Proyecto Presa Derivadora

29
I N D I C E I – INTRODUCCION 1- Introducción 2- Definición de Estructura Hidráulica de Control 3- Teoría de Compuertas 4- Ejercicios del Calculo de Gasto en Compuertas 5- Comparación de Eficiencia entre Compuertas 6- Teoría de Vertedores a) De Pared Delgada b) De Pared Gruesa II- DISEÑO DE LA OBRA DE TOMA 1- Canal de Derivación 2- Galerías y Compuertas Circulares 3- Canal Desarenador 4- Compuerta Vertical Plana de la Obra de Toma 5- Canal Principal Aguas Arriba 6- Canal Principal Aguas Abajo 7- Compuerta Radial III– EMPUJES 1-Empuje en Compuertas a) Empuje Hidrostático b) Empuje Hidrodinámico IV- CONCLUSIONES 1- Croquis de la presa con la solución 2- Imágenes de una obra de hidráulica de control 3- Conclusiones IV- BIBLIOGRAFÍA V- ANEXOS

Transcript of Proyecto Presa Derivadora

I N D I C E I – INTRODUCCION

1- Introducción

2- Definición de Estructura Hidráulica de Control

3- Teoría de Compuertas

4- Ejercicios del Calculo de Gasto en Compuertas

5- Comparación de Eficiencia entre Compuertas

6- Teoría de Vertedores

a) De Pared Delgada

b) De Pared Gruesa

II- DISEÑO DE LA OBRA DE TOMA 1- Canal de Derivación

2- Galerías y Compuertas Circulares

3- Canal Desarenador

4- Compuerta Vertical Plana de la Obra de Toma

5- Canal Principal Aguas Arriba

6- Canal Principal Aguas Abajo

7- Compuerta Radial

III– EMPUJES 1-Empuje en Compuertas

a) Empuje Hidrostático

b) Empuje Hidrodinámico

IV- CONCLUSIONES 1- Croquis de la presa con la solución

2- Imágenes de una obra de hidráulica de control

3- Conclusiones

IV- BIBLIOGRAFÍA V- ANEXOS

I.- INTRODUCCION En la actualidad es importante y necesario generar embalses para

subir el nivel de las aguas, en un canal o río; dicho nos sirve para

abastecer de agua a las ciudades o a la agricultura.

Es por eso que en el siguiente proyecto que veremos a

continuación se trata del diseño de una presa derivadora el cual

viene a englobar todos los conocimientos aprendidos y aplicados

durante el semestre en la materia de Hidráulica I.

Este proyecto abarca el diseño de canales compuertas y calculo

de Empujes Hidrostáticos e Hidrodinámicos.

QUE ES UNA ESTRUCTURA HIDRAULICA DE CONTROL?

Es una obra civil que se hace con el fin de regular los

escurrimientos en una determinado región, y transportarlos a otras

regiones o almacenarnos. Algunos ejemplos de Estructuras

Hidráulicas de Control son canales, embalses, vertedores,

compuertas.

TEORIA DE COMPUERTAS

Una compuerta consiste en una placa móvil, plana o curva, que al

levantarse permite graduar la altura del orificio que se va

descubriendo, a la vez que controlar la descarga producida. El orificio

generalmente se hace entre el piso de una canal y el borde inferior

de la compuerta, por lo que su ancho coincide con el del canal. En

estas condiciones el flujo puede considerarse bidimensional.

El gasto de una compuerta y las características hidráulicas de su

descarga se pueden conocer a partir del estudio de una red de flujo.

En el canto inferior de la compuerta las líneas de corriente tienden a

unirse y es ahí donde la velocidad adquiere su máximo valor. Debido

a la curvatura de las líneas de corriente una gran presión actúa

sobre la linea de intersección del plano de la compuerta, razón por la

cual se tiene una velocidad pequeña.

COMPUERTA VERTICAL CON DESCARGA LIBRE

DATOS: y1 = 2.5 m

a = 0.45 m

b = 0.915 m

Relación: y1/a = 5.56

Según las ayuda: Cd = 0.58

Q = Cd a b √(2 g y1)

Q = (0.58)(0.45)(0.915) √((2)(9.81)(2.5))

Q = 1.67 m3/s

COMPUERTA VERTICAL CON DESCARGA AHOGADA

DATOS: y1 = 2.5 m

a = 0.45 m

b = 0.915 m

y3 = 1.95 m

Relación: y1/a = 5.56

y3/a = 4.33

Según las ayuda: Cd = 0.345

Q = Cd a b √(2 g y1)

Q = (0.345)(0.45)(0.915) √((2)(9.81)(2.5))

