Download - Aula 2-1 -Eletroeletro1-0219/lib/exe/fetch.php?...1 𝜃 𝜕 𝜃 𝜑 𝜕𝜃 − 𝜕 𝜃 𝜕𝜑 + 1 1 𝜃 𝜕 𝜕𝜑 − 𝜕 𝜑 𝜃+ 1 𝜕 𝜃 𝜕𝜃 𝜑 𝜇0

Transcript
  • EletromagnetismoNewton Mansur

  • Cargas em movimento

  • 𝐶𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑖 =Δ𝑞

    Δ𝑡

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑐𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑗 =𝑖

    𝑆

    𝑅𝑒𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎 𝑜ℎ𝑚𝑖𝑐𝑎 𝑅 =Δ𝑉

    𝑖

    Δ𝑙

    𝑆

    𝑣𝑜𝑙 = 𝑆Δ𝑙

    Δ𝑞 = 𝜌𝑣𝑆Δ𝑙

    Δ𝑙

    𝑢

    𝑢 =Δ𝑙

    Δ𝑡

    𝑖 =Δ𝑞

    Δ𝑡=𝜌𝑣𝑆Δ𝑙

    Δ𝑡= 𝜌𝑣𝑆u = jS

    𝑗 = 𝜌𝑣u

    𝜌𝑣 = 𝑛𝑒

    𝑗 = 𝑛𝑒u

    𝐞𝑓𝑒𝑖𝑡𝑜 𝐜𝑜𝑢𝑙𝑒 𝑃 = 𝑉𝑖

    𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑎𝑟𝑟𝑎𝑠𝑡𝑜 𝑑𝑒𝑟𝑖𝑣𝑎 𝑢

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐶𝑎𝑟𝑔𝑎 𝜌𝑣

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 Á𝑡𝑜𝑚𝑜𝑠 𝑒𝑙é𝑡𝑟𝑜𝑛𝑠 𝑛

  • 𝐶𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑖 =Δ𝑞

    Δ𝑡

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑐𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑗 =𝑖

