1 introducción

8
Introducción Nuestro más sincero deseo es que encuentren a la física como una experiencia agradable, y que se beneficien con esa experiencia, independientemente de la orientación que hayan elegido o vayan a elegir. ¡Bienvenidos al emocionante mundo de la física! La física es el estudio del Universo material; en física se estudia la materia, sus interacciones y sus cambios. Los físicos tratan de describir los fenómenos en la forma más sencilla y más precisa, y para ello han desarrollado su vocabulario propio. El científico no estudia la naturaleza porque sea útil; la estudia porque se deleita en ella, y se deleita en ella porque es hermosa. Si la naturaleza no fuera bella, no valdría la pena conocerla, y si no ameritara saber de ella, no valdría la pena vivir la vida”. Henri Poincaré (1854-1912) …cuando tomamos cierto interés en los grandes descubridores y en sus vidas es cuando la ciencia se hace soportable, y sólo cuando rastreamos el desarrollo de las ideas es cuando se hace fascinante”. James Clerk Maxwell – físico inglés- (1831-1879) La física no es especialmente fácil de comprender ni de amar. Para la mayoría, es una visión nueva, una manera diferente de entendimiento, con sus propias escalas, ritmos y formas, sin embargo el viaje vale la pena. No existe un comienzo definido de la ciencia; no brotó de pronto de la mente de la humanidad, sino que nació, después de una larga gestación, del seno del mito y de la magia negra, de los trabajos astrológicos y de los arcanos de la alquimia. Las ideas del mundo científico emergieron lentamente del misticismo, de la magia realizada con toda seriedad durante siglos por médicos hechiceros, por ejemplo, los poderes secretos que tanto fascinaron a Shakespeare y asolaron Salem, los poderes que aun llenan consultorios de espiritistas, astrólogos y tarotistas en todo el mundo. No es nuestra intención dar crédito a la hechicería, sino distinguirla de la ciencia y, de esta forma, adquirir una comprensión del tema que nos traemos entre manos. La física ha evolucionado hasta su estado actual como resultado de unos 2.500 años de esfuerzos. Las teorías antiguas fueron desplazadas por otras cada vez más efectivas que, a su vez, fueron sustituidas por construcciones todavía más consistentes, generales y complejas de la actualidad. La disciplina como se desarrolló hasta la década de 1920, se llama física clásica. Se funda en tres bases teóricas: la mecánica newtoniana, la termodinámica y la teoría 1

Transcript of 1 introducción

Page 1: 1   introducción

Introducción

Nuestro más sincero deseo es que encuentren a la física como una experiencia agradable, y que se beneficien con esa experiencia, independientemente de la orientación que hayan elegido o vayan a elegir. ¡Bienvenidos al emocionante mundo de la física! La física es el estudio del Universo material; en física se estudia la materia, sus interacciones y sus cambios. Los físicos tratan de describir los fenómenos en la forma más sencilla y más precisa, y para ello han desarrollado su vocabulario propio.

“El científico no estudia la naturaleza porque sea útil; la estudia porque se deleita en ella, y se deleita en ella porque es hermosa. Si la naturaleza no fuera bella, no valdría la pena conocerla, y si no ameritara saber de ella, no valdría la pena vivir la vida”. Henri Poincaré (1854-1912)“…cuando tomamos cierto interés en los grandes descubridores y en sus vidas es cuando la ciencia se hace soportable, y sólo cuando rastreamos el desarrollo de las ideas es cuando se hace fascinante”. James Clerk Maxwell – físico inglés- (1831-1879)

La física no es especialmente fácil de comprender ni de amar. Para la mayoría, es una visión nueva, una manera diferente de entendimiento, con sus propias escalas, ritmos y formas, sin embargo el viaje vale la pena.

No existe un comienzo definido de la ciencia; no brotó de pronto de la mente de la humanidad, sino que nació, después de una larga gestación, del seno del mito y de la magia negra, de los trabajos astrológicos y de los arcanos de la alquimia. Las ideas del mundo científico emergieron lentamente del misticismo, de la magia realizada con toda seriedad durante siglos por médicos hechiceros, por ejemplo, los poderes secretos que tanto fascinaron a Shakespeare y asolaron Salem, los poderes que aun llenan consultorios de espiritistas, astrólogos y tarotistas en todo el mundo. No es nuestra intención dar crédito a la hechicería, sino distinguirla de la ciencia y, de esta forma, adquirir una comprensión del tema que nos traemos entre manos.

