (adición de 79 mL de agua), y la mezcla fue digerida a 121ºC, 1 atm por 1 h. El

material resultante fue enfriado y filtrado a través de crisoles de vidrio porosos número 3.

El sólido fue secado a peso constante a 105ºC, el cual corresponde a la lignina insoluble.

La lignina soluble en el filtrado fue leída en una cubeta estándar UV (1 cm de longitud de

trayecto) a 205 nm. Un valor de absortividad (coeficiente de extinción) de 105 L/g.cm fue

usado para calcular la cantidad de lignina soluble presente en el hidrolizado. Las

concentraciones de azúcares monoméricos en la fracción soluble fueron determinados por

HPLC utilizando una columna BIO-RAD HPX-87H a 45ºC y a una tasa de elución de 0.6

49

Page 64: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

mL/min con H2SO4 5 mM. Los azúcares fueron detectados con un detector IR a

temperatura controlada (Ferraz et al., 2000). Los factores para convertir monómeros a

anhidro monómeros fueron 0,90 para las hexosas. Todas las muestras fueron analizadas en

triplicado.

3.3.4 Hidrólisis enzimática

La hidrólisis enzimática de las pulpas ASA fueron realizadas utilizando una mezcla de

preparaciones enzimáticas comerciales Celluclast y Novozyme 188 (Novozymes,

Dinamarca) a una carga de 8.8 FPU/g pulpa (en base seca) y 40 UI de β-glucosidasa/g

pulpa. Cada experimento de hidrólisis fue realizado en un matraz Erlenmeyer fue incubado

a 45ºC bajo agitación de 150 ciclos por min. La reacción fue detenida a períodos definidos

de 24 a 72 h por calentamiento del matraz de reacción a 100ºC por 5 min, en un baño de

agua, seguido de la centrifugación de la suspensión a 10000 x g por 15 min. Para cada

tiempo de hidrólisis, tres réplicas de experimentos se realizaron. Los hidrolizados fueron

analizados para determinar el contenido de glucosa, celobiosa y hemicelulosas (manosa

más xilosa) usando el procedimiento de HPLC anteriormente descrito. Conversión de

glucano a glucosa y hemicelulosas a monosacáridos (principalmente manosa) fueron

calculados considerando 0.90 como el factor de hidrólisis debido a la incorporación de

agua al anhidro azúcar.

Con la pulpa P-4 la hidrólisis enzimática también fue realizada con 20 FPU de Celluclast y

40 UI de β-glucosidasa por gramo de pulpa en un matraz Erlenmeyer de 1 L a un 10% de

consistencia del substrato (50 g de pulpa suspendida en 500 mL de una solución

amortiguadora de 0,05M de citrato a pH 4,8). Los matraces fueron incubados a 45ºC bajo

agitación recíproca de 150 ciclos por min. La reacción fue parada por períodos definidos

50

Page 65: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

entre 24 a 72 h por calentamiento del matraz de reacción a 100ºC por 5 min, seguido de

centrifugación a 1000 x g por 15 min. El hidrolizado resultante de los experimentos fueron

analizados para determinar el contenido de azúcares por HPLC y utilizados para

producción de bioetanol en un proceso de hidrólisis y fermentación separadas (SHF).

3.3.5 Hidrólisis y fermentación separadas (SHF) y sacarificación y fermentación

simultáneas (SSF)

El proceso de SHF fue realizado utilizando el hidrolizado obtenido en el ensayo de

hidrólisis enzimática de la pulpa P-4 en el matraz de 1 L. El hidrolizado fue esterilizado a

111ºC por 15 min. Posteriormente, 49 mL del hidrolizado fueron adicionados a un matraz

Erlenmeyer de 250 mL. El pH fue ajustado a 4,8 con 1 mL de solución amortiguadora de

citrato 50 mL y el medio de fermentación fue suplementado con extracto de malta (3 g/L),

peptona (5 g/L) y extracto de levadura (3 g/L) más 5 g/L de S. cerevisiae comercial. El

medio de fermentación fue incubado en un baño de agua sin agitación a 30ºC. Las

muestras fueron retiradas a las 24, 48 y 72 h y analizadas por HPLC para determinación de

etanol y azúcares residuales. Los experimentos se realizaron en triplicado.

El proceso de SSF de la pulpa P-4 (refinada a 1705 Wh/kg) fue realizada con 5 g de pulpa

(en base seca) a una consistencia de 10% del substrato en un matraz Erlenmeyer de 250

mL. La pulpa fue suspendida en 50 mL de una solución de citrato 50 mM (pH 4,8) con 8,8

o 20 FPU/g de Celluclast y 40 UI de β-glucosidasa en ambos casos. Los matraces fueron

incubados en un baño de agua a 45ºC bajo agitación de 150 ciclos por min para 24 a 72 h

como paso de hidrólisis. Después de esos períodos, el mismo medio fue suplementado con

extracto de malta (3 g/L), peptona (5 g/L), extracto de levadura (3 g/L) e inoculado con 5

g/L de S. cerevisiae comercial. La fermentación fue realizada a 30ºC sin agitación por 24

h. Las muestras fueron colectadas, filtradas y analizadas para determinar etanol y azúcares

51

Page 66: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

residuales por HPLC. Experimentos adicionales de SSF bajo las mismas condiciones

fueron realizados con la adición de 20 UI/g de pulpa de mananasa Megazyme (endo 1,4 β-

mananansa, Megazyme Int. Ltd., Irlanda).

3.4 Resultados y Discusión

3.4.1 Pulpaje ASA y refinamiento en disco

Sulfito alcalino antraquinona (ASA) y refinamiento en disco de astillas de madera de P.

radiata and P. caribaea fueron utilizados como pretratamiento con el objetivo de obtener

un material homogéneo y fibrilado para ser usado en hidrólisis enzimática y fermentación a

bioetanol. Diferentes condiciones de pretratamiento fueron evaluadas para obtener una

remoción parcial de lignina sin una disminución significativa de carbohidratos

(especialmente glucanos). La composición química de las astillas de madera y las pulpas

obtenidas después del pretratamiento ASA/refinamiento en disco son mostrados en la

Tabla 3.2. Para P. radiata, el rendimiento de pulpa varía entre 71 a 78%, lo cual está en el

intervalo esperado para pulpaje semi químico. La retención de glucano en las pulpas

también fue muy buena con pérdidas que varían entre 0% (P-1) y 13% (P-2). La

delignificación durante la cocción ASA fue del orden de 25% a 50% para P-1 y P-4,

respectivamente, mientras que la solubilización de hemicelulosas fue entre 50% y 58%.

52

Page 67: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Tabla 3.2. Composición química (en base a madera) de astillas de madera de pino y pulpas

ASA.

Muestra Glucanos (%)

Hemicelulosas (%)

Lignina (%)

Extractivos (%)

Rendimiento de pulpa

(%)P. radiata Madera 44,1 ± 0,2 21,4 ± 0,3 29,1 ± 0,7 2,4 ± 0,2 ---

P-1 44,6 ± 0,1 12,4 ± 0,1 21,9 ± 0,4 n.d. 78,1

P-2 38 ± 2 10,8 ± 0,6 19,0 ± 0,9 n.d. 72,8

P-3 41 ± 2 11,3 ± 0,6 18,2 ± 0,2 n.d. 74,3

P-4 42 ± 2 11,5 ± 0,2 14,7 ± 0,4 n.d. 71,3

P. caribaea

Madera 33,9 ± 0,4 12,9 ± 0,3 25,8 ± 0,8 21,7 ± 0,4 ---

P-5 27,7 ± 0,7 7,7 ± 0,6 22,3 ± 0,1 n.d. 59,9

n.d.= no determinado

Las astillas de madera parcialmente delignificadas por el proceso ASA fueron defibradas

en una licuadora industrial y posteriormente refinadas en un refinador de discos con el

objetivo de fibrilar las fibras de madera e incrementar el área superficial de las pulpas para

la posterior sacarificación. La fibrilación fue realizada a 3 niveles distintos de consumo de

energía del refinador (570 Wh/kg, 1705 Wh/kg y 3635 Wh/kg) como se muestra en la

Figura 3.1. Todas las pulpas presentaron una baja fibrilación a bajos consumos de energía,

aproximadamente 800 mL de freeness a 570 Wh/kg. P-1 también mostró bajo grado de

refinamiento a 1705 Wh/kg (770 mL de freeness) probablemente debido a la remoción

insuficiente de lignina de la pared celular. Para la producción de pulpa quimico-mecánica,

las temperaturas de ablandamiento para lignina están entre 125-145ºC y si la lignina de la

lamela media es ablandada, las fibras de madera pueden ser liberadas con bajo consumo de

energía (Höglund, 2009). Las pulpas P-2, P-3 y P-4 de P. radiata presentaron grados

similares de fibrilación a 1705 Wh/kg y 3635 Wh/kg (390 y 50 mL de freeness,

respectivamente). Sin embargo, a 3635 Wh/kg las pulpas tienen una alta cantidad de fibras

53

Page 68: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

molidas lo cual resulta en un material particulado muy fino, mientras que a 1705 Wh/kg se

presentó una apariencia más fibrilada para las pulpas P-2 y P-4.

Figura 3.1. Drenabilidad de pulpas ASA de P. radiata a diferentes consumos de energía

durante el refinamiento en disco.

3.4.2 Hidrólisis enzimática

Pulpas ASA P-1 a P-4 producidas después del refinamiento en disco a diferentes consumos

de energía fueron evaluadas en ensayos de hidrólisis enzimática a un 10% de consistencia

de sólidos y una carga de celulasas de 8,8 FPU de Celluclast y 40 UI de β-glucosidasa por

gramo de pulpa. Los resultados de estos ensayos son mostrados en la Figura 3.2.

54

Page 69: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura 3.2. Hidrólisis enzimática de pulpas ASA (P-1, P-2, P-3 Y P-4) obtenidas después

de refinamiento en disco a diferentes consumos de energía (570, 1705 y 3635 Wh/kg). La

carga enzimática por gramo de pulpa fue de 8,8 FPU de Celluclast y 40 UI de beta-

glucosidasa, 10% de consistencia de pulpa. Las barras de error representan la variación de

3 réplicas de hidrólisis. Cuando no son visibles, las barras de errores son más pequeñas que

el tamaño de los símbolos.