Q = .9948 m3/s

COMPUERTA INCLINADA CON DESCARGA LIBRE

DATOS: y1 = 2.5 m

a = 0.45 m

b = 0.915 m

θ = 45º

Relación: y1/a = 5.56

Según las ayuda: Cd = 0.7

Q = Cd a b √(2 g y1)

Q = (0.7)(0.45)(0.915) √((2)(9.81)(2.5))

Q = 2.0186 m3/s

COMPUERTA RADIAL CON DESCARGA LIBRE

DATOS: y1 = 2.5 m

a = 0.45 m

b = 0.915 m

r = 3.6 m

h = 3 m

θ = 45º

Relación: y1/a = 5.56

θº = 45º

Según las ayuda: Cd = 0.69

Q = Cd a b √(2 g y1)

Q = (0.69)(0.45)(0.915) √((2)(9.81)(2.5))

Q = 1.99 m3/s

COMPUERTA RADIAL CON DESCARGA AHOGADA

DATOS: y1 = 2.5 m

y3 = 1.95 m

a = 0.45 m

b = 0.915 m

r = 3.6 m

h = 3 m

θ = 45º

Relación: y1/r = 0.69

y3/r = 0.54

h/r = 0.833

a/r = 0.125

Según las ayuda: Cd = 0.44

Q = Cd a b √(2 g y1)

Q = (0.44)(0.45)(0.915) √((2)(9.81)(2.5))

Q = 1.2688 m3/s

VERTEDORES Cuando la descarga del liquido se efectúa por encima de un muro

o una placa y una superficie libre, la estructura hidráulica en la que

ocurre se llama vertedor, este puede presentar diferentes formas

según las finalidades a que se destine.

Vertedores De Pared Delgada. Son aquellos en que la descarga se efectúa sobre una placa con

perfil de cualquier forma, pero con arista aguda.

Considere un vertedor de pared delgada y sección geométrica,

como se observa en la figura cuya cresta se encuentra a una altura

w, medida desde la plantilla del canal de alimentación. El desnivel

entre la superficie inalterada del agua, antes del vertedor y la cresta,

es h y la velocidad uniforme de llegada del agua es V0, del tal modo

que:

gVhH2

20+=

Si w es muy grande, V0

2/2g es despreciable y H =h.

De acuerdo con la nomenclatura de la figura, el perfil de las

formas usuales de vertedores de pared delgada se puede

representar por la ecuación general:

( )yfx = Que normalmente será conocida.

Vertedores De Pared Gruesa. Son aquellos en los que el contacto entre la pared y la lamina

vertiente es mas bien toda una superficie. Este tipo, es muy usado

como obra de control o de excedencias en una presa y también de

aforo en canales grandes.

En forma semejante a los orificios, si la cresta del vertedor no es

una arista afilada, se presenta un vertedor de pared gruesa que

puede adquirir varias formas. En las figuras se presenta la forma más

sencilla, la cual consiste en aumentar el espesor de la cresta en un

vertedor rectangular sin contracciones laterales.

Cuando e/h < 0.67 el chorro se separa de la cresta y el

funcionamiento es idéntico al vertedor de pared delgada. Por el

contrario cuando esta relación de e/h es mayor que 0.67 el

funcionamiento es diferente, pues la lamina vertiente se adhiere a la

cresta del vertedor.

II.- DISEÑO DE LA OBRA DE TOMA.

DISEÑO DEL CANAL DERIVADOR DE PROYECTO PRESA DERIVADORA

CANAL REVESTIDO (Concreto Reforzado)

A continuación tenemos un diseño de canal derivador en la opción

revestido, los cálculos fueron hechos a través de un programa de

computadora para diseñar canales

Q = 15m3/s

S = 0.0065

n = 0.016

t = 1

Sección Optima d = 1.427 m

b = 1.182 m

A = 3.726 m2

V = 4.024769 m/s

Régimen = Subcritico

# de froude = 1.075445

Por ser la velocidad mayor a la permisible para evitar erosión en

canal revestido de concreto simple Vdiseño ≤ 3 m/s tendrá que ser un

CANAL REVESTIDO DE CONCRETO REFORZADO como ya

mencionamos anteriormente en el título.

DISEÑO DEL CANAL DERIVADOR DE PROYECTO PRESA DERIVADORA

CANAL SIN REVESTIMIENTO (Recto Uniforme y Compactado)

A continuación tenemos un diseño de canal derivador en la opción

sin revestimiento, los cálculos fueron hechos a través de un

programa de computadora para diseñar canales.

