SISTEMAS MECANICOS

13

Transcript of SISTEMAS MECANICOS

Page 1: SISTEMAS MECANICOS
Page 2: SISTEMAS MECANICOS
Page 3: SISTEMAS MECANICOS

• Los sistemas mecánicos son aquellos sistemas constituidos fundamentalmente por componentes, dispositivos o elementos que tienen como función especifica transformar o transmitir el movimiento desde las fuentes que lo generan, al transformar distintos tipos de energía.

Page 4: SISTEMAS MECANICOS

• Las primeras ideas claras sobre el universo mecánico en que vivimos fueron dadas por los filósofos griegos. Uno de los más brillantes fue Pitágoras de Samos, quien vivió en Crotona en el sur de Italia y fundó la Escuela Pitagórica. El más brillante representante de esta escuela fue Filolao de Crotona quien nació en 480 a.C. un siglo después de su maestro.

• Para Filolao y Pitágoras la Tierra era esférica, no constituía el centro del Universo, y observaron que el Sol, la Luna y los planetas no comparten el movimiento uniforme de las estrellas, sino que cada uno tenía su camino propio.

• Otro gran filósofo fue Demócrito, nacido en 470 a.C., que desarrolló la teoría atómica de la materia. Para él toda la materia consistía de pequeñas partículas a las que llamó "átomos" que quiere decir "indivisible". Los átomos eran eternos e indestructibles y existían diversos tipos de átomos que explicaban las diferencias existentes entre diversas sustancias. Además de los átomos sólo existía el vacío.

Page 5: SISTEMAS MECANICOS

• Una máquina es un conjunto de elementos móviles y fijos cuyo funcionamiento posibilita aprovechar, dirigir, regular o transformar energía o realizar un trabajo con un fin determinado. Se denomina maquinaria al conjunto de máquinas que se aplican para un mismo fin y al mecanismo que da movimiento a un dispositivo.

Máquinas manuales o de sangre.

• Máquinas eléctricas. – Maquinas rotativas

• Máquinas hidráulicas.- Maquinas alternativas

• Máquinas térmicas. – Maquinas de reaccion

• Bastidor fijo. – Bastidor movil

Page 6: SISTEMAS MECANICOS

• La palanca es una maquina simple que tiene como función transmitir una Fuerza y un desplazamiento.

• Esta compuesta por una barra rígida que puede girar libremente alrededor de un punto de apoyo llamado fulcro. Tipos de palanca :

• PALANCA DE PRIMER GRADO

• PALANCA DE SEGUNDO GRADO

• PALANCAS MÚLTIPLES

Page 7: SISTEMAS MECANICOS

• Una polea, es una máquina simple que sirve para transmitir una fuerza. Se trata de una rueda, generalmente maciza y acanalada en su borde, que, con el curso de una cuerda o cable que se hace pasar por el canal ("garganta"), se usa como elemento de transmisión para cambiar la dirección del movimiento en máquinas y mecanismos. Además, formando conjuntos —aparejos o polipastos— sirve para reducir la magnitud de la fuerza necesaria para mover un peso.

• POLEAS SIMPLE• POLEAS FIJAS• POLEAS MÓVILES• POLEAS COMPUESTAS• POLIPASTO O APAREJO

Page 8: SISTEMAS MECANICOS

• Se denomina tornillo a un elemento u operador mecánico cilíndrico con una cabeza, generalmente metálico, aunque pueden ser de madera o plástico, utilizado en la fijación temporal de unas piezas con otras, que está dotado de una caña roscada con rosca triangular, que mediante una fuerza de torsión ejercida en su cabeza con una llave adecuada o con un destornillador, se puede introducir en un agujero roscado a su medida o atravesar las piezas y acoplarse a una tuerca.

• TORNILLOS HEXAGONALES- TORNILLOS ALLEN

• TORNILLOS PARA PERNOS-TORNILLOS ESPECIALES

Page 9: SISTEMAS MECANICOS

• Los mecanismos de transmisión se encargan de transmitir movimientos de giro entre ejes alejados. Están formados por un árbol motor (conductor), un árbol resistente (conducido) y otros elementos intermedios, que dependen del mecanismo particular. Una manivela o un motor realizan el movimiento necesario para provocar la rotación del mecanismo. Las diferentes piezas del mecanismo transmiten este movimiento al árbol resistente, solidario a los elementos que realizan el trabajo útil.

Page 10: SISTEMAS MECANICOS

• En este mecanismo, el movimiento de rotación de una manivela o cigüeñal provoca el movimiento rectilíneo, alternativo, de un pistón o émbolo. Una biela sirve para unir las dos piezas. Con la ayuda de un empujón inicial o un volante de inercia, el movimiento alternativo del pistón se convierte en movimiento circular de la manivela. El movimiento rectilíneo es posible gracias a una guía o un cilindro, en el cual se mueve. Este mecanismo se usa en los motores de muchos vehículos. El recorrido máximo que efectúa el pistón se llama carrera del pistón. Los puntos extremos del recorrido corresponden a dos posiciones diametralmente opuestas de la manivela.

Page 11: SISTEMAS MECANICOS

• El giro de un tornillo alrededor de su eje produce un movimiento rectilíneo de avance, que lo acerca o lo separa de la tuerca, fija. Alternativamente, una tuerca móvil puede desplazarse de la misma manera a lo largo de un tornillo o husillo. El mecanismo es capaz de ejercer grandes presiones en el sentido de avance del tornillo. Hay diferentes tipos de tornillos y tuercas. Un parámetro característico es el número de entradas o surcos (hélices independientes) del tornillo

Page 12: SISTEMAS MECANICOS

• El giro de un tornillo alrededor de su eje produce un movimiento rectilíneo de avance, que lo acerca o lo separa de la tuerca, fija. Alternativamente, una tuerca móvil puede desplazarse de la misma manera a lo largo de un tornillo o husillo. El mecanismo es capaz de ejercer grandes presiones en el sentido de avance del tornillo. Hay diferentes tipos de tornillos y tuercas. Un parámetro característico es el número de entradas o surcos (hélices independientes) del tornillo.

Page 13: SISTEMAS MECANICOS

• Este mecanismo transforma el movimiento de giro de una pequeña rueda dentada (piñón) en el avance rectilíneo y limitado de una tira dentada o una cremallera. La operación inversa es también posible. El paso del piñón y el paso de la cremallera (distancia entre dos dientes consecutivos, considerando la separación) debe coincidir para que el mecanismo engrane correctamente.