    𝑆

    𝑅𝑒𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎 Îℎ𝑚𝑖𝑐𝑎 𝑅 =Δ𝑉

    𝑖

    𝐞𝑓𝑒𝑖𝑡𝑜 𝐜𝑜𝑢𝑙𝑒 𝑃 = 𝑉𝑖

    𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑎𝑟𝑟𝑎𝑠𝑡𝑜 𝑑𝑒𝑟𝑖𝑣𝑎 𝑢

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐶𝑎𝑟𝑔𝑎 𝜌𝑣

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 Á𝑡𝑜𝑚𝑜𝑠 𝑒𝑙é𝑡𝑟𝑜𝑛𝑠 𝑛

    𝑗 = 𝑛𝑒u

    𝑚𝑢

    τ= 𝐹 = 𝑒𝐞

    𝑢 =𝑒τ

    𝑚𝐞 =

    𝑗

    𝑛𝑒

    𝑗 =𝑛𝑒2τ

    𝑚𝐞

    𝑗 = 𝜎𝐞

    𝜎 =𝑛𝑒2τ

    𝑚

    𝐶𝑜𝑛𝑑𝑢𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎 𝜎

    𝑖 =Δ𝑉

    𝑅

    𝑖

    𝑆= 𝑗 =

    Δ𝑉

    𝑆𝑅

    𝑖

    𝑆= 𝑗 =

    𝑙

    𝑆𝑅

    Δ𝑉

    𝑙=

    𝑙

    𝑆𝑅𝐞

    𝑗 =𝑙

    𝑆𝑅𝐞 = 𝜎𝐞

    𝜌 =𝑆𝑅

    𝑙

    𝜌 =1

    𝜎

    𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎 𝜌

  • 𝐶𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑖 =Δ𝑞

    Δ𝑡

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑐𝑜𝑟𝑟𝑒𝑛𝑡𝑒 𝑗 =𝑖

    𝑆

    𝑅𝑒𝑠𝑖𝑠𝑡ê𝑛𝑐𝑖𝑎 Îℎ𝑚𝑖𝑐𝑎 𝑅 =Δ𝑉

    𝑖

    𝐞𝑓𝑒𝑖𝑡𝑜 𝐜𝑜𝑢𝑙𝑒 𝑃 = 𝑉𝑖

    𝑉𝑒𝑙𝑜𝑐𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑎𝑟𝑟𝑎𝑠𝑡𝑜 𝑑𝑒𝑟𝑖𝑣𝑎 𝑢

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐶𝑎𝑟𝑔𝑎 𝜌𝑣

    𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 Á𝑡𝑜𝑚𝑜𝑠 𝑒𝑙é𝑡𝑟𝑜𝑛𝑠 𝑛

    𝑗 = 𝑛𝑒u

    𝑗 = 𝜎𝐞

    𝐶𝑜𝑛𝑑𝑢𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎 𝜎

    𝜌 =1

    𝜎

    𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑣𝑖𝑑𝑎𝑑𝑒 𝑒𝑙é𝑡𝑟𝑖𝑐𝑎 𝜌

    𝐶𝑜𝑏𝑟𝑒

    𝑑𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑚𝑎𝑠𝑠𝑎 8920 𝑘𝑔/𝑚3

    𝑀𝑎𝑠𝑠𝑎 𝑎𝑡Î𝑚𝑖𝑐𝑎 64

    𝑁ú𝑚𝑒𝑟𝑜 𝑑𝑒 𝐎𝑣𝑜𝑔𝑎𝑑𝑟𝑜 6,022𝑥1023

    64 𝑘𝑔 𝑑𝑒 𝑐𝑜𝑏𝑟𝑒 − 6,022𝑥1026 á𝑡𝑜𝑚𝑜𝑠

    𝑑𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝑚𝑜𝑙𝑒𝑠 =8920

    64= 139 𝑚𝑜𝑙𝑒𝑠/

    𝑑𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 á𝑡𝑜𝑚𝑜𝑠 = 139𝑥6,022𝑥1026

    𝑛 = 8,37𝑥1029 á𝑡𝑜𝑚𝑜𝑠/𝑚3

    𝑢 =𝑗

    𝑛𝑒

    𝑖 = 1𝐎 𝑆 = 1𝑚𝑚2 𝑗 = 1𝑥106𝐎/𝑚2

    =1𝑥106

    8,37𝑥1029𝑥1,602𝑥10−19= 7,5𝑥10−6𝑚/𝑠

    𝑢 = 2,7𝑐𝑚/ℎ

  • Ԋ𝑣𝐵

    Ԋ𝐹

    Ԋ𝐹 ∝ 𝑞 Ԋ𝑣 𝐵

    Ԋ𝐹 ⊥ 𝐵

    Ԋ𝐹 ⊥ Ԋ𝑣

    Ԋ𝐹 = 𝑚 Ԋ𝑔

    Ԋ𝐹 = 𝑞𝐞

    Ԋ𝐹 = 𝑞 Ԋ𝑣 × 𝐵

  • Ԋ𝑣𝐵

    Ԋ𝑣 × 𝐵

    Ԋ𝑣

    Ԋ𝐹

    Ԋ𝐹+ Ԋ𝐹−

    Ԋ𝐹 = 𝑞 Ԋ𝑣 × 𝐵

    𝐹𝑀 = 𝑞𝑣𝐵 = 𝑚𝑣2

    𝑅

    𝑅 =𝑚𝑣

    𝑞𝐵𝑅

  • 𝐵

    𝐌

    𝒅𝒒

    𝒗

    𝑑 Ԋ𝐹 = 𝑑𝑞 Ԋ𝑣 × 𝐵

    𝑑 Ԋ𝐹

    𝒅Ԋ𝒍

    Ԋ𝑣 =𝑑Ԋ𝑙

    𝑑𝑡𝑑 Ԋ𝐹 = 𝑑𝑞

    𝑑Ԋ𝑙

    𝑑𝑡× 𝐵 𝑑 Ԋ𝐹 =

    𝑑𝑞

    𝑑𝑡𝑑Ԋ𝑙 × 𝐵

    𝑑 Ԋ𝐹 = 𝐌𝑑Ԋ𝑙 × 𝐵 𝑑𝑞 Ԋ𝑣 ≡ 𝐌𝑑Ԋ𝑙

  • 𝐵𝐌

    𝑑 Ԋ𝐹

    𝒅Ԋ𝒍

    𝑑 Ԋ𝐹 = 𝐌𝑑Ԋ𝑙 × 𝐵

    𝑑 Ԋ𝐹

    𝒅Ԋ𝒍𝑑 Ԋ𝐹

    𝒅Ԋ𝒍𝑑 Ԋ𝐹

    𝒅Ԋ𝒍𝐿

    Ԋ𝐹 = 𝐌𝐿 × 𝐵

  • 𝐵

    𝐌

    𝑑 Ԋ𝐹

    𝒅Ԋ𝒍

    𝑑 Ԋ𝐹 = 𝐌𝑑Ԋ𝑙 × 𝐵

    𝑑 Ԋ𝐹𝐻

    𝑑 Ԋ𝐹𝑉 𝑑Ԋ𝐹

    𝒅Ԋ𝒍𝑑 Ԋ𝐹𝐻

    𝑑 Ԋ𝐹𝑉

    𝑑𝐹 = 𝐌𝑑𝑙𝐵 𝑑𝐹𝐻 = 𝐌𝑑𝑙𝐵𝑐𝑜𝑠𝜃

    𝜃

    𝜃

    𝑑𝐹𝑉 = 𝐌𝑑𝑙𝐵𝑠𝑒𝑛𝜃

    𝑑𝜃

    𝑑𝑙 = 𝑅𝑑𝜃

    𝑑𝐹𝑉 = 𝐌𝑅𝐵𝑠𝑒𝑛𝜃𝑑𝜃

    𝐹𝑉 = 𝐌𝑅𝐵න0

    𝜋

    𝑠𝑒𝑛𝜃𝑑𝜃 𝐹𝑉 = 2𝐌𝑅𝐵

    𝑅

  • 𝐵

    𝐌

    𝑑 Ԋ𝐹

    𝒅Ԋ𝒍

    𝑑 Ԋ𝐹 = 𝐌𝑑Ԋ𝑙 × 𝐵

    𝑑 Ԋ𝐹𝐻

    𝑑 Ԋ𝐹𝑉

    𝑑𝐹 = 𝐌𝑑𝑙𝐵 𝑑𝐹𝐻 = 𝐌𝑑𝑙𝐵𝑐𝑜𝑠𝜃

    𝜃

    𝜃

    𝑑𝐹𝑉 = 𝐌𝑑𝑙𝐵𝑠𝑒𝑛𝜃

    𝑑𝜃

    𝑑𝑙 = 𝑅𝑑𝜃

    𝑑𝐹𝑉 = 𝐌𝑅𝐵𝑠𝑒𝑛𝜃𝑑𝜃

    𝐹𝑉 = 𝐌𝑅𝐵න0

    𝛌

    𝑠𝑒𝑛𝜃𝑑𝜃 𝐹𝑉 = 𝐌𝑅𝐵(1 − 𝑐𝑜𝑠𝛌)

    𝛌

    𝐹𝐻 = 𝐌𝑅𝐵𝑠𝑒𝑛𝛌

  • 𝐌

    𝐌

    𝐌

    𝐌

    𝐵

    Ԋ𝐹1

    − Ԋ𝐹1

    Ԋ𝐹2− Ԋ𝐹2

    𝑎

    𝑏

    Ԋ𝐹 = 𝐌𝐿 × 𝐵 𝐹1 = 𝐌𝑎𝐵

    𝐹2 = 𝐌𝑏𝐵

    𝐹𝑇 = 0

  • 𝐌

    𝐌𝐵

    Ԋ𝐹1

    − Ԋ𝐹1

    Ԋ𝐹2

    Ԋ𝐹 = 𝐌𝐿 × 𝐵 𝐹1 = 𝐌𝑎𝐵

    𝐹2 = 𝐌𝑏𝐵𝑠𝑒𝑛𝜃

    𝐹𝑇 = 0

    𝜃

    Ԋ𝑟

    Ԋ𝜏 = Ԋ𝑟 × Ԋ𝐹

    𝛌

    𝜏 = 𝑟𝐹𝑠𝑒𝑛𝛌 =𝑏

    2𝐹1𝑠𝑒𝑛𝛌 =

    1

    2𝐌𝑎𝑏𝐵𝑠𝑒𝑛𝛌

    𝜏𝑇 = 𝐌𝑎𝑏𝐵𝑠𝑒𝑛𝛌 = 𝐌𝑆𝐵𝑠𝑒𝑛𝛌

    Ԋ𝑆

    𝛌

    Ԋ𝜏𝑇 = 𝐌 Ԋ𝑆 × 𝐵 Ԋ𝜇 = 𝐌 Ԋ𝑆 Ԋ𝜏𝑇 = Ԋ𝜇 × 𝐵

    Ԋ𝜇 − 𝑀𝑜𝑚𝑒𝑛𝑡𝑜 𝑑𝑒 𝑑𝑖𝑝𝑜𝑙𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    Ԋ𝜇