Q = 15m3/s

S = 0.0065

n = 0.025

t = 1.5 (arcilla, arenisca)

Sección Optima d = 1.60 m

b = 0.9693 m

A = 5.3955 m2

V = 2.78 m/s

Régimen = Subcritico

# de froude = 0.7015 Vdiseño > Vmax para evitar erosión (Vdis = 2 m/s) por lo tanto queda previamente rechazada esta propuesta.

Correcciones de Diseño para Evitar Erosión

A continuación tenemos una opción de rediseño para evitar

erosión, esto mediante una modificación en la velocidad de diseño.

CANAL REVESTIDO (Concreto Simple)

Q = 15m3/s

S = 0.0065

n = 0.016

t = 1

d = 0.501 m

b = 9.465 m

A = 5 m2

V = 3 m/s

CANAL SIN REVESTIMIENTO (Recto, Uniforme y Compactado)

Q = 15m3/s

S = 0.0065

n = 0.025

t = 1.5 (arcilla, arenisca)

d = 0.5264 m

b = 13.459 m

A = 7.5 m2

V = 2 m/s

DISEÑO DE LA GALERIAS Y COMPUERTAS QUE COMUNICA EL CANAL DESARENADOR

CON EL CANAL DE DERIVACIÓN

En nuestro afán de utilizar el diseño de concreto simple

presentamos esta opción de diseño de galería (tubería) y compuerta

(circular) para este canal, no se presenta el de canal sin

revestimiento, ya que para el diseño que vamos a hacer nos importa

solo el tirante que tenemos en el canal aguas abajo y para los dos

casos es aproximadamente el mismo.

El Canal Revestido d = 0.501 m El Canal No Revestido d = 0.5264 m

h = 0.50 m

∆h = 0.30 m

D = 16” = 0.4064 m

L = 4 m

n = 0.016

S = ∆h/L = 0.075

R = A/P = (πD²/4)/(π/D) = D/4 = 0.1016

V = 1/n(R2/3S1/2) = 3.72 m/s

Q = VA = (3.72)(πd²/4) = 1.18 m³/s

# de compuertas = Q obra de toma / Q = 15/1.18 = 12.71

Demasiado numero de compuertas, el numero máximo de compuertas que queremos para el diseño son cuatro, así que

para esto tenemos que elevar el tirante aguas abajo para tener un

mayor gasto en un menor numero de compuertas, esto será posible

si utilizamos el diseño de sección optima para canal revestido de concreto reforzado.

DISEÑO DE LA GALERIAS Y COMPUERTAS QUE COMUNICA EL CANAL DESARENADOR

CON EL CANAL DE DERIVACIÓN DE SECCION OPTIMA

Como hicimos en el diseño anterior, este también será la sección óptima para canal revestido aunque en este caso si hay una

variación significativa en la sección. Descartamos la sección del

canal sin revestimiento porque la Vdiseño nos genera una plantilla mas

desproporcionada a su tirante que en el caso de canal revestido.

El Canal Revestido d = 1.427 m h = d

∆h = 0.15 m

D = 42” = 1.067 m

L = 4 m

n = 0.016

S = ∆h/L = 0.15/4 = 0.0375

R = A/P = (πD²/4)/(π/D) = D/4 = 1.067/4 = 0.267 V = 1/n(R2/3S1/2) = 5.018 m/s Q = VA = (5.018)(πd²/4) = 4.487 m³/s # de compuertas = Q obra de toma / Q = 15/4.487 = 3.343

# de compuertas circulares = 4

DISEÑO DE LA COMPUERTA RECTANGULAR

ENTRE EL CANAL PRINCIPAL Y EL CANAL DESARENADOR

Para diseñar esta compuerta utilizaremos unas ayudas

preestablecidas que nos ayudaran a calcular el coeficiente de gasto.

DATOS: ∆h = 0.40 m

y3 = 2.077 m

y1 = 2.477 m

b = 1.830

a = 1.00 m

Compuerta Vertical

ancho x alto = 1.830x1.830 metros

RELACIONES: y1/a = 2.477 m

y3/a = 2.077 m

SEGÚN LA AYUDA: 0. Cd = 4

Q = Cd a b √(2g y1)

Q = (0.4)(a)(1.83) √(2(9.81)(2.477))

Q = 5.103 m³/s # de compuertas = Q obra de toma/Q = 15/5.103 = 2.94

# de compuertas verticales planas = 3

DISEÑO DEL CANAL PRINCIPAL Para diseñar este canal tenemos como datos de entrada el tirante Y1 y una pendiente S, esto será suficiente para determinar las demás incógnitas Por medio del programa de computo de diseño de canales podemos variar el gasto hasta encontrar una relación tirante-plantilla en la cual el tirante sea el mismo que el que ya tenemos y así obtener el resto de las variables.