55

Page 70: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Para la pulpa P-1 sólo el refinamiento a 3635 Wh/kg fue capaz de producir un material

fibrilado adecuado para hidrólisis enzimática y también en este caso una baja conversión

de glucanos a glucosa fue obtenido (30% después de 72 h) probablemente debido al alto

contenido de lignina residual. Las pulpas P-2 y P-3 las cuales presentaban una remoción

similar de lignina (35-37%), la máxima conversión de glucosa fue obtenida después de 72

h de hidrólisis enzimática y fue en el intervalo de 50-60% para las pulpas refinadas a 1705

Wh/kg y 3635 Wh/kg. Una alta conversión fue obtenida con la pulpa P-4 refinada a 1705

Wh/kg y después de 72 h de hidrólisis (70% de conversión de glucano a glucosa)

sugiriendo que el grado de fibrilación alcanzado a este consumo de energía, además de la

remoción de lignina del 50% durante el pretratamiento ASA fueron condiciones adecuadas

para realizar futuros ensayos de fermentación. El efecto de la remoción de lignina durante

el pretratamiento ASA asociado con los diferentes consumos de energía para la fibrilación

y la hidrólisis enzimática de las pulpas se muestra en la Figura 3.3.

Figura 3.3. Efecto de la remoción de lignina después de la cocción ASA en la hidrólisis

enzimática de pulpas de P. radiata producidas a diferentes consumos de energía en

56

P-1

P-2P-3

P-4

Page 71: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

refinamiento en disco. La carga de enzima por gramo de pulpa fue de 8,8 FPU de

Celluclast y 40 UI de β-glucosidasa; 10% de consistencia de pulpa.

Existe una correlación directa entre el grado de delignificación con la sacarificación

enzimática de las pulpas, la cual es más importante que la fibrilación obtenida durante el

refinamiento en disco. Cuando la remoción de lignina es mayor al 50%, la lignina residual

no es un obstáculo significativo para el ataque enzimático, por lo tanto el contenido de

lignina es el principal obstáculo en limitar la hidrólisis completa de los carbohidratos en la

biomasa (Zhu et al., 2008). Recientemente, estudios en la delignificación selectiva (entre

41-63%) de las regiones internodos de la corteza y la médula de la caña de azúcar con

clorito de sodio/ácido acético acuoso demostraron también un aumento de la sacarificación

de celulosa por celulasas comerciales (Siqueira et al., 2011). Probablemente la lignina en la

pulpa P-4 tiene un alto grado de sulfonación, haciendo la lignina más hidrofílica y

disminuyendo los enlaces de la lignina con la parte hidrofóbica de las enzimas.

Adicionalmente, la remoción de hemicelulosas (más de 50%) también incrementa la

accesibilidad de las celulasas a la celulosa, permitiendo una alta conversión durante la

sacarificación (Öhgren et al., 2007; Zhu et al., 2008; Zhu et al., 2009). Incrementando el

grado de refinamiento para la pulpa P-4 (70 mL de CSF a 3635 Wh/kg) no se obtiene un

efecto en el aumento de la conversión en la hidrólisis enzimática. Durante el refinamiento

las dimensiones de las fibras son reducidas, la pared celular es parcial o completamente

colapsada y, con altos consumos de energía, se produce una alta cantidad de finos en la

pulpa y la lignina de la lamela media se encuentra más expuesta que en otras fracciones de

fibra, lo cual puede incrementar los enlaces improductivos de las enzimas y disminuir la

conversión de azúcares (Konn et al., 2007). El ensayo de hidrólisis enzimática con

incremento de la cantidad de Celluclast (20 FPU/g de pulpa) y 40 UI de β-glucosidasa

57

Page 72: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

resultó en un ligero incremento en la conversión de glucano a glucosa de 75,5% después de

72 h.

3.4.3 SHF Y SSF

Considerando los resultados obtenidos, la pulpa P-4 fue usada como substrato en ensayos

de SHF y de SSF para la producción de bioetanol. En SHF la pulpa fue hidrolizada en las

condiciones óptimas para las enzimas (45ºC) por un período de 24 (Figura A.6, Anexo III)

a 72 h y el caldo de azúcar obtenido fue separado de los residuos de fibra y fermentado por

S. cerevisiae a 30ºC. La concentración inicial de glucosa fue de 40-44 g/L dependiendo de

las condiciones de hidrólisis y después de 24 h de fermentación la concentración de etanol

alcanzó valores de 18-20 g/L (Figura 3.4).

58

Page 73: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura 3.4. Etanol (cuadrados y círculos negros rellenos) y glucosa residual (cuadrados y

círculos blancos rellenos) durante la fermentación (SHF) del hidrolizado de pulpa ASA P-4

(750 Wh de energía de refinamiento). Condiciones de hidrólisis enzimática: 20 FPU/ g

Celluclast, 40 UI/ g β-glucosidasa, 24 h de incubación a 45ºC (círculos blancos y negros) y

72 h de incubación bajo las mismas condiciones de hidrólisis descritas (cuadrados rellenos

blancos y negros); 10% de consistencia de pulpa en todos los casos.

La glucosa fue metabolizada completamente por S. cerevisiae en 24 h de fermentación. La

conversión de glucosa a etanol obtenida en estas condiciones fue de aproximadamente 90%

y la baja concentración de etanol es sólo debido a la baja consistencia de pulpa utilizada

(10%). La cantidad máxima de etanol que puede producirse de P. radiata es de

aproximadamente 320 L/ton de madera. El rendimiento de etanol obtenido con la pulpa P-4

fue de 260 L/ton de madera, correspondiendo a un rendimiento del 80% del valor teórico.

La diferencia en las cantidades se debe a la conversión incompleta de glucanos en la

hidrólisis enzimática y la pequeña cantidad de glucosa utilizada por la levadura para su

mantenimiento y crecimiento.

En el proceso SSF la pulpa primero fue pre hidrolizada con las enzimas por distintos

periodos de tiempo a 45ºC seguido de la adición de la levadura y los nutrientes (en el

mismo matraz), y la temperatura de fermentación fue disminuida a 30ºC (Figura A.7,

Anexo III). La combinación de cargas de enzimas y tiempos de pre hidrólisis fueron

evaluados, incluyendo un ensayo con la adición en el medio de una mananasa

(Megazyme), con el objetivo de verificar si se puede obtener algún incremento en el

rendimiento de etanol por la liberación de alguna glucosa de los glucomananos residuales

en pulpa. El resultado demuestra que de acuerdo a las diferentes condiciones usadas, la

producción de etanol varía de 15 a 22 g/L (Tabla 3.3). La adición de mananasas no parece

59

Page 74: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

tener un impacto significativo en el aumento de la producción de etanol, ya que los

resultados obtenidos en el ensayo P-4E fueron similares a los obtenidos en el ensayo P-4A.

Tiempos más largos de hidrólisis fueron más importantes y favorecieron más el proceso de

fermentación. Por otra parte, el descenso en la temperatura durante la fermentación

probablemente reduce la actividad de las enzimas y sólo los azúcares liberados durante la

pre hidrólisis fueron fermentados. Los resultados obtenidos en ambos procesos SHF y SSF

fueron similares con una conversión de glucanos presentes en la pulpa a etanol sobre el

90%. Los rendimientos de etanol en este trabajo fueron muy similares a los reportados con

el proceso SPORL de 270 L/ton de madera en SSF con 10% de sólidos. Los resultados son

más altos que los obtenidos en hidrólisis y fermentación por separados de rastrojo de maíz

pretratado con expansión de fibra con amonio (AFEX), y fermentación con S. cerevisiae

424A (LNH-ST) en la cual se obtuvo un rendimiento de 242 L/ton de biomasa (Lau et al.,

2009).

Tabla 3.3. Etanol producido en SSF de pulpas ASA de P. radiata (P-4 refinado a 1705 Wh/kg) después de pre hidrólisis con diferentes tiempos y cargas enzimáticas.

Muestra* Celluclast(FPU/g pulpa)

β-glucosidasa(IU/g pulpa)

Mananasa(IU/g pulpa)

Tiempo pre-hidrólisis

(h)

Etanol-24h fermentación

(g/L)P-4A 8,8 40 --- 72 21,5 ± 0,6

P-4B 20 40 --- 24 15,5 ± 0,9

P-4C 20 40 --- 48 18 ± 1

P-4D 20 40 --- 72 20,7 ± 0,4

P-4E 20 40 20 72 22,0 ± 0,1

*Consistencia de pulpa de 10% en todos los casos.

+ representa el error de los triplicados.

60

Page 75: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

3.4.4 Fermentación de pulpa de Pinus caribaea proveniente del proceso

ASA/refinamiento en disco

P. caribaea es una especie de pino que crece en las áreas tropicales y puede tolerar

periodos de sequía de hasta 6 meses, temperaturas de 20 a 27ºC y precipitaciones de 1000 a

1800 mm (Barret et al., 1962). Esta madera blanda puede ser una potencial materia prima

para biocombustibles en zonas tropicales como América Central, por ejemplo. Las

muestras de madera fueron obtenidas de plantaciones de 25 años de edad localizadas en

Panamá. La composición química de la madera presentó una cantidad relativamente baja

de celulosa y hemicelulosa (34% y 13%, respectivamente), 26% de lignina y una cantidad

muy alta de extractivos solubles en etanol (22%), comparado con la madera de P. radiata

de 11 años como se muestra en la Tabla 3.2. Valores similares de lignina y extractivos

(26,3% y 23,6%, respectivamente) en P. caribaea fueron reportados previamente (Brito et

al., 2008). La cocción ASA y el refinamiento en disco fueron realizados bajo las mismas

condiciones de la pulpa P-4 (Tabla 3.1), que fueron las que presentaron una pulpa óptima

para la fermentación. Una delignificación de sólo 14% fue alcanzada después de la cocción

y un valor de freeness de 730 mL después del refinamiento a 1705 Wh/kg. La pulpa (P-5)

presentó un bajo contenido de glucanos (28%, en base madera). Después de 72 h de

hidrólisis enzimática (20 FPU de Celluclast/g de pulpa y 40 UI β-glucosidasa/g pulpa) a un

10% de consistencia, la conversión de glucano a glucosa fue de 72%. SSF de pulpa P-5

realizada después de 72 h de pre hidrólisis resultó en un rendimiento de etanol de 16 g/L

(aproximadamente 140 L/ton de madera). Los resultados de producción de etanol están

directamente relacionados con la baja cantidad de celulosa presente en la madera de P.

caribaea la cual hace la especie (por lo menos a esta edad) poco factible de ser utilizada

como materia prima para la producción de bioetanol en comparación con P. radiata.