    𝑃𝑎𝑟𝑎 𝑜 𝑑𝑖𝑝𝑜𝑙𝑜 𝑒𝑙é𝑡𝑟𝑖𝑐𝑜 ර𝐞𝑑 Ԋ𝑆 = 0 𝛻. 𝐞 = 0

    𝑃𝑎𝑟𝑎 𝑜 𝑑𝑖𝑝𝑜𝑙𝑜 𝑚𝑎𝑔𝑛é𝑡𝑖𝑐𝑜 ර𝐵𝑑 Ԋ𝑆 = 0 𝛻. 𝐵 = 0

  • 𝐌

    𝐌

    𝐌

    𝐌

    𝐵

  • 𝐌

    𝐌𝐵

    Ԋ𝐹1

    − Ԋ𝐹1

    Ԋ𝐹2

    𝜃

    Ԋ𝑟

    𝛌

    𝐵

    𝛌

    Ԋ𝜏𝑇 = Ԋ𝜇 × 𝐵

  • 𝐵

  • 𝐵

    𝐵

  • 𝑵

    𝑺

    𝑵

    𝑺

    𝑵

    𝑺

    𝑺

    𝑵

    𝑵

    𝑺

    𝑵

    𝑺

    𝑭

    𝑭

  • 𝐌

    𝑰

    𝐌

    𝑵

    𝑺

    𝑵

    𝑵

    𝑵

    𝑺

    𝑺

    𝑺

  • 𝐵

    𝐌

    𝐵

    𝐵

    𝐵

    𝐵

    𝐵

    𝑰

  • 𝑑𝐵𝐌

    𝒅𝒒

    𝒗

    𝑑𝐵𝛌 𝑑𝑞 Ԋ𝑣 × Ԋ𝑟

    𝒅Ԋ𝒍

    Ԋ𝑟

    𝑰

    X

    𝐵 ⊥ Ԋ𝑣

    𝐵 ⊥ Ԋ𝑟

    ƞ𝑟

    𝑑𝐵𝛌 𝑑𝑞 Ԋ𝑣 × ƞ𝑟

    𝑑𝐵𝛌𝑑𝑞 Ԋ𝑣 × ƞ𝑟

    𝑟2

    𝑑𝐵 =𝜇04𝜋

    𝑑𝑞 Ԋ𝑣 × ƞ𝑟

    𝑟2

    𝑑𝑞 Ԋ𝑣 ≡ 𝐌𝑑Ԋ𝑙

    𝑑𝐵 =𝜇0𝐌

    4𝜋

    𝑑Ԋ𝑙 × ƞ𝑟

    𝑟2𝑑𝐵 =

    𝜇0𝐌

    4𝜋

    𝑑Ԋ𝑙 × Ԋ𝑟

    𝑟3

    𝐿𝑒𝑖 𝑑𝑒 𝐵𝑖𝑜𝑡 − 𝑆𝑎𝑣𝑎𝑟𝑡

  • 𝐵

    𝐌𝒅Ԋ𝒍

    𝛌

    𝑑𝐵 =𝜇0𝐌

    4𝜋

    𝑑Ԋ𝑙 × ƞ𝑟

    𝑟2𝑑Ԋ𝑙 ⊥ Ԋ𝑟

    Ԋ𝑟𝑅

    𝑑𝐵 =𝜇0𝐌

    4𝜋

    𝑑𝑙

    𝑅2𝐵 =

    𝜇0𝐌

    4𝜋

    1

    𝑅2න𝑑𝑙

    𝐵 =𝜇0𝐌

    4𝜋

    𝑅𝛌

    𝑅2𝐵 =

    𝜇0𝐌

    4𝜋𝑅𝛌

  • 𝐌𝒅𝒙

    Ԋ𝑟

    𝑑𝐵 =𝜇0𝐌

    4𝜋

    𝑑 Ԋ𝑥 × ƞ𝑟

    𝑟2

    𝒚

    𝒙𝑥

    𝑊

    𝑑𝐵

    𝜃

    𝑑𝐵 =𝜇0𝐌

    4𝜋

    𝑑𝑥 ƞ𝑟 𝑠𝑒𝑛𝜃

    𝑟2𝑑𝐵 =

    𝜇0𝐌

    4𝜋

    𝑑𝑥

    𝑟2𝑊

    𝑟𝑑𝐵 =

    𝜇0𝐌𝑊

    4𝜋

    𝑑𝑥

    𝑥2 + 𝑊2 ൗ32

    𝐵 =𝜇0𝐌𝑊

    4𝜋න−𝑎

    𝑏 𝑑𝑥

    𝑥2 + 𝑊2 ൗ32

    0

    𝑎 𝑏

    𝐵 =𝜇0𝐌

    2𝜋𝑊

    𝐵 =𝜇0𝐌𝑊

    4𝜋

    𝑥

    𝑊2 𝑥2 + 𝑊2𝑏−𝑎

    𝑃𝑎𝑟𝑎 𝑜 𝑓𝑖𝑜 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑜𝑎 → ∞

    𝑏 → ∞

  • 𝐌

    𝑟

    𝐵

    𝐵 =𝜇0𝐌

    2𝜋𝑟

    𝐌

    𝑟

    𝐵

    𝐵 =𝜇0𝐌

    2𝜋𝑟𝐵2𝜋𝑟 = 𝜇0𝐌

  • 𝐌

    𝐵1 𝐵2𝜋𝑟 = 𝜇0𝐌

    𝑠1

    𝑠2𝐵2

    𝐵1𝑠1 = 𝐵2𝑠2 =𝜇0𝐌

    𝑁

    𝐵1𝑠1 + 𝐵2𝑠2 +⋯+ 𝐵𝑁𝑠𝑁 = 𝜇0𝐌

    𝑑 Ԋ𝑠

    න𝑠1

    𝐵. 𝑑Ԋ𝑠 + න𝑠2

    𝐵. 𝑑 Ԋ𝑠 + ⋯+න𝑠𝑁

    𝐵. 𝑑 Ԋ𝑠 = 𝜇0𝐌

    𝑑Ԋ𝑠

    𝑑 Ԋ𝑠

    𝑑Ԋ𝑠

    𝐵

    𝑁𝑜𝑠 𝑎𝑟𝑐𝑜𝑠

    𝑁𝑎 𝑝𝑎𝑟𝑡𝑒 𝑟𝑎𝑑𝑖𝑎𝑙 න 𝐵. 𝑑 Ԋ𝑠 = 0𝐵 ⊥ 𝑑Ԋ𝑠

    𝐵 ∥ 𝑑Ԋ𝑠

    ර𝐵. 𝑑 Ԋ𝑠 = 𝜇0𝐌

    𝑑Ԋ𝑠

    𝐵. 𝑑 Ԋ𝑠

  • 𝐌

    ර𝐵. 𝑑 Ԋ𝑠 = 𝜇0𝐌

    𝐵

    𝐵

  • 𝐌

    න𝐎

    𝐵. 𝑑 Ԋ𝑠 + න𝐵

    𝐵. 𝑑 Ԋ𝑠 = 𝜇0𝐌

    𝑑 Ԋ𝑠

    ර𝐵. 𝑑 Ԋ𝑠 = 0

    𝐎

    𝐵

    𝐶

    න𝐎

    𝐵. 𝑑 Ԋ𝑠 + න𝐶

    𝐵. 𝑑 Ԋ𝑠 = 𝜇0𝐌

    න𝐵

    𝐵. 𝑑 Ԋ𝑠 = න𝐶

    𝐵. 𝑑 Ԋ𝑠

    𝐵

    𝐵

    𝑑 Ԋ𝑠𝑑 Ԋ𝑠න𝐶

    𝐵. 𝑑 Ԋ𝑠 > 0

    න𝐵

    𝐵. 𝑑 Ԋ𝑠 < 0

    න𝐵

    𝐵. 𝑑 Ԋ𝑠 + න𝐶

    𝐵. 𝑑 Ԋ𝑠 = 0

  • 𝐌

    ර𝐵. 𝑑Ԋ𝑠 = 𝜇0𝐌𝐌𝑛𝑡

    𝐵

    𝐵

    𝐌𝐌𝑛𝑡

    𝐌𝐞𝑥𝑡

    𝐿𝑒𝑖 𝑑𝑒 𝐎𝑚𝑝Ú𝑟𝑒

  • ර𝐵. 𝑑Ԋ𝑙 = 𝜇0𝐌𝐌𝑛𝑡

    𝐌

    𝑟

    ර𝐞. 𝑑Ԋ𝑙 = 0

  • 𝐌

    𝑟

    𝐵

    𝐌

    𝑟

    𝐵

    𝐵2𝜋𝑟 = 𝜇0𝐌𝐌𝑛𝑡

    ර𝐵. 𝑑Ԋ𝑙 = 𝜇0𝐌𝐌𝑛𝑡

    𝑑Ԋ𝑙

    𝐵 ∥ 𝑑Ԋ𝑙

    𝐵 =𝜇0𝐌𝐌𝑛𝑡2𝜋𝑟

    𝐵 =𝜇0𝐌

    2𝜋𝑟

  • 𝐌

    𝑟

    𝐵

    𝐌

    𝑟𝐵

    𝐵2𝜋𝑟 = 𝜇0𝐌𝐌𝑛𝑡

    ර𝐵. 𝑑Ԋ𝑙 = 𝜇0𝐌𝐌𝑛𝑡

    𝑑Ԋ𝑙

    𝐵 ∥ 𝑑Ԋ𝑙

    𝐵 =𝜇0𝐌𝐌𝑛𝑡2𝜋𝑟

    𝐵 =𝜇0𝐌

    2𝜋𝑟

    𝑑𝐵

    𝑑𝐵

  • 𝐌𝑟

    𝐵

    𝐌

    𝑟𝐵

    𝐵2𝜋𝑟 = 𝜇0𝐌𝐌𝑛𝑡

    ර𝐵. 𝑑Ԋ𝑙 = 𝜇0𝐌𝐌𝑛𝑡

    𝑑Ԋ𝑙

    𝐵 ∥ 𝑑Ԋ𝑙

    𝐵 =𝜇0𝐌𝐌𝑛𝑡2𝜋𝑟

    𝑑𝐵

    𝑑𝐵

    𝐌𝐌𝑛𝑡𝐌

    =𝐎𝐌𝑛𝑡𝐎

    𝐌𝐌𝑛𝑡 = 𝑗𝐎𝐌𝑛𝑡

    𝐌𝐌𝑛𝑡 = 𝐌𝜋𝑟2

    𝜋𝑅2

    𝐵 =𝜇0𝐌

    2𝜋

    𝑟

    𝑅2

  • 𝐷 = 𝜀𝐞 𝐷 =𝑞

    4𝜋𝑟2ො𝑎𝑟

    𝐻 =𝑞 Ԋ𝑣 × ƞ𝑟

    4𝜋𝑟2𝐻 =𝐵

    𝜇𝑑𝐻 =

    𝐌𝑑Ԋ𝑙 × ƞ𝑟

    4𝜋𝑟2

    ර𝐻. 𝑑Ԋ𝑙 = 𝐌𝐌𝑛𝑡

    𝐻 − 𝐶𝑎𝑚𝑝𝑜 𝑀𝑎𝑔𝑛é𝑡𝑖𝑐𝑜

    𝐵 − 𝐷𝑒𝑛𝑠𝑖𝑑𝑎𝑑𝑒 𝑑𝑒 𝐹𝑙𝑢𝑥𝑜 𝑜𝑢 𝐌𝑛𝑑𝑢çã𝑜 𝑀𝑎𝑔𝑛é𝑡𝑖𝑐𝑎

    𝜇 − 𝑃𝑒𝑟𝑚𝑒𝑎𝑏𝑖𝑙𝑖𝑑𝑎𝑑𝑒 𝑀𝑎𝑔𝑛é𝑡𝑖𝑐𝑎

  • 𝑥

    𝑊

    𝑧

    1 2

    34

    ර𝐻. 𝑑Ԋ𝑙

    𝐻0𝑊

    𝐻0𝑥

    𝐻0

    𝐻0 = 𝐻0𝑥 Ԋ𝑎𝑥 + 𝐻0𝑊 Ԋ𝑎𝑊 + 𝐻0𝑧 Ԋ𝑎𝑧

    𝐻0𝑧

    1 → 2 𝐻. ∆Ԋ𝑙 = 𝐻𝑊1→2∆𝑊

    𝐻𝑊

    = (𝐻0𝑊 +𝜕𝐻𝑊

    𝜕𝑥

    ∆𝑥

    2)∆𝑊

    3 → 4 𝐻. ∆Ԋ𝑙 = 𝐻𝑊3→4(−∆𝑊) = (𝐻0𝑊 −𝜕𝐻𝑊

    𝜕𝑥

    ∆𝑥

    2)(−∆𝑊)

    4 → 1 𝐻. ∆Ԋ𝑙 = 𝐻𝑥4→1∆x = (𝐻0𝑥 −𝜕𝐻𝑥𝜕𝑊

    ∆𝑊

    2)∆𝑥

    2 → 3 𝐻. ∆Ԋ𝑙 = 𝐻𝑊2→3(−∆𝑥) = (𝐻0𝑥 +𝜕𝐻𝑥𝜕𝑊

    ∆𝑊

    2)(−∆𝑥)