La física ha evolucionado hasta su estado actual como resultado de unos 2.500 años de esfuerzos. Las teorías antiguas fueron desplazadas por otras cada vez más efectivas que, a su vez, fueron sustituidas por construcciones todavía más consistentes, generales y complejas de la actualidad. La disciplina como se desarrolló hasta la década de 1920, se llama física clásica. Se funda en tres bases teóricas: la mecánica newtoniana, la termodinámica y la teoría electromagnética. La mecánica clásica estudia el movimiento de los objetos que se mueven a velocidades pequeñas comparadas con la velocidad de la luz. La terminación de la física clásica fue obra de Einstein, aunque esta “nueva era de la física, conocida como física moderna”, se inició hacia el final del siglo

XIX y se desarrolló principalmente, gracias al descubrimiento de que muchos fenómenos físicos no podían ser explicados por la física clásica. La teoría especial de la relatividad de Einstein (1905) reformula nuestra concepción del espacio, el tiempo y el movimiento; corrige las leyes del movimiento de Newton para describir el movimiento de los cuerpos moviéndose con velocidades comparables con la velocidad de la luz. La física clásica es un material conceptual básico que debe comprenderse para interactuar bien con el ambiente físico a nivel cotidiano. Desde el punto de vista filosófico, la física clásica es determinista, porque dice que las cosas se pueden medir con exactitud y conocer con certeza y que las leyes de la Naturaleza pueden ser totalmente predecibles. Una vez conocidas esas leyes, podemos calcular el futuro y el pasado.La física contemporánea ha ampliado su dominio, desde lo subatómico hasta el Universo completo.

1

Page 2: 1   introducción

Los científicos trabajan constantemente en mejorar nuestra comprensión de las leyes fundamentales de la Naturaleza. Los desarrollos de la ciencia y la técnica se basan en principios físicos, por esto se dice que “la física es la madre de las disciplinas técnicas”. Día a día se logran nuevos descubrimientos y en muchas áreas de investigación se superponen la física, la química y la biología como también la ingeniería. Algunos de los desarrollos notables son las misiones espaciales, los microcircuitos y computadoras de alta velocidad, las técnicas de imágenes complejas usadas en la investigación médica, etc.No esperamos que en la primera clase de física se comporten como un científico, en todo caso aprenderemos juntos, lentamente, a desarrollar sus capacidades de investigación y de búsqueda, curiosidad e imaginación. Buscamos ampliar sus conocimientos de todo lo que los rodea, disciplinas como Física, Química, Biología y Astronomía, son herramientas valiosas para ello.

R. P. Feyman, premio Nóbel de física, dijo una vez, “Usted no sabe nada hasta que lo ha practicado”. De acuerdo con esta afirmación, les aconsejamos desarrollar las habilidades necesarias para resolver problemas, sus capacidades para solucionarlos será una de las principales pruebas de sus conocimientos de física y en consecuencia, deberán tratar de resolver el mayor número posible de problemas, pero es esencial que antes de intentar resolverlos, comprendan los conceptos y principios básicos, se familiaricen con el vocabulario de la asignatura y de ser necesario, hacer una revisión (repaso) de las habilidades matemáticas, dado que el lenguaje de la Física es matemático.

El departamento de física sugerirá guías de problemas, el profesor del curso propondrá otros y cualquier libro de física, prestado, propio o de la biblioteca de la escuela que quieran consultar, vendrán bien a la hora de practicar y de poner a prueba los conocimientos adquiridos. No olviden que la pregunta tonta es la que no se hace, participen de la clase. Si la duda o inquietud surge en otro momento, transmítansela al profesor en la clase siguiente o en las clases de apoyo, cuyos días y horarios estarán publicados en cartelera. Todos los docentes de la cátedra tienen la mejor disposición para explicar las veces que sea necesario, pero si no se plantean las dudas no podemos saber qué es lo que no entienden. En el momento de la evaluación es tarde y en las horas previas también. Eviten el hábito de postergar el estudio hasta un día o dos antes del examen, memorizar fórmulas no basta. Les recomendamos que lean y relean los textos, apuntes indicados oportunamente y las notas tomadas en clase, por eso es muy importante tener un carpeta completa. Ante una ausencia, lo mejor es pedir prestados los apuntes a un compañero, por eso es conveniente anotarse los teléfonos de varios de ellos.

A continuación, describimos algunas ideas útiles para el abordaje de los problemas que les permitirán minimizar el “pánico inicial”:

Dibujar esquemas, diagramas que ayudarán a entender y simplificar los enunciados y de ser necesario colocar ejes de coordenadas.

Identificar el o los principios físicos implícitos en el problema, anotar las cantidades conocidas y las incógnitas.

Seleccionar una ecuación que pueda utilizarse para encontrar la incógnita y sustituir los valores dados con las unidades apropiadas (datos del problema) en la ecuación.

Obtener un valor numérico para la incógnita y luego verificar ¿concuerdan las unidades obtenidas? ¿la respuesta es razonable? ¿el signo más o el signo menos es apropiado?