61

Page 76: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

3.5 Conclusiones

El pretratamiento al sulfito alcalino/antraquinona de astillas de madera de P. radiata

seguido de un proceso de refinamiento en refinador de discos demostró ser un

pretratamiento efectivo que puede reducir el contenido de lignina en madera hasta en un

50% con baja perdida de glucanos en una pulpa de alto rendimiento (sobre 70%). De

acuerdo al grado de fibrilación, las pulpas ASA fueron sacarificadas por celulasas hasta en

70% y durante el proceso SHF y SSF la conversión de glucano a bioetanol fue sobre 90%

indicando que el substrato fue fácilmente convertido en bioetanol cuando se utilizó una

consistencia del 10%. Las astillas de madera de P. caribaea pretratadas con condiciones

similares a la mejor pulpa de P. radiata también presentó buen rendimiento durante la

sacarificación y fermentación. Sin embargo, la alta cantidad de extractivos y la baja

cantidad de celulosa en la madera generó un bajo rendimiento de etanol comparado con los

obtenidos para pulpas de P. radiata, haciendo esta especie, al menos para plantaciones de

edad elevada, no apta como materia prima para la producción de bioetanol por el proceso

ASA/refinamiento en disco. Esfuerzos pueden ser realizados para incrementar la

consistencia del substrato en procesos SHF o SSF con el objetivo de incrementar la

concentración de etanol sobre 50 g/L la cual es adecuada para su recuperación por

destilación u otras técnicas.

Agradecimientos

H. Franco agradece al Programa Nacional de Investigadores 2005-2010 de SENACYT-

IFARHU Panamá por una beca de PhD y al proyecto MECESUP2-UCO0702. Soporte

financiero de FONDECYT (proyecto 1070492) también es agradecido.

62

Page 77: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

CAPÍTULO IV: DISCUSIÓN GENERAL

Este trabajo de investigación tuvo como objetivo la evaluación del proceso de producción

de bioetanol a partir de dos especies de madera blanda P. radiata y P. caribaea. En el

capítulo II se evaluaron las condiciones de pretratamiento con ácido sulfúrico diluido de

astillas de P. radiata y la utilización de S. carevisiae encapsulada en alginato de calcio

para el proceso de sacarificación y fermentación simultánea de la fracción sólida y líquida

del pretratamiento. Se evaluó además el pretratamiento con ácido diluido de P. caribaea,

pero debido a la alta concentración de extractivos en la madera (22%), el pretratamiento

resultó inviable para esta especie, porque con el pretratamiento sólo se lograba la remoción

de extraíbles, quedando las astillas cubiertas de estas sustancias y conservando además su

apariencia física y rigidez. En el capítulo III se evalúo el pretratamiento de astillas de P.

radiata y P. caribaea con sulfito alcalino/antraquinona y el refinamiento en disco del

residuo sólido y su posterior sacarificación y fermentación mediante los procesos SHF y

SSF en los cuales se utilizó una cepa de S. cereviae comercial.

En la Tabla 4.1 se resumen los resultados más relevantes del proceso de producción de

etanol utlizando medio sintético de fermentación (glucosa) y proceso SSF de madera de P.

radiata pretratada con ácido diluído, utilizando S. cerevisiae IR2-9 inmovilizada en

alginato de calcio. Una de las dificultades encontradas en el proceso fue la preparación de

S. cerevisiae para ser encapsulada en la membrana de alginato de calcio. El paso crítico en

la preparación de la levadura, se presentó en el proceso de liofilización, en el cual la

levadura precultivada fue congelada y posteriormente liofilizada para extraer el agua. Este

proceso de liofilización se utilizó porque el encapsulamiento de las levaduras utilizando

biomasa de S. cerevisiae húmeda, presenta cápsulas de un tamaño y forma heterogénea y

tampoco permite conocer en forma directa mediante pesada, cuál es la biomasa exacta de

levadura que estábamos utilizando para encapsular. El período de congelamiento al que fue

sometida la levadura fue de aproximadamente 12 h y el de liofilización de 18 h. El

congelamiento prolongado del microorganismo causa la muerte por colapso de las células

de levadura. Esta limitante técnica es solucionable ya que existen en la industria que utiliza

células inmovilizadas, liofilizadores con control para realizar la etapa de congelamiento en

63

Page 78: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

pocos segundos y por rampas de temperatura, previniendo el colapso de la levadura por

choque térmico y períodos prolongados de congelamiento (Bekatorou et al., 2001).

Tabla 4.1. Producción de etanol obtenida utilizando S. cerevisiae IR2-9 inmovilizada en

alginato de calcio.

Muestra Proceso/tiempo Concentración de etanol (g/L)

Productividad volumétrica

(g/L.h)

Rendimiento de etanol (% del max.valor

téorico)aMedio

sintéticoFermentación/

48 h14,5 0,30 62,3

bMedio sintético

Fermentación/48 h

17,3 0,36 74,3

cResiduo sólido sin molienda

SSF/48 h 3,5 0,07 16,0

dResiduo sólido con molienda

SSF/48 h 5,5 0,11 29,0

eResiduo sólido con molienda

SSF/48 h 12,2 0,25 65,7

fResiduo sólido con molienda

SSF/72 h 4,2 0,058 22,0

aFermentación realizada con S. cerevisiae inmovilizada en alginato de calcio con 3.5% de

CaCl2.

bFermentación realizada con S. cerevisiae inmovilizada en alginato de calcio con 8.0% de

CaCl2.

cResiduo sólido del pretratamiento con ácido diluido sin molienda (muestra 6 del diseño

experimental) sometido a SSF con S. cerevisiae inmovilizada en alginato de calcio con

3,5% de CaCl2

Residuo sólido del pretratamiento con ácido diluido con molienda (muestra 6 del diseño

experimental) sometido a SSF con S. cerevisiae inmovilizada en alginato de calcio con d3,5% de CaCl2 y e8,0% de CaCl2

fResiduo sólido con molienda sometido a SSF con S. cerevisiae libre.

64

Page 79: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Diferencias significativas fueron encontradas en relación a la concentración de CaCl2

utilizado para formar las cápsulas de alginato de calcio con levadura. En la Tabla 4.1 se

observa que la productividad de etanol (g/L.h) (que relaciona la producción de etanol con

el tiempo de fermentación), en un medio sintético de fermentación que contenía 45 g/L de

glucosa es superior para S. cerevisiae IR2-9 inmovilizada en la membrana en la que se

utilizó 8,0% de CaCl2. En trabajos recientes se ha reportado que S. cerevisiae inmovilizada

en alginato con concentraciones de 1,5 y 2,0 % de CaCl2 no tienen la suficiente estabilidad

y son fácilmente rotas debido al menor entrecruzamiento de las cadenas moleculares que

dan una baja densidad a la estructura tridimensional de la red. Se ha reportado una

productividad volumétrica de etanol para S. cerevisiae inmovilizada con 3,5% de CaCl2 y

alginato de sodio de 3,54 g/L.h y concentración de etanol de 49,52 g/L, pero a 30ºC y para

concentración de glucosa de 100 g/L (Inal et al., 2011). En las plantas industriales la

productividad de etanol está en el rango de 1-3 g/L.h para S. cerevisiae libre (Hahn-

Hägerdal et al, 2007). La productividad volumétrica obtenida en nuestro trabajo puede

explicarse en el hecho de que a pesar de que la cepa S. cerevisiae fue adaptada para crecer

a una temperatura de 40ºC, para S. cerevisiae se ha reportado efectos importantes en sus

condiciones de crecimiento metabólico, respiratorio y fermentable, que produce una

disminución del rendimiento de etanol y acumulación de glicerol, a temperaturas mayores

a 30ºC (Ferreira et al., 2007). Sin embargo, el rendimiento de etanol en medio sintético de

74,3 % obtenido con S. cerevisiae IR2-9 inmovilizada con 8,0% de CaCl2 fue similar al

obtenido con esta misma levadura libre utilizada en fermentación de un medio sintético:

75% (Araque et al., 2008). Para S. cerevisiae libre, utilizada en proceso SSF a 40ºC de

residuos de papel corrugado se ha reportado una productividad volumétrica de etanol de

0.19 g/L.h (Kádar et al, 2004), que es inferior a la productividad volumétrica de etanol

(0,25 g/L.h), obtenida en esta investigación para el proceso SSF del residuo sólido molido

del pretratamiento con ácido diluido de P. radiata, demostrando la efectividad de utilizar

levadura inmovilizada en la fermentación de este residuo lignocelulósico. Una diferencia

importante fue encontrada cuando se compara el rendimiento de etanol al utilizar levadura

inmovilizada en alginato de calcio, en el proceso SSF del residuo sólido molido del

pretratamiento de P. radiata con ácido sulfúrico diluido, con el proceso del mismo material

realizado con S. cerevisiae libre. Una posible explicación es que el encapsulamiento de la

levadura ofrece un efecto protector ante la presencia de lignina y algunos compuestos

fenólicos derivados de ella que pueden estar presentes en el residuo sólido y que inhiben la

65

Page 80: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

levadura. El efecto de la inhibición de S. cerevisiae por lignina y compuestos aromáticos

derivados durante la hidrólisis con ácido ha sido ampliamente investigada (Klinke et al.,

2000, Larsson et al., 2000; Tengborg et al, 2001; Klinke et al., 2004).

La principal limitante que presenta la utilización del pretratamiento de maderas blandas

con ácido diluido es la poca efectividad en la remoción de lignina y su mayor efecto se

produce sobre las hemicelulosas, las cuales son removidas del substrato sólido en un alto

porcentaje (Silverstein et al. 2007), lo cual se confirmó en este estudio donde el contenido

de lignina residual es de aproximadamente 89% de la contenida originalmente en la

madera y la remoción de hemicelulosas alcanzó hasta 90%. Es conocido que la lignina y

las hemicelulosas actúan como barrera para la adsorción de las enzimas hidrolíticas

utilizadas en la sacarificación de materiales lignocelulósicos (Öhgren et al., 2007; Guo et

al., 2009, Lin et al., 2010, Yu et al., 2011). Para superar esta dificultad y mejorar la

conversión de azúcares y el rendimiento de etanol procesos SSF con residuo sólido del

pretratamiento con ácido diluido de P. radiata, se podría utilizar surfactantes que faciliten

la eliminación de las interacciones improductivas entre las enzimas y la lignina y que

además no tengan efecto en la inhibición de S. cerevisiae. En hidrólisis enzimática de

Avicel (celulosa) sin y con adición de ciertas cantidades de lignina se ha comprobado una

relación directa y negativa entre la eficiencia en la hidrólisis de la celulosa y el aumento en

el contenido de lignina, esa interacción entre la lignina y las enzimas fue eliminada por la

adición de un surfactante no iónico triblock copolímero L64 que se acompleja a la lignina

en el hidrolizado enzimático y no es tóxico para S. cerevisiae (Wang et al., 2011).