    1 → 2 → 3 → 4 𝐻. ∆Ԋ𝑙 =𝜕𝐻𝑊

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑊

    ∆𝑥∆𝑊

  • 𝑥

    𝑊

    𝑧

    1 2

    34

    ර𝐻. 𝑑Ԋ𝑙

    𝐻0𝑊

    𝐻0𝑥

    𝐻0𝐻0𝑧

    𝐻𝑊

    𝐻.∆Ԋ𝑙 =𝜕𝐻𝑊

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑊

    𝑆𝑧

    ∆𝑥 → 0 ∆𝑊 → 0

    𝐻.𝑑Ԋ𝑙 =𝜕𝐻𝑊

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑊

    𝑑𝑆𝑧

    ර𝐻. 𝑑Ԋ𝑙 = න𝜕𝐻𝑊

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑊

    𝑑𝑆𝑧

    ර𝐻. 𝑑Ԋ𝑙 = න𝜕𝐻𝑊

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑊

    Ԋ𝑎𝑧. 𝑑𝑆𝑧 Ԋ𝑎𝑧

    ර𝐻. 𝑑Ԋ𝑙 = න𝜕𝐻𝑧𝜕𝑊

    −𝜕𝐻𝑊

    𝜕𝑧Ԋ𝑎𝑥 . 𝑑𝑆𝑥 Ԋ𝑎𝑥

    ර𝐻. 𝑑Ԋ𝑙 = න𝜕𝐻𝑥𝜕𝑧

    −𝜕𝐻𝑧𝜕𝑥

    Ԋ𝑎𝑊 . 𝑑𝑆𝑊 Ԋ𝑎𝑊

  • 𝑥

    𝑊

    𝑧

    𝑑 Ԋ𝑆

    𝐻

    ර𝐻. 𝑑Ԋ𝑙 = න𝜕𝐻𝑧𝜕𝑊

    −𝜕𝐻𝑊

    𝜕𝑧Ԋ𝑎𝑥 +

    𝜕𝐻𝑥𝜕𝑧

    −𝜕𝐻𝑧𝜕𝑥

    Ԋ𝑎𝑊 +𝜕𝐻𝑊

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑊

    Ԋ𝑎𝑧 . 𝑑 Ԋ𝑆

    𝑉

    𝑉 =𝜕𝐻𝑧𝜕𝑊

    −𝜕𝐻𝑊

    𝜕𝑧Ԋ𝑎𝑥 +

    𝜕𝐻𝑥𝜕𝑧

    −𝜕𝐻𝑧𝜕𝑥

    Ԋ𝑎𝑊 +𝜕𝐻𝑊

    𝜕𝑥−𝜕𝐻𝑥𝜕𝑊

    Ԋ𝑎𝑧

    𝑉 = 𝛻 × 𝐻

    ර𝐻. 𝑑Ԋ𝑙 = න 𝛻 × 𝐻 . 𝑑 Ԋ𝑆

    ර𝐻. 𝑑Ԋ𝑙 = න𝑉. 𝑑 Ԋ𝑆

    ර𝐻. 𝑑Ԋ𝑙 = 𝐌𝐌𝑛𝑡 න 𝛻 × 𝐻 . 𝑑Ԋ𝑆 = 𝐌𝐌𝑛𝑡 = න Ԋ𝑗. 𝑑 Ԋ𝑆

    Ԋ𝑗

    𝛻 × 𝐻 = Ԋ𝑗

  • ර𝐵. 𝑑Ԋ𝑙 = 𝜇0𝐌𝐌𝑛𝑡

    ර𝐞. 𝑑Ԋ𝑙 = 0

    ර𝐞. 𝑑 Ԋ𝑆 =𝑞

    𝜀0

    ර𝐵. 𝑑 Ԋ𝑆 = 0

    𝛻. 𝐞 =𝜌

    𝜀0

    𝛻. 𝐵 = 0

    𝛻 × 𝐵 = 𝜇0Ԋ𝑗

    𝛻 × 𝐞 = 0

    𝛻.𝐷 = 𝜌

    𝛻.𝐻 = 0

    𝛻 × 𝐻 = Ԋ𝑗

    𝛻 × 𝐷 = 0

    𝛻 × 𝐞 = 0 𝛻 × 𝐷 = 0

  • 𝛻. 𝐵 = 0

    𝛻 × 𝐞 = 0 𝛻 × 𝛻𝜑 = 0 𝐞 = −𝛻𝜑

    𝜑 Ԋ𝑟 = 𝜑𝑃 Ԋ𝑟 + 𝜑0 𝛻𝜑 Ԋ𝑟 = 𝛻𝜑𝑃 Ԋ𝑟

    𝛻. (𝛻 × Ԋ𝐎) = 0 𝐵 = 𝛻 × Ԋ𝐎

    𝛻 × 𝛻𝛿 = 0 Ԋ𝐎 Ԋ𝑟 = Ԋ𝐎𝑃 Ԋ𝑟 + 𝛻𝛿 𝛻 × Ԋ𝐎 Ԋ𝑟 = 𝛻 × Ԋ𝐎𝑃 Ԋ𝑟

    Ԋ𝐎 Ԋ𝑟 − 𝑃𝑜𝑡𝑒𝑛𝑐𝑖𝑎𝑙 𝑉𝑒𝑡𝑜𝑟

  • 𝛻. 𝐞 =𝜌

    𝜀0𝐞 = −𝛻𝜑 𝛻. (−𝛻𝜑) =

    𝜌

    𝜀0𝛻2𝜑 = −

    𝜌

    𝜀0

    𝛻 × 𝐵 = 𝜇0Ԋ𝑗 𝐵 = 𝛻 × Ԋ𝐎

    𝛻 × 𝛻 × Ԋ𝐎 = 𝛻. 𝛻. Ԋ𝐎 − 𝛻2 Ԋ𝐎 Ԋ𝐎 Ԋ𝑟 = Ԋ𝐎𝑃 Ԋ𝑟 + 𝛻𝛿

    𝛻. Ԋ𝐎 Ԋ𝑟 = 𝛻. Ԋ𝐎𝑃 Ԋ𝑟 + 𝛻. 𝛻𝛿 𝛻. Ԋ𝐎 Ԋ𝑟 = 𝛻. Ԋ𝐎𝑃 Ԋ𝑟 + 𝛻2𝛿

    𝛻. Ԋ𝐎𝑃 Ԋ𝑟 = −𝛻2𝛿 𝛻. Ԋ𝐎 Ԋ𝑟 = 0

    𝛻 × 𝛻 × Ԋ𝐎 = −𝛻2 Ԋ𝐎 = 𝛻 × 𝐵 = 𝜇0Ԋ𝑗 𝛻2 Ԋ𝐎 = −𝜇0Ԋ𝑗

  • Teorema de Helmholtz

    1

    4𝜋𝛻2න

    Ԋ𝐺(Ԋ𝑟′)

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ =

    1

    4𝜋න Ԋ𝐺(Ԋ𝑟′)𝛻2

    1

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ = න Ԋ𝐺(Ԋ𝑟′)𝛿(Ԋ𝑟 − Ԋ𝑟′)𝑑𝑣′ = Ԋ𝐺(Ԋ𝑟)

    𝑈 𝑟 =1

    4𝜋න

    Ԋ𝐺(Ԋ𝑟′)

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ 𝛻2𝑈 𝑟 =

    1

    4𝜋𝛻2න

    Ԋ𝐺(Ԋ𝑟′)