OPCION DE CANAL REVESTIDO DATOS: S = 0.0065

d = 2.477 m

n = 0.016

t = 1.0

RESULTADOS: b = 2.05 m V = 5.807 m/s A = 11.19 m² Q = 65 m³/s Por tener una Vdiseño mayor a la permitida para revestimiento de

concreto simple para evitar erosión (Vdis ≤3 m/s) seria incosteable

tener un canal principal revestido de concreto reforzado, además de

tener una plantilla menor que el tirante, por eso proporcionaremos la

opción de canal sin revestir.

DISEÑO DEL CANAL PRINCIPAL OPCION DE CANAL SIN REVESTIMIENTO

DATOS: S = 0.0065

d = 2.477 m

n = 0.040 (tierra suelta con maleza)

t = 2.0 (tierra suelta)

RESULTADOS: b = 5 m V = 2.68 m/s A = 24.65 m² Q = 66.08 m³/s

Esta parece ser la mejor opción de diseño de canal principal puesto que es más económica que la anterior

DISEÑO DEL CANAL PRINCIPAL AGUAS ABAJO

El procedimiento para el diseño de este canal será el mismo que

para el de aguas arriba, solamente que en este caso le restaremos el

gasto de la obra de toma que son 15 m³/s, y en lugar de tener el

tirante fijo, ahora será la plantilla y lo que variaremos será el tirante

modificando la velocidad de diseño; y la pendiente si es la misma.

OPCION DE CANAL REVESTIDO DATOS: S = 0.0065

b = 2.05 m

n = 0.016

t = 1.0

Q = 50m³/s RESULTADOS: d = 2.175 m V = 5.437 m/s A = 9.196 m²

DISEÑO DEL CANAL PRINCIPAL AGUAS ABAJO

OPCION DE CANAL SIN REVESTIMIENTO

DATOS: S = 0.0065

b = 5 m

n = 0.040 (tierra suelta con maleza)

t = 2.0 (tierra suelta)

Q = 51.8 m³/s

RESULTADOS: d = 2.195 m V = 2.512 m/s A = 20.613 m²

DISEÑO DE COMPUERTA RADIAL EN EL CANAL PRINCIPAL

Para el diseño de esta compuerta tomaremos la opción de canal sin revestimiento ya que la variación que hay en los tirantes aguas abajo es mínima, además que como ya vimos anteriormente la opción de canal revestido es muy incosteable. Los cálculos de diseño los haremos a través de un programa de computo de diseño de compuertas para canales.

OPCION DE CANAL SIN REVESTIMIENTO

DATOS: y1 = 2.477 m

y3 = 2.195 m

r = 3 m

b = 5 m

Q = 51.8 m³/s

a = 1

h = 2.5

RELACIONES: h/r = 0.833

a/r = 0.333

y1/r = 0.826

y3/r = 0.732

RESULTADOS: Cd = 0.28 Q = 9.36 m³/s

III.- EMPUJES

EMPUJES HIDROSTATICOS

Y1 Y2 dy b

Y Wi = γ Y dA

P = dF/dA = Wi/dA = γ Y = p

En todas direcciones según el principio de Pascal.

dA

2211 ; yPyP γγ == dE = p dA = γ dy b dy dE = γ b y dy E = ∫∫∫∫ dE = γγγγ b ∫∫∫∫y dy Y1 E = γ b y2/2 y2 E = γ b [y2²/2 – y1²/2] = γb/2 [y2²– y1²] = γb/2 [y2+ y1][y2– y1] = b[γy2+ γy1)/2][y2– y1]

“El empuje horizontal sobre una superficie vertical sumergida es igual al volumen del prisma de presiones

correspondientes.”

DIAGRAMA DE PRESIONES

COMPUERTA PLANA

Empuje Vertical Total = peso del liquido desalojado

(Principio de Arquímedes)

Ev = γγγγ b a dM = dE * y = γ y dA * y M = ∫dM = E * ỹ ∫γ y dA y = (γy2(y2) * b * ỹ)/2 = γy2

2 * b ỹ ∫ y b dy y = (γ y22 b ỹ)/2 ∫ b γ y2 dy = b γ ∫ y2 dy = b γ y3/3

ỹ = 2/3 * y2

“ La posición del empuje horizontal resultante de las presiones hidrostáticas sobre una superficie vertical sumergida es el centroide del prisma de presiones correspondientes”

EMPUJE DINAMICO SOBRE COMPUERTAS PLANAS

F = ma = m dv/dt = (W/g)(dv/dt) = (γV/g)(dv/dt) = (γ Q dv) / g → ρ Q dv; dv = Vfinal - Vinicial