Después de estos buenos consejos, comencemos a aproximarnos al estudio de la Física…

Magnitudes. Medición

2

Page 3: 1   introducción

Los sentidos (la vista, el oído, el tacto, el olfato, el gusto) nos brindan una poderosa ayuda para investigar lo que sucede a nuestro alrededor, sin embargo, los sentidos necesitan “ayuda”. Por ejemplo, ¿Cómo ven nuestros ojos estas dos líneas? ¿son de igual o de distinta longitud? ¿Cuál es la más larga? (responder a esta última pregunta verificando con una regla graduada).

Para saber si la temperatura del aire que nos rodea, depender de los sentidos no es lo más aconsejable, el que tiene calor dirá que la temperatura es alta y el que tiene frío que es baja:

Mejor será recurrir a un termómetro para “ayudar” a nuestros sentidos…El termómetro y la regla graduada son instrumentos de medición.Si queremos medir el tiempo (horas, minutos y segundos) ¿qué instrumentos sugerís?

Decimos que la magnitud a medir es el tiempo. Horas (h), minutos (min) y/o segundos (s) son las unidades de la magnitud tiempo. (Mencioná algunas unidades de la magnitud temperatura).

Si la magnitud a medir es la longitud, usaremos reglas graduadas, cintas métricas, calibres, tornillos micrométricos, etc. Algunas unidades de longitud son: metro, centímetro, milímetro, pulgada, etc. El esquema siguiente representa la medición del diámetro de una moneda. Si la lectura, es de 2 cm ¿cómo se la puede expresar en milímetros? ¿Y en metros? ¿Qué medirías usando un calibre o un tornillo micrométrico?

A veces se necesita medir volúmenes. Se pueden usar probetas graduadas para medir volúmenes de líquidos. Las unidades posibles son el metro cúbico (m3), el litro (l), múltiplos y submúltiplos de las anteriores, etc.

3

Supongamos que el volumen medido es 70 cm3. Expresarlo en mm3 y en dm3:

Page 4: 1   introducción

Si queremos medir el volumen de un sólido, puede suceder que el sólido tenga una forma regular o que no la tenga. ¿Cómo harías para calcular el volumen de esta barra rectangular?

25 cm (largo)

15 cm 5 cm (ancho) (alto)

Expresar su valor en cm3 y en m3.

¿y para calcular el volumen de este trozo de plastilina? (Si no se te ocurre tu profesor te lo va a explicar).

Otra magnitud que podés querer medir es la masa de algún objeto, en ese caso un instrumento adecuado para medirla es la balanza. Las unidades más usuales son el kilogramo (kg) y el gramo (g), aunque también hay otras como tonelada, slug (equivale a 14,59 kg y es una medida inglesa), etc.

En la antigüedad, magnitudes como longitud, volumen, peso y tiempo también se medían, pero las unidades eran un “poquito” diferentes de las que hoy usamos. El pie, era una medida de longitud usada por los griegos y los romanos y se correspondía con la longitud de un sandalia romana, el codo era usado por los egipcios y se correspondía con la longitud que iba desde el codo hasta la punta de los dedos de la mano. Fueron los franceses los que empezaron a construir el sistema métrico, después de la Revolución, extendiéndose por toda Europa con los ejércitos de Napoleón Bonaparte, aunque los ingleses se negaron a aceptarlo (recordemos que franceses e ingleses era archienemigos). Evidentemente, si se va a informar acerca de los resultados de una medición a alguien que desea reproducir esa medición, debe definirse un patrón contra el que comparar. No tendría sentido que un visitante de otro planeta nos hablara de una longitud de 8 “glitches” si no conocemos el significado de la unidad “glitches”. Si alguien informa que una pared tiene 2 metros de altura y nuestra unidad de longitud se define como 1 metro, sabemos entonces que la altura de la pared es el doble de nuestra unidad de longitud fundamental. En 1960 un comité internacional estableció un conjunto de patrones para ciertas cantidades llamadas fundamentales. El sistema que se integró es una adaptación del sistema métrico y recibe el nombre de Sistema Internacional (SI) de unidades. En el siguiente cuadro te presentamos las siete unidades básicas del SI. Unidades básicas porque se cree que estas cantidades constituyen el número mínimo de cantidades base, necesarias para describir cabalmente todo lo que se observa o se mide en la naturaleza. Las unidades que se pueden expresar en términos de combinaciones de unidades base se llaman unidades derivadas. Un automóvil por ejemplo, nos informa la rapidez con que viajamos, es decir nos permite saber la longitud del viaje en kilómetros y el tiempo en horas que tardamos en recorrer esa longitud. De esta forma la unidad de esa rapidez es km/h, otros ejemplos de magnitudes derivadas son el volumen, la densidad, etc. La Argentina adhirió al SI, adoptándolo bajo el nombre de Sistema Métrico Legal Argentino (SIMELA).