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′

    𝛻2𝑈 𝑟 = Ԋ𝐺 𝑟 𝑈 Ԋ𝑟 =1

    4𝜋න𝛻′2𝑈 Ԋ𝑟′

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ 𝑊 Ԋ𝑟 =

    1

    4𝜋න𝛻′2𝑊 Ԋ𝑟′

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′

    Ԋ𝐹 = −𝛻𝑊 + 𝛻 × 𝑈 𝛻 ∙ Ԋ𝐹 = −𝛻2𝑊

    𝛻 × Ԋ𝐹 = 𝛻 × 𝛻 × 𝑈 = 𝛻 ∙ 𝛻 ∙ 𝑈 − 𝛻2𝑈 𝛻 ∙ 𝑈 = 0 𝛻 × Ԋ𝐹 = −𝛻2𝑈

    𝛻 ∙ Ԋ𝐹 = −𝛻2𝑊 = 𝐷

    𝛻 × Ԋ𝐹 = −𝛻2𝑈 = Ԋ𝐺

    𝐞 Ԋ𝑟 =1

    4𝜋න𝛻′2𝐞 Ԋ𝑟′

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ 𝐞 = −𝛻𝑉 + 𝛻 × 𝑈

    𝐵 Ԋ𝑟 =1

    4𝜋න𝛻′2𝐵 Ԋ𝑟′

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ 𝐵 = −𝛻𝑊 + 𝛻 × Ԋ𝐎

  • 𝐞 =1

    4𝜋න𝛻′2𝐞 Ԋ𝑟′

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′

    𝐞 = −𝛻. 𝑉 𝑉 = −1

    4𝜋න

    𝛻. 𝐞

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ + 𝑉0 = −

    1

    4𝜋𝜀0න

    𝜌

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ + 𝑉0

    Ԋ𝐎 = −1

    4𝜋න

    𝛻 × 𝐵

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ + Ԋ𝐎0 = −

    𝜇04𝜋

    නԊ𝑗

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ + Ԋ𝐎0

    𝐵 =1

    4𝜋න𝛻′2𝐵 Ԋ𝑟′

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ =

    1

    4𝜋න𝛻. 𝛻. 𝐵 − 𝛻 × 𝛻 × 𝐵

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′

    𝐵 = 𝛻 × Ԋ𝐎

    𝑉 = −1

    4𝜋𝜀0න𝜌

    𝑟𝑑𝑣 + 𝑉0 Ԋ𝐎 = −

    𝜇04𝜋

    නԊ𝑗

    𝑟𝑑𝑣 + Ԋ𝐎0

  • 𝐻

    1

    2

    𝐻1

    ∆𝑙

    ∆𝑙

    ∆ℎ∆ℎ

    𝐻1𝑛

    𝐻1𝑡

    𝐻2𝐻2𝑛

    𝐻2𝑡

    𝐎

    𝐵𝐶

    𝐷

    න𝐎−𝐵

    𝐻. 𝑑Ԋ𝑙 = −𝐻2𝑛∆ℎ

    2− 𝐻1𝑛

    ∆ℎ

    2

    න𝐵−𝐶

    𝐻. 𝑑Ԋ𝑙 = − −𝐻2𝑡∆𝑙

    න𝐶−𝐷

    𝐻. 𝑑Ԋ𝑙 = − −𝐻1𝑛∆ℎ

    2− −𝐻2𝑛

    ∆ℎ

    2

    න𝐷−𝐎

    𝐻. 𝑑Ԋ𝑙 = −𝐻1𝑡∆𝑙

    −𝐻2𝑛∆ℎ

    2− 𝐻1𝑛

    ∆ℎ

    2+ 𝐻2𝑡∆𝑙 + 𝐻2𝑛

    ∆ℎ

    2+ 𝐻1𝑛

    ∆ℎ

    2− 𝐻1𝑡∆𝑙 =

    𝐌

    𝐎

    ∆ℎ → 0 𝐻2𝑡 − 𝐻1𝑡 = 𝐟

    ර𝐻. 𝑑Ԋ𝑙 = Ԋ𝑗

    𝐻2𝑡 − 𝐻1𝑡 =𝐌

    ∆𝑙

    𝐵2𝑡𝜇0

    −𝐵1𝑡𝜇0

    = 𝐟

  • 𝐻

    1

    2

    𝐵1𝐵1𝑛

    𝐵1𝑡

    𝐵2𝐵2𝑛

    𝐵2𝑡

    𝐵1𝑛

    𝐵2𝑛

    ර𝐵. 𝑑 Ԋ𝑆 = 0

    𝐵2𝑛𝐎 − 𝐵1𝑛𝐎 = 0

    𝐵2𝑛 − 𝐵1𝑛 = 0

    𝐻2𝑛 − 𝐻1𝑛 = 0

    𝐻2𝑡 − 𝐻1𝑡 = 𝐟

    𝐵2𝑡 − 𝐵1𝑡 = 𝜇0𝐟

    ℎ

    ℎ → 0

  • Ԋ𝒋 Ԋ𝒋

    Plano espesso infinito

    d

  • Ԋ𝒋 Ԋ𝒋

    Plano espesso infinito

    d

    𝒅𝑩

    𝒅𝑩

    𝑩

    𝒅𝑩

    𝒅𝑩

    𝑩

    𝑩

    𝑩𝑩

    𝑩

    𝑩

    𝒅Ԋ𝒍

    𝒅Ԋ𝒍

    𝒅Ԋ𝒍

    𝒅Ԋ𝒍

    𝒅Ԋ𝒍

    𝒅Ԋ𝒍

    d

    L

    ර𝐵. 𝑑Ԋ𝑙 = 𝜇0𝐌𝐌𝑛𝑡 2𝐵𝐿 = 𝜇0𝑗𝐿𝑑 𝐵 =1