En la Tabla 4.2 se muestran los resultados de la producción de etanol de pulpa ASA

refinada de P. radiata (P-4) y P. caribaea (P-5), obtenido en procesos SHF y SSF. El

pretratamiento ASA de P. radiata resultó en un alto rendimiento de pulpa (>70%) y de P.

caribaea de 60%, lo cual representa una ventaja porque una gran mayoría de azúcares es

retenida en la pulpa y se logró una disminución importante del contenido de ambas: lignina

y hemicelulosas en pulpa (>50%). Estos resultados demuestran el efecto de la adición de

0.1% de antraquinona al licor de cocción del pretratamiento, demostrándose su efecto

como catalizador de la delignificación en el pulpaje alcalino y de protección de los grupos

aldehídos de los carbohidratos antes de que ocurra la relación de “peeling”( Ban et al.,

2004; Hedjazi et al., 2009).

66

Page 81: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

En el proceso de refinamiento se observó que las muestras con mayor contenido de lignina

eran más difíciles de refinar, presentando problemas de agregación de fibras en los discos,

a pesar que inicialmente se utilizó una separación de 0,50 mm entre discos,

disminuyéndose progresivamente hasta alcanzar 0 mm de separación en donde realmente

se alcanza el refinamiento adecuado del material lignocelúlosico. Por lo tanto, la

optimización de las condiciones de pretramiento son importantes para obtener un material

blando que pueda ser refinado, homogenizado y generando nueva área superficial en la

pulpa, con consumos de energía bajos, ya que es conocido que en los procesos de pulpaje

termomecánicos, aproximadamente sólo se consume en el proceso de generación de nueva

superficie de pulpa entre 1-30% de la energía total del proceso (Höglund, 2009). Al evaluar

las pulpas ASA obtenidas bajo distintas condiciones de cocción, en relación al consumo de

energía utilizado en su refinamiento y la conversión de glucanos a glucosa, se encontró que

a un consumo de energía de 1705 Wh/kg, las pulpas presentaron una alta conversión,

principalmente la pulpa P-4 (70% de conversión de glucanos a glucosa), en la Figura A.4,

Anexo II, se muestra la microscopía electrónica de P-4 en donde se observa una pulpa

homogénea y desfibrada lo cual facilita la hidrólisis enzimática. Los rendimientos de

etanol para los procesos de SSF y SHF de pulpa ASA P-4 fueron similares (entre 260 y

270 L/ton de madera) al igual que la productividad volumétrica de etanol para ambos

procesos, en términos generales se obtuvo la mayor productividad volumétrica para un

tiempo total del proceso (tiempo de hidrólisis enzimática + fermentación) de 96 h. El

rendimiento de etanol obtenido para la pulpa ASA P-4 es muy superior al obtenido del

proceso SSF (utilizando S. cerevisiae), de pulpa SPORL de Pinus contorta, obtenida con

8% de bisulfito de sodio (p/p) a una temperatura de cocción de 180º C y 25 min que fue de

167 L/ ton de madera (Zhu et al., 2010b). Por razones de un proceso con menor número de

etapas es recomendable la utilización del proceso de SSF. La etapa que elimina en este

proceso, en comparación con el proceso SHF es la separación de la glucosa de la fracción

de lignina, evitando una pérdida de azúcares y disminuyendo el número de vasos y costo

de inversión al momento de realizar un proceso SSF a mayor escala, dicho capital de

inversión para un proceso SSF en comparación a un proceso SHF ha sido estimado entre

14-20% menos (Wingren et al., 2003; Olofsson et al., 2008).

En futuras investigaciones de pretratamiento ASA de maderas blandas, se debe explorar la

posibilidad de utilizar reactores y refinadores de discos presurizados que permitan una

67

Page 82: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

mejor impregnación de las astillas por el licor de cocción y de esta forma reducir el tiempo

de cocción, obteniendo un material con una mayor remoción de lignina y hemicelulosas,

que facilite el proceso de refinamiento, disminuyendo el consumo de energía y obteniendo

una mayor conversión de azúcares en la hidrólisis enzimática. A escala industrial el

refinamiento en disco se realiza bajo una atmósfera de vapor altamente presurizada y

dependiendo del nivel de fibrilación los consumos de energía para pulpas quimiotermo

mecánicas varía entre 1000 a 4300kWh/ ton de madera y para pulpaje mecánico entre 1000

a 2300 kWh/ ton

(http://www.fing.uy/iq/maestrias/icp/materiales/2010/10_Environmental/

Mechanica1%20Pulping.pdf).

En relación a la hidrólisis enzimática debe ensayarse el aumento del contenido de sólidos,

por lo menos hasta 20% para obtener una concentración de azúcares fermentables de al

menos 80 g/L, que permitan en el proceso de fermentación la obtención de etanol en

concentraciones cercanas al 4% que sería la concentración mínima requerida para un

proceso de destilación costo efectivo (Hoyer et al., 2010; Lu et al., 2010). Para este

objetivo se tiene que estudiar las diferencias en la utilización de reactores con sistemas de

agitación y estacionarios, que produzcan una buena mezcla, ya que al aumentar el

contenido de sólidos se aumenta la viscosidad del medio y la mezcla del sistema es

fundamental para permitir una buena interacción entre las enzimas y el substrato (Ojeda et

al., 2009). Otro aspecto que puede explorarse es la utilización de distintos tipos de

hemicelulasas en hidrólisis multienzimática de P. radiata pretratada con diferentes

métodos de pretratamiento y la optimización de las cargas de enzimas, tiempo de

hidrólisis, contenido de sólidos y la secuencia de adición de las enzimas, si se utiliza un

sistema en donde se prepara un cóctel de enzimas o se adiciona en forma escalonada cada

enzima para comprobar de que manera es más eficaz el sistema, por efecto de las distintas

afinidades e interacciones que tienen estas con el substrato. Se ha comprobado en distintos

materiales lignocelulósicos que la adición de hemicelulasas al coctel de enzimas que

incluye celulasas y beta glucosidasa incrementa los rendimientos de azúcares en hidrólisis

enzimática (Berlin et al., 2007; Zhang et al., 2010; Gao et al., 2011).

Con esta investigación se logró la obtención de un rendimiento aceptable de etanol a partir

del pretratamiento con ácido sulfúrico diluido y molienda a partir de astillas de P. radiata,

mientras que mediante el pretratamiento ASA con refinamiento en disco, se obtuvo un alto

68

Page 83: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

rendimiento de etanol y de productividad volumétrica lo que hace de este proceso una

opción viable a ser explorada a una escala mayor. En relación a las dos especies de pino

utilizados, existen diferencias significativas en la composición química del P. radiata

(especie de climas templados) y P. caribaea (especie de climas tropicales), en el caso de

esta última especie el alto contenido de extractivos y la menor cantidad de glucanos,

afectan la aplicación de pretratamientos como el ácido diluido y afectan el rendimiento de

pulpa en el caso del ASA y el rendimiento final de etanol.

Tabla 4.2. Producción de etanol obtenida en procesos SSF y SHF de P. radiata y P.

caribaea pretratada con ASA/ refinamiento en disco con S. cerevisiae comercial.

Muestra Proceso/tiempo Concentración de etanol (g/L)

Productividad volumétrica de etanol (g/L.h)

Rendimiento de etanol (del máximo valor

teórico)^

P-4 a SHF/ (24 h H.E. + 24 h F.)

18,2 0,76 72,0

P-4b SHF/ (48 h H.E. + 24 F.)

19,8 0,83 78,3

P-4c SHF/(72 h H.E. + 24 h F.)

19,6 0,82 77,5

*P-4d SHF/ (72 h H.E. + 24 h F.)

16,5 0,69 65,0

P-4f SSF/(72 h H.E. + 24 h F.)

20,7 0,86 82,0

*P-4g SSF/(72 h H.E. + 24 h F.)

21,5 0,89 85,0

P-5 SSF (72 H.E. + 24 h F.)

16.0 0.67 77,8

69

Page 84: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Todos los proceso SHF Y SSF fueron realizados a una carga de sólidos del 10%.

P-4 (a,b,c, f) y P-5: procesos SHF y SSF realizados con una carga de Celluclast de 20

FPU/g de pulpa en base seca y 40 UI de β-glucosidasa/g de pulpa en base seca.

*P-4 (d y g): proceos SHF y SSF realizados con una carga de Celluclast de 8.8 FPU/g de

pulpa en base seca y 40 UI de β-glucosidasa/g de pulpa en base seca.

70

Page 85: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

CAPÍTULO V: CONCLUSIONES

La inmovilización de S. cerevisiae IR2-9a en alginato de calcio permitió la

obtención de un rendimiento de 65% de etanol en un proceso SSF del residuo

sólido del pretratamiento con H2SO4 diluido, en comparación con sólo 22% de

rendimiento de etanol al utilizar células libres.

En la sacarificación y fermentación simultánea del residuo sólido y del hidrolizado

de la mejor condición de pretratamiento con sulfito ácido, se obtuvo una

producción total de etanol de 171 L/ton.

El pretratamiento con sulfito alcalino/antraquinona permite la obtención de una

pulpa con alto contendio de glucano (> 90% del contenido en base madera) y una

reducción significativa de lignina y hemicelulosas (>50%).

Los rendimientos de etanol para los procesos de SHF y SSF de pulpa ASA de P.

radiata refinada en refinador de disco fueron muy similares comprendiendo una

alta producción de etanol comprendida entre 215 a 272 L/ton de madera. Para pulpa

ASA refinada de P. caribaea la máxima producción de etanol fue de 137 L/ ton de

madera, debido al bajo contenido de glucanos y alto contenido de extraíbles en la

madera.

El pretratamiento al sulfito alcalino/antraquinona es un método más eficaz en la

remoción de lignina y hemicelulosas de astillas de P. radiata que el pretratamiento

con sulfito ácido, permitiendo una mejor sacarificación en la hidrólisis enzimática.

71

Page 86: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

REFERENCIAS BIBLIOGRÁFICAS

Abadias, M., Benabarre, A., Teixido, N., Usall, J. y Viñas, I. (2001). Effect of freeze drying

and protectants on viability of the biocontrol yeast Candida sake. Int. J. Food

Microbiol. 65:173-182.

