Teor

2
El efecto fotoeléctrico consiste en la emisión de electrones por un material cuando se hace incidir sobre él una radiación electromagnética (luz visible o ultravioleta, en general). 1 A veces se incluyen en el término otros tipos de interacción entre la luz y la materia: Fotoconductividad: es el aumento de la conductividad eléctrica de la materia o en diodos provocada por la luz Efecto fotovoltaico: transformación parcial de la energía lumínica en energía eléctrica. La primera célula solar estaba formada por selenio recubierto de una fina capa de oro. El efecto fotoeléctrico fue descubierto y descrito por Heinrich Hertz en 1887, al observar que el arco que salta entre dos electrodos conectados a alta tensión alcanza distancias mayores cuando se ilumina con luz ultravioleta que cuando se deja en la oscuridad. La explicación teórica fue hecha por Albert Einstein Se podría decir que el efecto fotoeléctrico es lo opuesto a los rayos X, ya que el efecto fotoeléctrico indica que los fotones pueden transferir energía a los electrones. Los rayos X (no se sabía la naturaleza de su radiación, de ahí la incógnita "X") son la transformación en un fotón de toda o parte de la energía cinética de un electrón en movimiento Los fotones del rayo de luz tienen una energía característica determinada por la frecuencia de la luz. En el proceso de fotoemisión, si un electrón absorbe la energía de un fotón y éste último tiene más energía que la función de trabajo, el electrón es arrancado del material. Si la energía del fotón es demasiado baja, el electrón no puede escapar de la superficie del material. Aumentar la intensidad del haz no cambia la energía de los fotones constituyentes, solo cambia el número de fotones. En consecuencia, la energía de los electrones emitidos no depende de la intensidad de la luz, sino de la energía de los fotones. Los electrones pueden absorber energía de los fotones cuando son irradiados, pero siguiendo un principio de "todo o nada". Toda la energía de un fotón debe ser absorbida y utilizada para liberar un electrón de un enlace atómico , o si no la energía es re- emitida. Si la energía del fotón es absorbida, una parte libera al electrón del átomo y el resto contribuye a la energía cinética del electrón como una partícula libre. Leyes de la emisión fotoeléctrica[ 1. Para un metal y una frecuencia de radiación incidente dados, la cantidad de fotoelectrones emitidos es directamente proporcional a la intensidad de luz incidente .

description

teor

Transcript of Teor

Elefecto fotoelctricoconsiste en la emisin de electrones por un material cuando se hace incidir sobre l unaradiacin electromagntica(luz visible o ultravioleta, en general).1A veces se incluyen en el trmino otros tipos de interaccin entre la luz y la materia: Fotoconductividad: es el aumento de la conductividad elctrica de la materia o en diodos provocada por la luz Efecto fotovoltaico: transformacin parcial de la energa lumnica en energa elctrica. La primera clula solar estaba formada por selenio recubierto de una fina capa de oro.El efecto fotoelctrico fue descubierto y descrito porHeinrich Hertzen 1887, al observar que el arco que salta entre dos electrodos conectados a alta tensin alcanza distancias mayores cuando se ilumina con luz ultravioleta que cuando se deja en la oscuridad. La explicacin terica fue hecha porAlbert EinsteinSe podra decir que el efecto fotoelctrico es lo opuesto a los rayos X, ya que el efecto fotoelctrico indica que los fotones pueden transferir energa a los electrones. Los rayos X (no se saba la naturaleza de su radiacin, de ah la incgnita "X") son la transformacin en un fotn de toda o parte de la energa cintica de un electrn en movimiento Los fotones del rayo deluztienen unaenergacaracterstica determinada por lafrecuenciade la luz. En el proceso de fotoemisin, si unelectrnabsorbe la energa de un fotn y ste ltimo tiene ms energa que la funcin de trabajo, el electrn es arrancado del material. Si la energa del fotn es demasiado baja, el electrn no puede escapar de la superficie del material.Aumentar la intensidad del haz no cambia la energa de los fotones constituyentes, solo cambia el nmero de fotones. En consecuencia, la energa de los electrones emitidos no depende de la intensidad de la luz, sino de la energa de los fotones.Los electrones pueden absorber energa de los fotones cuando son irradiados, pero siguiendo un principio de "todo o nada". Toda la energa de un fotn debe ser absorbida y utilizada para liberar un electrn de unenlace atmico, o si no la energa es re-emitida. Si la energa del fotn es absorbida, una parte libera al electrn deltomoy el resto contribuye a laenerga cinticadel electrn como una partcula libre.

Leyes de la emisin fotoelctrica[1. Para unmetaly una frecuencia de radiacin incidente dados, la cantidad de fotoelectrones emitidos esdirectamente proporcionala la intensidad de luz incidente.2. Para cada metal dado, existe una cierta frecuencia mnima de radiacin incidente debajo de la cual ningn fotoelectrn puede ser emitido. Esta frecuencia se llama frecuencia de corte, tambin conocida como "Frecuencia Umbral".3. Por encima de la frecuencia de corte, la energa cintica mxima del fotoelectrn emitido es independiente de la intensidad de la luz incidente, pero depende de la frecuencia de la luz incidente.4. La emisin del fotoelectrn se realiza instantneamente, independientemente de la intensidad de la luz incidente. Este hecho se contrapone a la teora Clsica:la Fsica Clsica esperara que existiese un cierto retraso entre la absorcin de energa y la emisin del electrn, inferior a unnanosegundo.