    2𝜇0𝑗𝑑

    𝑩

  • Ԋ𝒋 Ԋ𝒋

    Plano espesso infinito

    d

    𝒅𝑩

    𝒅𝑩

    𝑩

    𝒅𝑩

    𝒅𝑩

    𝑩

    𝑩𝑩

    𝑩

    𝒅Ԋ𝒍

    𝒅Ԋ𝒍

    𝒅Ԋ𝒍

    𝒅Ԋ𝒍2y

    L

    y

    x

    ර𝐵. 𝑑Ԋ𝑙 = 𝜇0𝐌𝐌𝑛𝑡 2𝐵𝐿 = 𝜇0𝑗2𝑊𝐿 𝐵 = 𝜇0𝑗𝑊

    𝐵 = −𝜇0𝑗𝑊 ො𝑥

  • Ԋ𝒋 Ԋ𝒋

    Plano espesso infinito

    d

    y

    𝛻2 Ԋ𝐎 = −𝜇0Ԋ𝑗Dentro

    𝜕2𝐎𝑥𝜕𝑥2

    +𝜕2𝐎𝑥𝜕𝑊2

    +𝜕2𝐎𝑥𝜕𝑧2

    ො𝑎𝑥 +𝜕2𝐎𝑊

    𝜕𝑥2+𝜕2𝐎𝑊

    𝜕𝑊2+𝜕2𝐎𝑊

    𝜕𝑧2ො𝑎𝑊 +

    𝜕2𝐎𝑧𝜕𝑥2

    +𝜕2𝐎𝑧𝜕𝑊2

    +𝜕2𝐎𝑧𝜕𝑧2

    ො𝑎𝑧 = −𝜇0𝐜 ො𝑎𝑧

    𝜕2𝐎𝑧𝜕𝑊2

    = −𝜇0𝐜 𝐎𝑧 𝑊 = −𝜇0𝐜𝑊2

    2+ 𝐶𝑊 + 𝐷 𝐵 = 𝛻 × Ԋ𝐎

    𝛻 × Ԋ𝐎 =𝜕𝐎𝑧𝜕𝑊

    ො𝑎𝑥 = −𝜇0𝐜𝑊 + 𝐶 ො𝑎𝑥Para y=0 B=0 => C=0

    D=0 Referência

    Ԋ𝐎 = −𝜇0𝐜𝑊2

    2ො𝑎𝑧

    𝑚

  • Ԋ𝒋 Ԋ𝒋

    Plano espesso infinito

    d

    y

    𝛻2 Ԋ𝐎 = 0Fora 𝜕2𝐎𝑧

    𝜕𝑊2= 0 𝐎𝑧 𝑊 = 𝐞𝑊 + 𝐹

    𝑚

    𝐞𝑑

    2+ 𝐹 = −𝜇0𝐜

    𝑑2

    8

    No contorno

    𝐎𝑧 𝐷𝑒𝑛𝑡𝑟𝑜 𝑊 →𝑑

    2= 𝐎𝑧 𝐹𝑜𝑟𝑎 𝑊 →

    𝑑

    2

    Ԋ𝐎 = −𝜇0𝐜𝑑

    2𝑊 −

    𝑑

    4ො𝑎𝑧

    𝑚

    𝑚

    𝜕𝐎𝑧 𝐷𝑒𝑛𝑡𝑟𝑜𝜕𝑊

    𝑊 →𝑑

    2=𝜕𝐎𝑧 𝐹𝑜𝑟𝑎

    𝜕𝑊𝑊 →

    𝑑

    2𝐞 = −𝜇0𝐜

    𝑑

    2𝐹 =

    1

    8𝜇0𝐜𝑑

    2

  • 𝐌𝑟

    𝐵

    𝐌

    𝑟

    𝛻2 Ԋ𝐎 = −𝜇0Ԋ𝑗Dentro

    1

    𝜌

    𝜕

    𝜕𝜌𝜌𝜕𝐎𝑧𝜕𝑟

    = −𝜇0𝑗 𝜌𝜕𝐎𝑧𝜕𝜌

    = −𝜇0𝑗𝜌2

    2+ 𝐶

    𝐎𝑧 = −𝜇0𝑗𝜌2

    4+ 𝐶𝑙𝑛𝜌 + 𝐷

    𝑂 𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑎𝑙 𝑛ã𝑜 𝑑𝑖𝑣𝑒𝑟𝑔𝑒 𝑒𝑚 𝜌 = 0 𝑒𝑛𝑡ã𝑜 𝐶 = 0

    𝑅𝑒𝑓𝑒𝑟ê𝑛𝑐𝑖𝑎 𝐷 = 0

  • 𝐌𝑟

    𝛻2 Ԋ𝐎 = 0Fora1

    𝜌

    𝜕

    𝜕𝜌𝜌𝜕𝐎𝑧𝜕𝜌

    = 0 𝜌𝜕𝐎𝑧𝜕𝜌

    = 𝐞

    𝐎𝑧 = 𝐞𝑙𝑛𝜌 + 𝐹

    𝑁𝑜 𝑐𝑜𝑛𝑡𝑜𝑟𝑛𝑜 𝐎𝐷𝑒𝑛𝑡𝑟𝑜 𝑅 = 𝐎𝐹𝑜𝑟𝑎 𝑅 −𝜇0𝑗𝑅2

    4= 𝐞𝑙𝑛𝑅 + 𝐹

    𝑁𝑜 𝑐𝑜𝑛𝑡𝑜𝑟𝑛𝑜𝜕

    𝜕𝜌𝐎𝐷𝑒𝑛𝑡𝑟𝑜 𝑅 =

    𝜕

    𝜕𝜌𝐎𝐹𝑜𝑟𝑎 𝑅 −𝜇0

    𝑗𝑅

    2=𝐞

    𝑅

    𝐞 = −𝜇0𝑗𝑅2

    2𝐹 = 𝜇0

    𝑗𝑅2

    2(𝑙𝑛𝑅 −

    1

    2)

  • 𝐌

    𝑟

    Fora Ԋ𝐎 = −𝜇0𝑗𝑅2

    2𝑙𝑛

    𝜌

    𝑅+1

    2ƞ𝑧

    Dentro Ԋ𝐎 = −𝜇0𝑗𝜌2

    4ƞ𝑧 𝐵 = 𝛻 × Ԋ𝐎 = −

    𝜕𝐎𝑧𝜕𝜌

    ො𝜑 = 𝜇0𝑗𝜌

    2ො𝜑

    𝐵 = 𝛻 × Ԋ𝐎 = −𝜕𝐎𝑧𝜕𝜌

    ො𝜑 = 𝜇0𝑗𝑅2

    2𝜌ො𝜑

  • xy

    z

    Ԋ𝑟

    𝑥

    𝑊

    𝑧

    xy

    z

    Ԋ𝑟′𝑥

    𝑊

    𝑧

    Ԋ𝑟

    𝑅

    𝑉 =1

    4𝜋𝜀0

    𝑞

    𝑟 𝑉 =1

    4𝜋𝜀0න

    𝜌(Ԋ𝑟′)

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ + 𝑉0𝛻2𝑉 = −

    𝜌

    𝜀0

    𝛻2 Ԋ𝐎 = −𝜇0Ԋ𝑗 Ԋ𝐎 =𝜇04𝜋

    නԊ𝐜( Ԋ𝑟′)

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′ + Ԋ𝐎0

  • Ԋ𝑗

    Ԋ𝐎 =𝜇04𝜋

    නԊ𝐜(Ԋ𝑟′)

    Ԋ𝑟 − Ԋ𝑟′𝑑𝑣′

    𝒅𝒛′

    Ԋ𝑟

    𝝆

    𝒛𝑧’