Abrantes, S., Amaral, M.E., Costa, A.P. y Duarte, A.P. (2007). Cynara cardunculus L.

alkaline pulps: alternatives fibres for paper and paperboard production. Bioresource

Technol. 98:2873-2878.

Agenda 2020 Technology Alliance. (2006). Forest Products Industry Technology Roadmap.

http://www.agenda2020.org/PDF/FPI_Roadmap%20Final_Aug2006.pdf. Consultado:

27-03-2008.

Alkasrawi, M., Rudolf, A., Lidén, G. y Zacchi, G. (2006). Influence of strain and cultivation

procedure on the performance of simultaneous saccharification and fermentation of

steam pretreated spruce. Enzyme Microb. Tech. 38: 279-286.

Almeida, J.R.M., Modig, T., Petersson, A., Hahn-Hagerdal, B., Lidén, G. y Gorwa-

Grauslund, M.F. (2004) Increased tolerance and conversion of inhibitors in

lignocellulosic hydrolisates by Saccharomyces cerevisiae. J. Chem. Technol.

Biotechnol. 21:357-365.

Almeida, R.M.J., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G. y Gorwa-

Grauslund, F. (2007). Increased tolerance and conversion of inhibitors in

lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biot. 82:

340-349.

Alvira, P., Tomás-Pejó, E., Ballesteros, M. y Negro, M.J. (2010). Pretreatment technologies

for an efficient bioethanol production process based enzymatic hydrolysis: a review.

Bioresource technol. 101: 4851-4861.

Araque, E., Parra, C., Rodríguez, M., Freer, J. y Baeza, J. (2008). Selection of

thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production.

Enzyme Microb. Technol. 43:120-123.

Arato, C., Pye, E.K. y Gjennestad, G. (2005). The lignol approach to biorefinerining of

woody biomass to produce etanol and chemicals. Appl. Biochem. Biotech. 121-124:

871-882.

72

Page 87: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Baba, Y., Tanabe, T., Shirai, N., Watanabe, T., Honda, Y. y Watanabe, T. (2011).

Pretreatment of japanese cedar Wood by White rot fungi and ethanolysis for

bioethanol production. Biomass Bioenerg. 35: 320-324.

Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the

biochemical review. Energ. Convers. Manage. 52: 858-875.

Balat, M., Balat, H. y Öz, C. (2007). Progress in bioethanol processing. Prog. Energ.

Combust. 43(5):551-573.

Ballesteros, I., Oliva, J.M., Negro, J.M., Manzanares, P. y Ballesteros, M. (2002). Enzymic

hydrolysis of steam exploded herbaceous agricultural waste (Brassica carinata) at

different particule sizes. Process. Biochem. 38:187-192.

Ballesteros, M., Oliva, J.M., Negro, J.M., Manzanares, P. y Ballesteros, I. 2004. Ethanol

from lignocellulosic materials by simultaneous saccharification and fermentation

process (SFS) with Kluveromyces marxianus CECT 10875. Proc. Bio. 39: 1843-1848.

Ban, W., Song, J. y Lucia, A. (2004). Insight into the chemical behavior of softwood

carbohydrates during high-sulfidity green liquor pretreatment. Ind. Eng. Chem. Res.

43: 1366-1372.

Banavath, N.H., Bhardwaj, N.K. y Ray, A.K. (2011). A comparative study of the effect of

refining on charge of various pulps. Bioresource technol. (102): 4544-4551.

Barrett, W. H.G. y Golfari, L. (1962). Descripción de dos nuevas variedades del “pino del

Caribe”. Caribbean Forester 23(2):59-71.

Bekatorou, A., Koutinas, A.A., Kaliafas, A. y Kanellaki, M. (2001). Freeze-dried

Saccharomyces cerevisiae cells immobilized on gluten pellets for glucose

fermentation. Process Biochem. 36: 549-557.

Berlin, A., Balakshin, M., Gilkes, N., Kadla, J., Maximenko, V., Kubo, S y Saddler, J.

(2006). Inhibition of cellulase, xylanase and β-glucosidase activities by softwood

lignin preparations. J. Biotechnol. 125: 198-209.

Berlin, A., Maximenko, V., Gilkes, N. y Saddler, J. (2007). Optimization of enzyme

complexes for lignocelluloses hydrolysis. Biotechnol. Bioeng. 97(2): 287-296.

Bjerre, B A., Olesen, B. A., Fernqvist, T., Plöger, A. y Schmidt, S.A. (1996). Pretreatment of

wheat straw using combined wet oxidation and alkaline hydrolysis resulting in

convertible cellulose and hemicelluloses. Biotechnol. Bioeng. 49:568-577.

Blazejak, S., Duszkiewicz-Reinhard, W., Gniewosz, M., Rostkowska-Demmer, E. y

Domurad, E. (2002) The study of Saccharomices cerevisiae brewery yeast strain

73

Page 88: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

capacity of binding with magnesium in dynamic conditions. Electr. J. Polish Agric.

Univer. 5: 1-8.

Bower, S., Wickramasinghe, R., Nagle, N.J. y Schell, D.J. (2007). Modeling sucrose

hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for

lignocellulosic biomass. Bioresource Technol. 99(15):7354-7362.

Brandeberg, T., Franzén, J.C. y Gustafsson, L. (2004). The fermentation performance of nine

strains of saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood

hydrolysate. J. Biosci. Bioeng. 98(2): 122-125.

Brito, J.O, Silva, F.G., Leao, M.M. y Almeida, G. (2008). Chemical composition changes in

eucalyptus and pinus woods submitted to heat treatment. Bioresource Technol. (99):

8545-8548.

Calvo-Alvarado, J.C. Arias, D. y Richter, D.D. (2007). Early growth performance of native

and introduced fast growing tree species in wet to sub-humid climates of the Southern

region of Costa Rica. Forest. Ecol. Manage. 242:227-235.

Cao, Y. y Tan, H. (2006). Improvement of alkali solubility of cellulose with enzymatic

treatment. Appl. Microbiol. Biotechnol. 70: 176-182.

Cardona, C.A. y Sánchez, O.J. (2006). Energy consumption analysis of integrated flowsheets

for production of fuel ethanol from lignocellulosic biomass. Energy 31: 2447-2459.

Chakar, F.S. y Ragauskas, A.J. (2004). Review of current and future softwood kraft lignin

process chemistry. Ind. Crop. Prod. 20: 131-141.

Chandel, A.K., ES, C., Rudravaram, R., Narasu, M.L., Rao, V. y Ravindra, P. (2007).

Economics and environmental impact of bioethanol production technologies: an

appraisal. Microbiol. Mol. Biol. R. 2(1): 014-032.

Chandra, R.P., Bura, R., Mabee, W.E., Berlin, A., Pan, X. y Sander, J.N. (2007). Substrate

pretreatment: the key to effective enzymatic hydrolysis of lignocellulosic?. Adv.

Biochem. Engin/Biotechnol. 108: 67-93.

Chauhan, B. y Gupta, R. (2004). Application of statistical experimental design for

optimization of alkaline protease production from Bacillus sp. RGR-14. Proces.

Biochem. 39: 2115-2122.

Chen, H.Z., Xu, J. y Li, Z.H. (2007). Temperature cycling to improve the ethanol production

with solid state simultaneous saccharification and fermentation. Appl. Biochem.

Micro. 43(1): 57-60.

74

Page 89: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Cheong, S.H., Park, J.K. y Chang, H.N. (1993). Ethanol production using membrane-

encapsulated yeast. J. Korean Inst. Chem. Eng. (Hwahan Konghak) 31: 788-796.

Cherubini, F. (2010). The biorefinery concept: using biomass instead of oil for producing

energy and chemicals. Energ. Convers. Manage. 51: 1412-1421.

Dean, B. Dodge, T., Valle, F. y Chotani G. (2005). Development of biorefineries-technical

and economic considerations. En: Biorefineries industrial processes and products, 1 ed.

Kamm, B., Gruber, P. R. y Kamm, M. (eds.), Wiley-VCH, Weinheim, Alemania, p.

441.

Delgenes, J.P., Moletta, R. y Navarro, J.M. (1996). Effects of lignocellulose degradation

products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae,

Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme Microb. Tech.

19:220-225.

Demirbas, A. (2005). Bioethanol from cellulosic materials: a renewable motor fuel from

biomass. Energ. Source. 27:327-337.

Demirbas, A. (2009). Biofuels securing the planet’s future energy needs. Energ. Convers.

Manage. 50: 2239-2249.

Dien, B.S., Jung, H-J.G., Vogel, K.P., Casler, M.D., Lamb, J.F.S., Iten, L., Mitchell, R.B. y

Sarath, G. (2006). Chemical composition and response to dilute-acid pretreatment and

enzymatic saccharification of alfalfa, reed nacarygrass and Swtichgrass. Biomass

Bioenerg. 30:880-891.

Emmel, A., Mathias, A.L., Wypych, F. y Ramos P.L. (2003). Fractionation of Eucalyptus

grandis chips by dilute acid-catalysed steam explosion. Bioresource Technol. 86: 105-

115.

Esteghlalian, A., Hashimoto, A.G., Fenske, J.J. y Penner, M.H. (1997). Modeling and

optimization of the dilute sulfuric-acid pretreatment of corn stover, poplar and

switchgrass. Bioresource Technol. 59:129-136.

Ferraz A., Baeza J., Rodriguez J. y Freer J. (2000). Estimating chemical composition of

biodegraded pine and eucalyptus by DRIFT spectroscopy and multivariate analysis.

Bioresource. Technol. (74): 201-212.

Ferreira, C. y Lucas, C. (2007). Glucose repression over Saccharomyces cerevisiae

glicerol/H+ symporter gene STL1 is overcome by high temperature. Febs. Lett. 581:

1923-1927.

75

Page 90: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Ferrerira, S., Gil, N., Queiroz, J.A., Duarte, A.P. y Domingues, F.C. (2011). An evaluation

of the potential of Acacia dealbata as raw material for bioethanol production.

Bioresource Technol. 102: 4766-4773.

Frederick Jr., W.J., Lien, S.J., Courchene, C.E., DeMartini, N.A., Ragauskas, A.J. y Iisa, K.

(2008). Co-production of ethanol and cellulose fiber from Southern Pine: A technical

and economic assessment. Biomass Bioenerg. 32: 1293-1302.

Frederick Jr., W.J., Lien, S.J., Courchene, C.E., DeMartini, N.A., Ragauskas, A.J. y Iisa, K.