Magnitudes Fundamentales Unidad(Símbolo)

Nombre

Longitud m metroMasa kg kilogramoTiempo s segundoIntensidad de corriente eléctrica A AmpèreTemperatura K KelvinCantidad de materia mol molIntensidad luminosa cd candela

4

Page 5: 1   introducción

Conversión de unidades

A veces es necesario convertir las unidades de una cantidad en otras (pero siguen expresando la misma cantidad), por ejemplo: Una persona tiene una estatura de 1,75m, expresar dicha altura en cm. La respuesta sería 175 cm. ¿cómo se llega a esa respuesta? Escribir el cálculo realizado.

Magnitudes escalares y vectoriales

Hasta ahora hemos mencionado algunas magnitudes como masa, volumen, tiempo, temperatura, rapidez, longitud, distancia, etc.; todas ellas son magnitudes escalares. ¿Qué significa esto? Simplemente que quedan perfectamente definidas indicando una cantidad o número acompañada de la unidad correspondiente, por ejemplo, una persona tardó en caminar 15 cuadras, 25 minutos. Si le preguntamos cuánto tiempo demoró en caminar esas cuadras, nos responderá que el tiempo empleado fue de 25 minutos y no necesitará agregar ningún dato más. Decimos entonces que el tiempo es una magnitud escalar porque sólo necesitamos indicar un número (en nuestro ejemplo 25) acompañado de una unidad (minutos en nuestro ejemplo).

Ahora prestemos atención al siguiente diálogo entre dos personas:-Disculpe, ¿sabe dónde hay una oficina de correos?-Sí.-Bien -algo molesto-, ¿podría decírmelo?-¡Claro!-Dígamelo entonces, por favor –insiste la víctima, que cree haber descubierto por fin la clase de locura de su interlocutor.-Queda a tres cuadras para allá –le responde, obediente, el pesado sujeto, sin levantar la mirada del suelo ni hacer ningún gesto que permita saber a qué lugar se refiere.Es evidente que el señor se quedó sin saber dónde se hallaba la oficina de correos, a menos que recorriera una circunferencia completa de radio equivalente a tres cuadras. Le faltaban más datos…

Si empujamos una silla hacia delante, obtenemos un resultado diferente al que podríamos obtener si, aplicando la misma fuerza, tiramos de ella hacia atrás, por lo tanto con indicar sólo el valor de la fuerza que empleamos para moverla, tampoco será suficiente.

Estos dos ejemplos que mencionamos, son dos casos de magnitudes diferentes a las escalares. No son magnitudes escalares porque con un número y una unidad no quedan bien definidas.Son lo que llamamos magnitudes vectoriales. Cuando le explicamos a una persona cómo llegar a cierto lugar (o sea el desplazamiento que debe realizar), no basta con decirle que queda a dos kilómetros, además hay que indicarle hacia dónde ir, por ejemplo, hacia el norte. Podemos concluir entonces, que el “desplazamiento” es una magnitud vectorial, al igual que la “fuerza”. Otros ejemplos de magnitudes vectoriales son: velocidad, campo eléctrico, aceleración. Un vector es un segmento orientado (flecha) que tiene un cierto tamaño al que llamamos intensidad o módulo, una dirección (representada por la recta) y un sentido (representado por la punta de la flecha). Un ejemplo cotidiano de esto sería el cartel que nos informa el nombre de una avenida y que además tiene una fecha que indica el sentido de circulación permitida.

Representación de un vector:

Intensidad o módulo

sentido

5

dirección

Page 6: 1   introducción

Guía: Magnitudes

1) ¿Cuántos cm hay en 25 m?

2) ¿Cuántos cm3 hay en 1 m3?

3) ¿Cuántos segundos hay en una hora? ¿y en un mes de 30 días?

4) Expresar una rapidez de 50 km/h en m/s.

5) Expresar una rapidez de 50 m/s en km/h

6) Expresar una rapidez de 15 cm/min en m/s

7) ¿A cuántos dm2 equivale una superficie de 62 cm2?

8) Investigar cuál es la equivalencia entre litro y cm3.

9) ¿Son razonables los siguientes enunciados? a) Se requieren 300 litros de nafta para llenar un tanque. b) Un jugador de básquet tiene 225 cm de estatura. c) El área de la puerta de un dormitorio es de 120 m2.d) Al calcular la rapidez media de un corredor a campo traviesa, un estudiante obtiene 25

m/s

10) En promedio, el corazón humano late 70 veces por minuto (ritmo cardíaco). En promedio ¿Cuántas veces late el corazón durante una vida de 70 años?

6