    𝜌

    𝜃

    0

    𝑎

    Ԋ𝐜 Ԋ𝑟′ =1

    2𝜋𝜌′𝐌𝛿(𝜌′) ƞ𝑧

    න Ԋ𝐜 Ԋ𝑟′ 𝜌′𝑑𝜑′𝑑𝜌′ = 𝐌

    Ԋ𝑟 − Ԋ𝑟′ = 𝜌2 + 𝑧′2 Ԋ𝐎 =𝜇04𝜋

    නԊ𝐜(Ԋ𝑟′)

    𝜌2 + 𝑧′2𝑑𝑣′Ԋ𝐜 Ԋ𝑟′ 𝑑𝑣′ =

    1

    2𝜋𝜌′𝐌𝛿(𝜌′)𝜌′𝑑𝜑′𝑑𝜌′dz′

    Ԋ𝐎 =𝜇04𝜋

    න−𝑎

    𝑏 1

    𝜌2 + 𝑧′2

    1

    2𝜋𝜌′𝐌𝛿(𝜌′)𝜌′𝑑𝜑′𝑑𝜌′dz′ ƞ𝑧 =

    𝜇04𝜋

    𝐌 න−𝑎

    𝑏 1

    𝜌2 + 𝑧′2dz′ ƞ𝑧

    𝑏

    Ԋ𝐎 =𝜇04𝜋

    𝐌 𝑙𝑛 𝑧′ + 𝜌2 + 𝑧′2𝑏−𝑎

    =𝜇04𝜋

    𝐌 𝑙𝑛𝑏 + 𝜌2 + 𝑏2

    −𝑎 + 𝜌2 + 𝑎2

    𝑁𝑜𝑡𝑒 𝑞𝑢𝑒 𝑝𝑎𝑟𝑎 𝑢𝑚 𝑓𝑖𝑜 𝑠𝑒𝑚𝑖 − 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑜 𝑜𝑢 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑜 𝑛ã𝑜 𝑝𝑜𝑑𝑒𝑚𝑜𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑟𝑜 𝑝𝑜𝑡𝑒𝑛𝑐𝑖𝑎𝑙 𝑣𝑒𝑡𝑜𝑟 𝑑𝑒𝑠𝑡𝑎 𝑓𝑜𝑟𝑚𝑎

  • qz

    R

    x

    y

    z

    𝑑𝐵 =𝜇0𝐌

    4𝜋

    𝑑Ԋ𝑙 × ƞ𝑟

    𝑟2

    i

    𝑃𝑜𝑟 𝑠𝑖𝑚𝑒𝑡𝑟𝑖𝑎 𝑠ó 𝑠𝑜𝑏𝑟𝑎 𝑑𝐵𝑧

    Ԋ𝑟

    𝑑Ԋ𝑙

    𝑑𝐵𝑑𝐵𝑧

    𝑪𝒂𝒎𝒑𝒐𝑎𝒂𝒈𝒏é𝒕𝒊𝒄𝒐 𝒅𝒆 𝒖𝒎𝒂 𝒆𝒔𝒑𝒊𝒓𝒂

    𝑑𝐵 =𝜇0𝐌

    4𝜋

    𝑑𝑙

    𝑟2𝑑Ԋ𝑙 ⊥ ƞ𝑟 𝑑𝐵𝑧 =

    𝜇0𝐌

    4𝜋

    𝑑𝑙

    𝑟2𝑠𝑒𝑛𝜃

    𝑑𝐵𝑧 =𝜇0𝐌

    4𝜋

    𝑑𝑙

    𝑟2𝑅

    𝑟=𝜇0𝐌

    4𝜋

    𝑅𝑑𝑙

    𝑟3=𝜇0𝐌

    4𝜋

    𝑅𝑑𝑙

    𝑅2 + 𝑧2 ൗ32

    𝐵𝑧 = න𝜇0𝐌

    4𝜋

    𝑅𝑑𝑙

    𝑅2 + 𝑧2 ൗ32

    𝐵𝑧 =𝜇0𝐌

    4𝜋

    𝑅2𝜋𝑅

    𝑅2 + 𝑧2 ൗ32=𝜇0𝐌

    2

    𝑅2

    𝑅2 + 𝑧2 ൗ32

  • 𝑑𝐵 =𝜇0𝐌

    4𝜋

    𝑑Ԋ𝑙 × Ԋ𝑟′

    𝑟′3

    𝑪𝒂𝒎𝒑𝒐𝑎𝒂𝒈𝒏é𝒕𝒊𝒄𝒐 𝒅𝒆 𝒖𝒎𝒂 𝒆𝒔𝒑𝒊𝒓𝒂

    Ԋ𝑟′ = Ԋ𝑟 − 𝑅

    Ԋ𝑟 = 𝑥 ƞ𝑖 + 𝑊 ƞ𝑗 + 𝑧𝑘

    𝑅 = 𝑅𝑐𝑜𝑠𝜑 ƞ𝑖 + 𝑅𝑠𝑒𝑛𝜑 ƞ𝑗

    x

    y

    z

    i

    Ԋ𝑟’

    𝑑Ԋ𝑙

    Ԋ𝑟

    𝑅𝜑

    Ԋ𝑟′ = (𝑥 − 𝑅𝑐𝑜𝑠𝜑) ƞ𝑖 + (𝑊 − 𝑅𝑠𝑒𝑛𝜑) ƞ𝑗 + 𝑧𝑘

    𝑑Ԋ𝑙 = −𝑅𝑑𝜑𝑠𝑒𝑛𝜑 ƞ𝑖 + 𝑅𝑑𝜑𝑐𝑜𝑠𝜑 ƞ𝑗

    𝑑Ԋ𝑙 × Ԋ𝑟′

    = −𝑅𝑑𝜑𝑠𝑒𝑛𝜑 𝑊 − 𝑅𝑠𝑒𝑛𝜑 𝑘 − 𝑅𝑑𝜑𝑠𝑒𝑛𝜑𝑧 − ƞ𝑗 + 𝑅𝑑𝜑𝑐𝑜𝑠𝜑 𝑥 − 𝑅𝑐𝑜𝑠𝜑 −𝑘

    + 𝑅𝑑𝜑𝑐𝑜𝑠𝜑 𝑧 ƞ𝑖𝑑Ԋ𝑙 × Ԋ𝑟′ = 𝑅𝑧𝑐𝑜𝑠𝜑𝑑𝜑 ƞ𝑖 + 𝑅𝑧𝑠𝑒𝑛𝜑𝑑𝜑 ƞ𝑗 + 𝑅(𝑅 − 𝑊𝑠𝑒𝑛𝜑 − 𝑥𝑐𝑜𝑠𝜑)𝑑𝜑𝑘

    𝑑𝐵 =𝜇0𝐌

    4𝜋

    𝑅𝑧𝑐𝑜𝑠𝜑𝑑𝜑 ƞ𝑖 + 𝑅𝑧𝑠𝑒𝑛𝜑𝑑𝜑 ƞ𝑗 + 𝑅(𝑅 − 𝑊𝑠𝑒𝑛𝜑 − 𝑥𝑐𝑜𝑠𝜑)𝑑𝜑𝑘

    (𝑟2 + 𝑅2 − 2𝑥𝑅𝑐𝑜𝑠𝜑 − 2𝑊𝑅𝑠𝑒𝑛𝜑)32

    𝑃𝑜𝑟 𝑐𝑎𝑢𝑠𝑎 𝑑𝑎 𝑠𝑖𝑚𝑒𝑡𝑟𝑖𝑎 𝑐𝑖𝑙í𝑛𝑑𝑟𝑖𝑐𝑎 𝑝𝑜𝑑𝑒𝑚𝑜𝑠 𝑔𝑖𝑟𝑎𝑟 𝑜 𝑒𝑖𝑥𝑜 𝑒𝑚 𝑡𝑜𝑟𝑛𝑜 𝑑𝑒 𝑧 𝑎𝑡é 𝑞𝑢𝑒𝑥 𝑜𝑢 𝑊 𝑠𝑒𝑗𝑎 𝑧𝑒𝑟𝑜, 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑎𝑛𝑑𝑜 𝑎 𝑐𝑜𝑛𝑡𝑎