(2008). Production of ethanol from carbohydrates from loblolly pine: A technical and

economic assessment. Bioresource. Technol. 99: 5051-5057.

Gao, D., Uppugundla, N., Chundawat, S., Yu, X., Hermanson, S., Gowda, K., Brumm, P.,

Mead, D., Balan, V. y Dale, E.B. (2011). Hemicellulases and auxiliary enzymes for

improved conversion of lignocellulosic biomass to monosaccharides. Biotechnology

for Biofuels (4:5): 1-11.

Global Renewable Fuels Alliance. Global etanol production to reach 88.7 billion liters in

2011. Consultado en: http://www.globalrfa.org/pr_021111.php.

Gnansounou, E. (2009). En: Handbook of plant-based biofuels. Fuel ethanol current status

and outlook, Pandey, A. ed. Taylor & Francis Group, Boca Raton, Florida, pp. 57-70.

Guo, G., Hsu, D., Chen, W., Chen, H. y Hwang, W. (2009). Characterization of enzymatic

saccharification for acid pretreated lignocellulosic materials with different lignin

composition. Enzyme Microb. Technol. 45: 80-87.

Gupta, R., Khasa, P.Y. y Kuhad, R.C. (2011). Evaluation of pretreatment methods in

improving the enzymatic saccharification of cellulosic materials. Carbohyd. Polym.

84: 1103-1109.

Gupta, R., Sharma, K.K. y Kuhad, R.C. (2009). Separate hydrolysis and fermentation (SHF)

of Prosopis juliflora, a woody substrate, for the production of cellulosic etanol by

Saccharomyces cerevisiae and Pichia stipitis –NCIM 3498. Bioresource Technol. 100:

1214-1220.

Gupta, R.B. y Demirbas, A. (2010). Gasoline, diesel, and ethanol biofuels from grasses and

plants. Cambridge University Press, New York, USA. p. 246.

Hahn-Hägerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I. y Gorwa-Grauslund,

M.F. (2007). Towards industrial pentose-fermenting yeast strains. Appl. Microbiol.

Biotechnol. 74: 937-953.

76

Page 91: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Harris, P. (2005). Plant resources for bio-energy and chemical feedstock uses. En: Plant

resources for food, fuel and conservation, Robert Henry Editor, UK y USA, 2010, p.

201.

Hayes, D. (2009). An examination of biorefining processes, catalysts and challenges. Catal.

Today. 145: 138-151.

Hedjazi, S., Kordaschia,O., Patt, R., Latibari, A.J. y Tschriner, U. (2009). Alkaline sulfite-

anthraquinone (AS/AQ) pulping of wheat straw and totally chlorine free (TFC)

bleaching of pulps. Ind. Crop. Prod. 29: 27-36.

Hendriks, A.T.W.M , y Zeeman G. (2008). Pretreatments to enhance the digestibility of

lignocellulosic biomass. Bioresource Technol. 100:10-18.

Hill, J., Nleson, E., Tilman, D., Polasky, S. y Tiffany, D. (2006). Environmental, economic,

and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS 103 (30):

11206-12210.

Höglund, H. (2009). Mechanical Pulping en: Pulping chemistry and technology Vol. 2,

Monica Ek, Göram Gellerstedt, Gunnar Henriksson editors, Estocolmo Suecia. pp.

484.

Hoyer, K., Gable M. y Zacchi, G. (2009). Production of fuel ethanol from softwood by

simultaneous scarification and fermentation at high dry matter content. J. Chem.

Technol. Biotechnol. 84: 570-577.

Hoyer, K., Galbe, M. y Zacchi, G. (2010). Effects of enzyme feeding strategy on ethanol

yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry

matter. Biotechnology for Biofuels 3:14 doi:10.1186/1754-6834-3-14

Huang, H., Guo, X., Li, D., Liu, M., Wu, J. y Ren, H. (2011). Identification of crucial yeast

inhibitors in bio-ethanol and improvement of fermentation at high pH and high total

solids. Bioresource Technol. 102: 7486-7493.

Huang, L.G, Shi, X.J. y Langrish, A.G.T. (2008). Environmentally friendly bagasse pulping

with NH4OH-KOH-AQ, J. Clean. Prod. 16:1287-1293.

Iamuna, R. y Ramakrohna, S.V. (1992). High concentration ethanol production using

immobilized yeast cells. Biomass Bioenerg. 3: 117-119.

Inal, M. y Yigitoglu, M. (2011). Production of bioethanol by immobilized Saccahormyces

cerevisiae onto modified sodium alginate gel. J. Chem. Technol. Biotechnol. 86: n/a.

doi:10.1002/jctb.2678

77

Page 92: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

International Energy Agency. (2004). Biofuels for transport: an international perspective.

http://www.iea.org/textbase/nppdf/free/2004/biofuels2004.pdf.

Iranmahboob, J., Nadim, F. y Monemi, S. (2002). Optimizing acid-hydrolysis: a critical step

for production of ethanol from mixed Wood chips. Biomass Bioenerg. 22:401-404.

Jamai, L., Sendide, K., Ettayebi, K., Errachidi, F., Hamdouni-Alami, O., Tahri-Jouti, A.,

McDermoth, T. y Ettayebi, M. (2001). Physiological difference during ethanol

fermentation between calcium alginate-inmobilized Candida tropicalis and

Saccahormyces cerevisiae. Fems Microbiol Lett. 204: 375-379.

Jasnick, J. y Whispkey, A. (2002). Trends in new crops and new uses. ASHS Press,

Alexandria, USA. pp. 17-21.

http://www.hort.purdue.edu/newcrop/ncnu02/pdf/default.html#biobased. Consultado:

3-10-07.

Johansson, L., Peng, F. y Simonson, R. (1997). Effects of temperature and sulfonation on

shear deformation of spruce wood. Wood Sci. Technol. 31: 105-117.

Junter, G., Coquet, L., Vilain, S. y Jouenne, T. (2002). Immobilized-cell physiology: current

data and the potentialities of proteomics. Enzyme Microb Tech. 21: 201-212.

Kádar, Zs., Szengyel, Zs. y Réczey, K.(2004). Simultaneous saccharification and

fermentation (SSF) industrial wastes for the production of ethanol. Ind. Crop. Prod. 20:

103-110.

Kamm, B. y Kamm, M. 2004. Principles of biorefineries. Appl. Microbiol. Biotechnol.

64:137-145.

Kamm, B., Kamm, M., Gruber R.P. y Kromus S. (2006). Biorefinery system-an overview En

Biorrefineries-industrial processes and products, status quo and future directions, Vol.

1, p. 441.

Khristova, P., Kordsachia, O., Patt, R. y Dafaalla, S. (2006). Alkaline pulping of some

eucalypts from Sudan. Bioresource. Technol. 97:535-544.

Kierstan, M. y Bucke, C. (1977). The immobilization of microbial cells, subcellular

organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng., 19: 387-397.

Kim, B.S., Yum, M.D. y Park, Ch. S. 2000. Step-change variation of acid concentration in a

percolation reactor for hydrolysis of hardwood hemicelluloses. Bioresource. Technol.

72:289-294.

78

Page 93: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Kim, K.H., Tucker, M. y Nguyen, Q. (2005) Conversion of bark-rich biomass into

fermentable sugar by two-stage dilute acid catalyzed hydrolysis. Bioresource. Technol.

96:1249-1255.

Kim, S. y Dale, B.E. (2004). Global potential bioethanol production from wasted crops and

crop residues. Biom. Bioe. 26:361-375.

Klinke, H.B., Olsson, L., Thomsen, A.B. y Ahring, B.K. (2002). Potential Inhibitors From

Wet Oxidation of Wheat Straw and Their effect on ethanol production of

Saccharomyces cerevisiae: wet oxidation and fermentation by yeast. Biotechnol.

Bioeng. 81(6): 738-747.

Klinke, H.B., Thomsen, A.B. y Ahring, B.K. (2004). Inhibition of ethanol-producing yeast

and bacteria by degradation products produced durgin pre-treatment of biomass. Appl.

Microbiol. Biotechnol. 66: 10-26.

Konn, J., Holbom, B. y Nickull, O. (2002). Chemical reactions in chemimechanical pulping:

material balances of wood components in a CTMP process. J. Pulp Pap. Sci. 28(2):

395-399.

Konn, J., Pranovich, A., Fardim, P. y Holmbon, B. (2007). Characterisation and effects of

new anionic groups formed during chemithermomechanical pulping of spruce. Colloid

Surface A. 296: 1-7.

Kristensen, J.B., Felby, C. y Jorgensen, H. (2009a). Yield-determining factors in high-solids

enzymatic hydrolysis of lignocellulosic. Biotechnology for Biofuels 2(11): 1-10.

Kristensen, J.B., Felby, C. y Jorgensen, H. (2009b). Determining yield in high solids

enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol. 156: 557-562.

Kumar, L., Chandra, R., Chung, P.A. y Saddler, J. (2010). Can the same steam pretreatment

conditions be used for most softwoods to achieve good, enzymatic hydrolysis and

sugar yield?. Bioresource Technol. 101: 7827-7833.

La Grange, D.C., den Haan, R., Van Zyl, W.H. (2010). Engineering cellulolytic ability into

bioprocesing organisms. Appl. Microbiol. Biotechnol. 87: 1195-1208.

Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tenborg, C., Stenberg, K., Zacchi, G. y Olof-

Nilvebrant, N. (1999). The generation of fermentation inhibitors during dilute acid

hydrolysis of softwood. Enzyme Microb. Technol. 24:151-159.

Larsson, S., Quintana-Sáinz, A., Reimann, A., Nilverbrant, N. y Jönsson, L.J. (2000).

Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth

79

Page 94: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

and ethanolic fermentation by Saccharomyces cerevisiae. Appl. Biochem. Biotech. 84-

86: 617-632.

Lau, M.W. y Dale, E.B.(2009). Cellulosic ethanol production from AFEX-treated corn

stover using Saccharomyces cerevisiae 424A(LNH-ST). PNAS 106(5): 1368-1373.

Li, C., Yoshimoto, M., Ogata, H., Tsukuda, N., Fukunaga, K. y Nakao, K. (2005). Effects of

ultrasonic intensity and reactor scale on kinetic of enzymatic saccharification of

various waste paper in continuosly irradiated stirred tanks. Ultrason. Sonochem. 12:

373-384.

Lilienfein, J., Wilcke, W., Thomas, R., Vilela, L. do Carmo, S. y Zech, W. (2001). Effects of

Pinus caribaea forests on the C, N, P y S status of Brazilian savanna Oxisols. Forest.