(γy1²)/2 – Pc – (γy2 ² b)/2 – γ/g Q(V2 –V1) = 0

Pc = [ (γy1 ²)/2 - (γy2 ²)/2] b -n (γQ(V2 – V1))/g

y1 + V1²/2g = y2 + V2²/2g; V2²/2g - V1²/2g = y1² - y2² ;

Q = V1 y1 b = V2 y2 b = V1 y1 = V2 y2; V2 = (V1 y1 )/y2

V2²/2g = (V1y1/y2)² (1/2g); (V1²y1²)/(2g y2²) - V1²/2g = y1 - y2;

(1/2g) [(V1²y1²)/ y2² - V1²] = y1 –y2

V1²/2g (y1²/ y2² - 1) = y1 –y2

V1 =√2g(y1-y2)/ (y1²/ y2² - 1)

CALCULO DE EMPUJES EN COMPUERTAS A continuación tenemos el calculo de los empujes hidrostático y

dinámico los cuales se hicieron con un programa de computo. El

formato de presentación que utilizamos es precisamente el de dicho

programa esto con el fin de que se conocieran algunas de las

ventanas de dicho programa para que se familiarizaran; Con dicho

programa también se pueden diseñar compuertas.

CALCULO DEL EMPUJE HIDROSTATICO De La Compuerta Plana Vertical

CALCULO DEL EMPUJE DINAMICO De La Compuerta Vertical Plana

El calculo de los empujes solo se hizo para la compuerta vertical

plana ya que la radial fue una opción descartada y reemplazada por

un vertedor, es por eso que omitimos su calculo ya que no era

necesario.

Como podemos apreciar, es imposible utilizar una compuerta

radial para este caso, ya que ni abriendola a su máxima capacidad

se puede obtener el gasto deseado, habiendo asi una gran

diferencia entre 51.8 y 9.36 m3/s.

IV.- CONCLUSIONES Croquis de la presa con la solución.

G A S T O S

1- Compuerta Vertical con Descarga Libre. Q = 1.67 m3/s 2- Compuerta Vertical Descarga Ahogada. Q = 0.995 m3/s 3- Compuerta Inclinada con Descarga Libre. Q = 2.019 m3/s 4- Compuerta Radial con Descarga Libre. Q = 1.99 m3/s 5- Compuerta Radial con Descarga Ahogada. Q = 1.269 m3/s

Perfil de la obra de toma.

CONCLUSIONES ENTRE LAS COMPUERTAS

LA VERTICAL CON DESCARGA LIBRE Y LA VERTICAL CON DESCARGA AHOGADA

La que tiene descarga libre tiene mayor gasto ya que no hay ninguna fuerza que impida el flujo, para el caso de la descarga ahogada seria el peso del agua.

LA VERTICAL CON DESCARGA LIBRE Y LA INCLINADA CON DESCARGA LIBRE

Aquí el gasto mayor será para la compuerta inclinada ya que impide menos el flujo debido a su ángulo de inclinación.

LA RADIAL CON DESCARGA LIBRE Y

LA RADIAL CON DESCARGA AHOGADA

Aquí al igual que en las compuertas verticales, la que tiene

descarga libre tiene mayor gasto ya que no hay ninguna fuerza que

impida el flujo, para el caso de la descarga ahogada seria el peso del

agua.

LA INCLINADA CON DESCARGA LIBRE Y LA RADIAL CON DESCARGA LIBRE

Aquí concluimos que el gasto es el mismo ya que el ángulo de inclinación θ es el mismo aunque hay una variación mínima en el gasto de aproximadamente 0.029 m3/s de diferencia que se genera a la hora de utilizar las ayudas.

LA VERTICAL CON DESCARGA LIBRE Y LA RADIAL CON DESCARGA LIBRE

El gasto mayor será para la compuerta radial, ya que al estar

inclinada impide menos el flujo.

LA VERTICAL CON DESCARGA AHOGADA Y LA RADIAL CON DESCARGA AHOGADA

Aun teniendo una fuerza que impide el flujo en los dos casos (en este caso el peso del agua), el gasto mayor será para la compuerta radial, ya que al estar inclinada impide menos el flujo.

CONCLUSIONES

Sabemos que para construir obras hidráulicas como la presa

derivadora se necesitan inversiones económicas fuertes. Es por eso

que es necesario esmerarnos en el estudio y comportamiento de los

fluÍdos esto con el fin de desarrollar avances para que estas

inversiones se reduzcan. Para que esto suceda primero tenemos que

conocer lo más básico, que es precisamente lo que vimos en este

documento.