  • 𝑪𝒂𝒎𝒑𝒐𝑎𝒂𝒈𝒏é𝒕𝒊𝒄𝒐 𝒅𝒆 𝒖𝒎𝒂 𝒆𝒔𝒑𝒊𝒓𝒂

    Ԋ𝑟′ = Ԋ𝑟 − 𝑅

    𝑟′2= 𝑟2 + 𝑅2 − 2𝑟𝑅𝑐𝑜𝑠𝜃

    Ԋ𝐎 =𝜇04𝜋

    නԊ𝑗

    𝑟′𝑑𝑣′

    Ԋ𝐎 =𝜇0𝑖

    4𝜋ර

    1

    𝑟2 + 𝑅2 − 2𝑟𝑅𝑐𝑜𝑠𝜃𝑑Ԋ𝑙′q

    x

    y

    z

    i

    Ԋ𝑟’

    𝑑Ԋ𝑙′

    Ԋ𝑟

    𝑅𝜑

    Ԋ𝑗𝑑𝑣′ = 𝑖𝑑Ԋ𝑙′

    1

    𝑟2 + 𝑅2 − 2𝑟𝑅𝑐𝑜𝑠𝜃=

    1

    𝑟𝑅𝑟

    2

    + 1 − 2𝑅𝑟𝑐𝑜𝑠𝜃

    =1

    𝑟

    𝑛=0

    ∞𝑅

    𝑟

    𝑛

    𝑃𝑛(𝑐𝑜𝑠𝜃)

    Ԋ𝐎 =𝜇0𝑖

    4𝜋

    𝑛=0

    ∞1

    𝑟𝑛+1ර𝑅𝑛𝑃𝑛(𝑐𝑜𝑠𝜃)𝑑Ԋ𝑙′

    𝑀𝑎𝑛𝑡𝑒𝑛ℎ𝑜 𝑜 𝑅 𝑑𝑒𝑛𝑡𝑟𝑜 𝑑𝑎 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙, 𝑝𝑜𝑖𝑠 𝑒𝑠𝑡𝑎𝑐𝑜𝑛𝑡𝑎 𝑠𝑒𝑟𝑣𝑒 𝑝𝑎𝑟𝑎 𝑞𝑢𝑎𝑙𝑞𝑢𝑒𝑟 𝑡𝑖𝑝𝑜 𝑑𝑒 𝑒𝑠𝑝𝑖𝑟𝑎,

    𝑚𝑎𝑠 𝑠𝑒 𝑓𝑜𝑟 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 é 𝑐𝑙𝑎𝑟𝑜 𝑞𝑢𝑒 𝑅 é 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑒

    Ԋ𝐎 =𝜇0𝑖

    4𝜋

    𝑛=0

    ∞

    𝑟𝑛ර1

    𝑅𝑛+1𝑃𝑛(𝑐𝑜𝑠𝜃)𝑑Ԋ𝑙′ 𝑟 < 𝑅

  • 𝑪𝒂𝒎𝒑𝒐𝑎𝒂𝒈𝒏é𝒕𝒊𝒄𝒐 𝒅𝒆 𝒖𝒎𝒂 𝒆𝒔𝒑𝒊𝒓𝒂

    q

    x

    y

    z

    i

    Ԋ𝑟’

    𝑑Ԋ𝑙′

    Ԋ𝑟

    𝑅𝜑

    Ԋ𝐎 =𝜇0𝑖

    4𝜋

    1

    𝑟ර𝑑Ԋ𝑙′ +

    1

    𝑟2ර𝑅𝑐𝑜𝑠𝜃𝑑Ԋ𝑙′ +

    1

    𝑟3ර𝑅2(

    3

    2𝑐𝑜𝑠2𝜃 −

    1

    2)𝑑Ԋ𝑙′ + ⋯

    Monopoloර𝑑Ԋ𝑙′ = 01

    𝑟2ර𝑅𝑐𝑜𝑠𝜃𝑑Ԋ𝑙′ Dipolo

    1

    𝑟3ර𝑅2(

    3

    2𝑐𝑜𝑠2𝜃 −

    1

    2)𝑑Ԋ𝑙′ Quadrupolo

    𝑃𝑎𝑟𝑎 𝑟 ≫ 𝑅 Ԋ𝐎~𝜇0𝑖

    4𝜋

    1

    𝑟2ර𝑅𝑐𝑜𝑠𝜃𝑑Ԋ𝑙′

    ර𝑅𝑐𝑜𝑠𝜃𝑑Ԋ𝑙′ = ර ƞ𝑟 ∙ 𝑅𝑑Ԋ𝑙′ = − ƞ𝑟 × ර𝑑 Ԋ𝐎′ 𝑚𝑎𝑠 𝑖 ර𝑑 Ԋ𝐎′ = Ԋ𝜇 𝑚𝑜𝑚𝑒𝑛𝑡𝑜 𝑑𝑒 𝑑𝑖𝑝𝑜𝑙𝑜

    Ԋ𝐎 =𝜇0𝑖

    4𝜋

    1

    𝑟2− ƞ𝑟 × ර𝑑 Ԋ𝐎′ =

    𝜇04𝜋

    1

    𝑟2− ƞ𝑟 × Ԋ𝜇 Ԋ𝐎 =

    𝜇04𝜋

    Ԋ𝜇 × ƞ𝑟

    𝑟2

    𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑠𝑐𝑒 𝑜 𝑑𝑖𝑝𝑜𝑙𝑜

    𝑟 > 𝑅

  • 𝐵 = 𝛻 × Ԋ𝐎 =1

    𝑟𝑠𝑒𝑛𝜃

    𝜕𝑠𝑒𝑛𝜃𝐎𝜑

    𝜕𝜃−𝜕𝐎𝜃𝜕𝜑

    ො𝑎𝑟 +1

    𝑟

    1

    𝑠𝑒𝑛𝜃

    𝜕𝐎𝑟𝜕𝜑

    −𝜕𝑟𝐎𝜑

    𝜕𝑟ො𝑎𝜃 +

    1

    𝑟

    𝜕𝑟𝐎𝜃𝜕𝑟

    −𝜕𝐎𝑟𝜕𝜃

    ො𝑎𝜑

    Ԋ𝐎 =𝜇04𝜋

    Ԋ𝜇 × ƞ𝑟

    𝑟2=𝜇04𝜋

    𝜇

    𝑟2𝑠𝑒𝑛𝜃 ො𝑎𝜑

    q

    x

    y

    z

    i

    Ԋ𝑟’

    𝑑Ԋ𝑙′

    Ԋ𝑟

    𝑅𝜑

    Ԋ𝜇

    𝐵 =1

    𝑟𝑠𝑒𝑛𝜃

    𝜕𝑠𝑒𝑛𝜃𝐎𝜑

    𝜕𝜃ො𝑎𝑟 −

    1

    𝑟

    𝜕𝑟𝐎𝜑

    𝜕𝑟ො𝑎𝜃

    𝐵 =1

    𝑟𝑠𝑒𝑛𝜃

    𝜇04𝜋

    𝜇

    𝑟2𝜕𝑠𝑒𝑛2𝜃

    𝜕𝜃ො𝑎𝑟 −

    1

    𝑟

    𝜇04𝜋

    𝜇𝑠𝑒𝑛𝜃𝜕

    𝜕𝑟

    1

    𝑟ො𝑎𝜃

    𝐵 =𝜇04𝜋

    𝜇

    𝑟32𝑐𝑜𝑠𝜃 ො𝑎𝑟 + 𝑠𝑒𝑛𝜃 ො𝑎𝜃

    𝐵 =𝜇04𝜋

    1

    𝑟33 Ԋ𝜇. ො𝑎𝑟 ො𝑎𝑟 − Ԋ𝜇