Ecol. Manage. 147:171-182.

Lin, L., Yan, R., Liu, Y. y Jiang, W. In-depht investigation of enzymatic hydrolysis of

biomass wastes based on three major components: cellulose, hemicelluloses and lignin.

Bioresource Technol. 101: 8217-8223.

Liu, C., Wang, F., Ou-Yang, F. (2009) Ethanol fermentation in a magnetically fluized bed

reactor with immobilized Saccharomyces cerevisiae in magnetic particles. Bioresource

Technol 100:878–882.

Lu, Y., Wang, Y., Xu, G., Chu, J., Zhuang, Y. y Zhang, S. (2010). Influence of high solid

concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover

biomass. Appl. Biochem. Biotechnol. 160: 360-369.

Macario, P.A., Torres, S.A. y Cabrera, E.F. (1998). Estructura y Composición de una

comunidad con Pinus caribaea var. Honduresis (Sénecl.) Barr. Y Golf., en el estado de

Quintana Roo, México.Caribb. J. Sci. 34(1-2):50-57.

Martín, C. y Jönsson, J.L. (2003). Comparison of the resistance of industrial and laboratory

strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived

fermentation inhibitors. Enzyme Microb. Tech. 32: 386-395.

Martínez, J.M., Granado, J.M., Montané, D., Salvadó, J. y Farriol, X. (1995). Fractionation

of residual lignocellulosics by dilute-acid prehydrolysis and alcaline extraction:

application to almond shells. Bioresource. Technol. 52:59-67.

Martinsen, A., Skjak-Break, G. y Smidsrod, O. (1989). Alginate as immobilization material:

I. Correlation between chemical and physical properties of alginate gel beads

Biotechnol. Bioeng., 33: 79-89.

80

Page 95: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Martinsen, A., Storro, I. y Skjak-Break, G. (1992). Alginate as immobilization material: III.

Diffusional properties Biotechnol. Bioeng. 39: 186-194.

McDonald, P.M. y Laacke, R.J.Philip M. Pinus radiata D. Don.

http://www.discoverlife.org/20/q?search=Pinus+radiata.

Milichovsky, M. (1990). A new concept of chemistry refining processes. Tappi J. 73 (10):

221-232.

Monavari, S., Galbe, M. y Zacchi, G. (2009). The influence of solid/liquid separation

techniques on the sugar yield in two steps dilute acid hydrolysis of softwood followed

by enzymatic hydrolysis. Biotechnology for Biofuels 2:6.

http://www.biotechnologyforbiofuels.com/content/2/1/6.

Mosier, N, Wyman, C. Dale, B, Elander, R., Lee, Y.Y., Holtzapple, M. y Ladisch, M.

(2005). Features of promising technologies for pretreatment of lignocellulosic

biomass. Bioresource Technol. 96:673-686.

Muhammad, A. (2002). Central composite designs robust to three missing observations.

Thesis Islamia University, Bahawalpur-Pakistan. pp. 246.

Muñoz, C., Mendonça, R., Baeza, J., Berlin, A. Saddler, J. y Freer, J. (2007). Bioethanol

production from bioorganosolv pulps of Pinus radiata and Acacia dealbata. J. Chem.

Technol. Biotechnol. 82:767–774.

Mussatto, S.I., Dragone, G., Guimaraes, P.M.R, Silva, J.P.A., Carneiro, L.M., Roberto, I.C.,

Vicente, A., Domingues, L. y Teixeira, J.A. (2010). Technological trends, global

market, and challenges of bio-ethanol production. Biotechnol. Adv. 28: 817-830.

Nagashima, M., Azuma, M., Noguchi, S. y Inuzuka, K. (1984). Continous ethanol

fermentation using immobilized yeast cells. Biotechnol. Bioeng. 26: 992-997.

Najafpour, G., Younesi, H. y Ismail, K.S.K. (2004). Ethanol fermentation in an immobilized

cell reactor using Saccharomyces cerevisiae. Bioresource. Technol. 92: 251–260.

NIST/SEMATECHe-Handbook of Statistical Methods.

http://www.itl.nist.gov/div898/handbook/, 24-02-2011.

Ogbonna, J.C., Matsumura, M., Yagamata, T., Sakuma, H. y Kataoka, H. (1989). Production

of micro-gel beads by a rotating disk atomizer. Ferment. Bioeng. 68(1): 40-48.

Öhgren, K., Bura, R., Saddler, J. y Zacchi, G. (2007). Effect of hemicellulose and lignin

removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource

Technol. 98: 2503-2510.

81

Page 96: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Öhgren, K., Vehmaanperä, J., Siika-Aho, M., Galbe, M., Viikari, L. y Zacchi, G. (2007).

High temperature enzymatic prehydrolysis prior to simultaneous saccarification and

fermentation of steam pretreated corn stover for ethanol production. Enzyme Microb.

Tech. 40: 607-613.

Ojeda, K. y Kafarov, V. (2009). Exergy analysis of enzimatic hydrolysis reactors for

transformation of lignocellulosic biomass to bioethanol. Chem. Eng. J. 154: 390-395.

Olofsson, K., Bertilsson, M. y Lidén, G. (2008). A short review on SSF- an interesting

process option for ethanol production of lignocellulosic feedstock’s. Biotechnology for

Biofuels 1: 7 doi:10.1186/1754-6834-1-7

Oluwafemi, O. (2007). Wood properties and selection for rotation length in caribbean pine

(Pinus caribaea Morelet) grown in Afaka, Nigeria. American-Eurasian J. Agric. &

Environ. Sci. 2(4):359-363.

Pan, X., Arato, C., Gilkes, N., Gregg, D., Pye, W.K., Xiao, Z., Zhang, X., Saddler, J. (2005).

Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of

process steams for manufacture of fuel grade ethanol and co-products. Biotechnol.

Bioeng. 90(4): 473-481.

Patt, R., Kockmann, C. y Kordsachia. (2004). Pulping of beech wood using different acid

and alkaline pulping processes-a comparison. Das Papier (2): 41-47.

Patt, R., Kordsachia, O. y Fehr, J. (2006). European hardwoods versus Eucalyptus globulus

as a raw material for pulping. Wood. Sci. Technol. 40:39–48.

Pérez, J.F y Paredes, G. (2003). Estudio de disponibilidad de Pino radiata. 2003-2032.

Instituto de Investigación Forestal de Chile, INFOR.

Petersson, A. y Lidén, G. (2007). Fed-batch cultivation of Saccharaomyces cerevisiae on

lignocellulosic hydrolyzate. Biotechnol. Lett. 29:219-225.

Phillippidis, G.P., Smith, T.K. y Wyman, C.E. (1992). Cellulose for production of fuel

ethanol by the simultaneous saccarification and fermentation process. Biotechnol.

Bioeng. 41: 846-853.

Pimentel, D. (2003). Ethanol fuels: energy balance, economics, and environmental impacts

are negative. Nature Resour. 12:127–134.

Purwadi, R., Brandberg, T. y Taherzadeh, M. (2007). A posible industrial solution to ferment

lignocellulosic hydrolyzate to etanol: continuos cultivation with flocculating yeast. Int.

J. Mol. Sci. 8: 920-932.

82

Page 97: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Qing, Q., Yang, B. y Wyman, C.E. (2010). Xylooligomers are strong inhibitors of cellulose

hydrolysis by enzymes. Bioresource Technol. 101: 9624-9630.

Ramakrishna, S.V. y Prakasham R.S. (1999). Microbial fermentations with immobilized

cells. Current Science 77: 87-100.

Ruggeri, B., Sassi, G., Specchia, V., Bosco, F. y Marzona, M. (1991) Alginate beads coated

with polyacrylamide resin - potential as a biocatalyst. Process Biochem. 21: 331-335.

Sánchez, O.J. y Cardona, C.A. (2008). Trends in biotechnological production of fuel ethanol

from different feedstocks. Bioresource Technol. 99: 5270-5295.

Santiago, A.S. y Neto, P. (2007). Assessment of potential approaches to improve Eucalyptus

globules kraft pulping yield. J. Chem. Technol. Biotechnol. 82:424-430.

Shatalov, A.A. y Pereira, H. (2007). Polysaccharide degradation during ozone-based TCF

bleaching of non-wood organosolv pulping. Carbohyd. Polym. 67:275-281.

Shuai, L., Yang, Q., Zhu, J.Y., Lu, F.C., Weimer, P.J., Ralph, J. y Pan, X.J. (2010).

Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic

ethanol production. Bioresource. Technol.101: 3106-3114.

Silverstein, R.A., Chen, Y., Sharma-Shivappa, R.R., Boyette, M.D. y Osborne, J. (2007). A

comparison of chemical pretreatment methods for improving saccharification of cotton

stalks. Bioresource Technol. 98: 3000-3011.

Siqueira, G., Milagres, A.MF., Carvalho, W., Koch, G. y Ferraz, A. (2011). Topochemical

distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its

correlation with the enzymatic hydrolysis of polysaccharides. Biotechnology for

Biofuel 4;7: 1-9.

Sjöström, E. (1993). Wood chemistry: fundamentals and applications. San Diego: Academic

Press, USA, p. 293.

Skjak-Break, G., Murans, E. y Paoletti, S. (1989). Alginate as immobilization material. II:

Determination of polyphenol contaminants by fluorescence spectroscopy, and

evaluation of methods for their removal. Biotechnol. Bioeng., 33: 90-94.

Sochacki, S.J., Harper,R.J y K.R.J Smettem, K.R.J. (2007). Estimation of woody biomass

production from a short-rotation bio-energy system in semi-arid Australia. Biom. Bioe.

31: 608–616.

Söderström, J., Pilcher, L., Galbe, M. y Zacchi, G. (2003). Two-step steam pretreatment of

softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenerg.

24:475-486.

83

Page 98: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Soetaert, W y Vandamme, E.J. (2009). Biofuels in Perspective. En Biofuels, John Wiley &

Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, Reino Unido. p. 257.

Stenberg, K., Bollók, M., Réczey, K., Galbe, M. y Zacchi, G. (2000). Effect of

substrate and cellulose concentration on simultaneous saccharification and

fermentation of steam-pretreated softwood for ethanol production. Biotechnol. Bioeng.

68: 204-210.

Sun, Y. y Cheng, J. (2002) Hydrolysis of lignocellulosic materials for ethanol production: a

review. Bioresource. Technol. 83:1-11.

Szczodrak, J. y Fiedurek, J. (1996). Technology for conversion of lignocellulosic biomass to

ethanol. Biomass Bioenerg. 10(5/6):367-375.

Tabka, M.G., Herpöel-Gimbert, I., Monod, F., Asther, M. y Sigillot, J.C. (2006). Enzymatic

saccharification of wheat straw for bioethanol production by a combined cellulase

xylanase and feruloyl esterase treatment. Enzyme. Microb. Tech. 39:897–902.

Taherzadeh, M.J. y Karimi, K. (2007). Acid-based hydrolysis processes for ethanol from

lignocellulosic materials: a review. BioResources 2(3):472-499.

Talebnia, F., Niklasson, C. y Taherzadeh, M.J. (2005) Ethanol production from glucose and

dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol. Bioeng. 90:345-

352.

Tappi test methods, Laboratory Beating of Pulp (PFI Mill Method-TAPPI T248). 2000-

2001.

Tenborg, C., Galbe, M. y Zacchi, G. (2001). Reduced inhibition of enzymatic hydrolysis of

steam-pretreated softwood. Enzyme Microb. Technol. 28:835-844.

Tian, S, Zhu, J. y Yang, X. (2011). Evaluation of an adapted inhibitor-tolerant yeast strain

for etanol production from combined hydrolysate of softwood. Appl. Energ. 88: 1792-

1796.

Tian, S., Luo, X.L., Yang, X.S. y Zhu, J.Y. (2010). Robust cellulosic ethanol production

from SPORL-pretreated lodgepole pine using strain Saccharomyces cerevisiae

whithout detoxification. Bioresource Technol. 101: 8678-8685.

Tian, S., Zhou, G., Yan, F., Yu, Y. y Yang, X. (2009). Yeast strains for etanol production

from lignocellulosic hydrolysates during in situ detoxification. Biotechnol Adv. 27:

656-660.

Tolan, J.S. y Finn, R.K. (1987). Fermentation of D-xylose to ethanol by genetically modified

Klebsiella planticola. Appl. Environ. Microb. 53 (9):2039-2044.

84

Page 99: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Van Hoek, P. Aristidou, A., Hann, J.J. y Patist, A. Fermentation goes large-scale.

http://www.aiche.org/uploadedFiles/SBE/DepartmentUploads/FERMEN7E1.pdf.

Consultado: 20-07-08.

Vasconcelos, J.N., Lopes, C.E. y de França, F.P. (2004) Continuos ethanol production using

yeast inmobilized on sugar-cane stalks. Braz. J. Chem. Eng. 21:357-365.

Vena, F.P. Thermomechanical pulping (TMP), chemithermomechanical pulping (CTMP)

and biothermomechanical pulping (BTMP) of bugweed (Solanum mauritianum) and

Pinus paatula. (2005). Thesis of Master of Wood Sciencie, University of Stellenbosch,

South. Consultado en:

Africa.http://scholar.sun.ac.za/bitstream/handle/10019.1/3055/Vena,%20P%20F.pdf?

sequence=1

Vintila, T., Vintila, D., Neo S., Tulcan, C. y Hadaruga, N. (2011). Simultaneous hydrolysis

and fermentation of lignocellulosic versus separated hydrolysis and fermentation for

etanol production. Rom. Biotech. Lett. 16 (1): 106-112.

Wang, Z., Xu, J., Feng, H. y Qi, H. (2011). Fractal kinetic analysis of polymer/nonionic

surfactants to eliminate lignin inhibition in enzymatic saccharification of cellulose.

Bioresource Technol. 102: 2890-2896.

Wen-tao, Q., Wei-ting, Y., Yu-bing, X. y Xiaojun, M. (2005). Optimization of

Saccharomyces cerevisiae culture in alginate-chitosan-alginate microcapsule. Biochem

Eng J. 25: 151-157.

Willaert, R. y Nedovic, V.A. (2006). Primary beer fermentation by immobilized yeast review

on flavor formation and control strategies. J. Chem. Technol. Biotechnol. 81: 1353-1367.

Won-Lee, J. y Jeffries, T.W. (2011). Efficiencies of acid catalysts in the hydrolysis of

lignocellulosic biomass over a range of combined severity factors. Bioresource

Technol. 102: 5884-5890.

Wyman, Ch. E. 199. Biomass ethanol: technical progress, opportunities, and comercial

challenges. Annu. Rev. Energy Environ. 24:189-226.

Xu, C., Qin, Y., Li, Y., Ji, Y., Huang, J., Song, H. y Xu, J. (2010). Factors influencing

cellulosome activity in consolidated bioprocesing of cellulosic etanol. Bioresource.

Technol. 101: 9560-9569.

Xu, C.E. (2003). Chemical treatment in mechanical pulping, part 5: sulfite pretreatment.

Tappi J. 2(8): 13-18.

85

Page 100: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Xu, Q., Singh, A. y Himmel, M. (2009). Perspectives and new directions for the production

of bioethanol using consolidated bioprocessing of lignocelluloses. Curr. Opin. Biotech.

20: 364-371.

Yadav, B.S., Rani, U., Dhamija, S.S., Nigam, P. y Singh, D.J. (1996). Process optimization

for continuous ethanol fermentation by alginate-immobilized cells of saccharomyces-

cerevisiae Hau-1. Basic. Microbiol. 36: 205-210.

Yamagiwa, K., Shimizu, Y., Kozawa, T., Onodera, M. y Ohkawa, A. (1992). Formation of

calcium-alginate gel coating on biocatalyst immobilization carrier J. Chem Eng. Japan,

25: 723–728.

Yamagiwa, K., Shimizu, Y., Kozawa, T., Onodera, M. y Ohkawa, A. (1993). Effect of cell

loading on encapsulation of immobilized yeast by two-step preparation procedure. J.

Chem. Eng. Japan, 26: 449-450.

Yat, Ch. S., Berger, A. y Shonnard, D.R. (2008). Kinetic characterization for dilute sulfuric

acid hydrolysis of timber varieties and switchgrass. Bioresource Technol. 99:3855-

3863.

Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kanero, S. y

Fukuda, K. (2008). Effects of cellulose crystallinity, hemicellulose, and lignin on the

enzymatic hydrolysis of Miscanthus sinensis to monosaccharides. Biosci. Biotechnol.

Biochem. 72(3): 805-810.

Yoshida, T., Oshima, Y. y Matsumura, Y. (2004). Gassification of biomass model

compounds and real biomass in supercritical water. Biomass Bioenerg. 26:71-78.

Yu, Z., Jameel, H., Chang, H. y Park, S. (2011). The effect of delignification of forest

biomass on enzymatic hydrolysis. Bioresource Technol. doi:

10.1016/j.biortech.2011.07.001

Zhang, M., Su, R., Qi, W. y He, Z. (2009). Enhanced enzymatic hydrolysis of lignocellulose

by optimizing enzyme complexes. Appl. Biochem. Biotechnol. 160(5): 1407-1414.

Zhao, J. y Xia, L. (2009). Saccharification and fermentation of alkaline-pretreated corn

stover to ethanol using a recombinant yeast strain. Fuel Proc. Technol. 90(10): 1193-

1197.

Zhu, J.Y. , Pan, X.J., Wang, G.S. y Gleisnet, R. (2009). Sulfite pretreatment (SPORL) for

robust enzymatic saccarification of spruce and red pine. Bioresource. Technol. 100:

2411-2418.

86

Page 101: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Zhu, J.Y. y Pan, X.J. (2010a). Woody biomass pretreatment for cellulosic ethanol

production: technology and energy consumption evaluation. Bioresource. Technol.

101: 4992-5002.

Zhu, J.Y., Wang, G.S., Pan, X.J., Gleisner R. (2008). The status of and key barriers in

lignocellulosic ethanol production: a technological perspective. En: International

conference on biomass energy technologies, Guangzhou, China, December 3–5.

Zhu, J.Y., Zhu, W., OBryan, P., Dien, B.S., Tian, S., Gleisner, R. y Pan, X.J. (2010b).

Ethanol production from SPORL-pretreated lodgepole pine: preliminary evaluation of

mass balance and process energy. Appl. Microbiol. Biotechnol. 86: 1355-1365.

Zhu, L., O´Dwyer, P., Chang, V.C., Granda, C.B. y Holtzaple, M.T. (2008). Structural

features affecting biomass enzymatic digestibility. Bioresource Technol. (99): 3817-

3828.

87

Page 102: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

ANEXO I

Equipo utilizado en el refinamiento de astillas de madera de P. radiata y P. caribaea

pretratadas con ASA.

88

Page 103: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura A.1. Licuadora industrial de 10 L de capacidad utilizada para desfibrar las astillas

de P. radiata pretratadas con ASA y posteriormente refinar en refinador de disco.

Figura A.2. Refinador de disco Bauer MD-3000 (REGMED, Brasil) utilizado en el

refinamiento de astillas de Pinus spp. pretratadas con ASA a consumos de energía de 250,

750 y 1600 Wh.

89

Page 104: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

ANEXO II

Estado físico de las muestras pretratadas con ácido diluido y ASA

90

Page 105: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura A.3. Astillas de P. radita pretratadas con ácido sulfúrico diluido a 170ºC por 30

min y molidas.

Figura A.4. Microscopía electrónica de barrido (SEM) de pulpa ASA de P. radiata (P-4)

refinada en refinador de disco a un consumo de energía de 750 Wh. Fotografía tomada en

equipo INSTRUMENT JSM-6380, magnificación 80X.

91

Page 106: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

ANEXO III

Proceso de hidrólisis enzimática y fermentación

92

Page 107: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura A.5. Fermentación de medio sintético (50 g/L de glucosa) utilizando

levaduras inmovilizadas en membrana de alginato de calcio.

Figura A.6. Hidrólisis enzimática (24 h) de pulpa ASA P-4 refinada a 750 Wh en

reactor de 1 L con carga de Celluclast de 20 FPU/ g de pulpa y 40 UI de β-

glucosidasa.

93

Page 108: Pretratamiento de maderas de Pinus radiata y Pinus caribaea por hidrólisis con ácido diluido y por deslignificación sulfito alcalino/antraquinona para la producción de bioetanol-Tesis

Figura A.7. Procesos de fermentación del hidrolizado obtenido de pulpa ASA (P-4)

de P. radiata en hidrólisis enzimática por 24, 48 y 72 h en reactor de 1.0 L y

proceso SSF de pulpa ASA (P-4). La fermentación se realizó en un baño con agua a

30ºC y sin agitación.

94