Capitulo 2 analisis de aguas

14
CAPITULO 2. ANALISIS DE AGUAS 2.1 GENERALIDADES El agua es un componente de nuestra naturaleza que ha estado presente en la Tierra desde hace más de 3.000 millones de años, ocupando tres cuartas partes de la superficie del planeta. Su naturaleza se compone de tres átomos, dos de oxígeno que unidos entre si forman una molécula de agua, H2O, la unidad mínima en que ésta se puede encontrar. La forma en que estas moléculas se unen entre sí determinará la forma en que encontramos el agua en nuestro entorno; como líquidos, en lluvias, ríos, océanos, etc., como sólidos en témpanos y nieves o como gas en las nubes. El aspecto más sorprendente y característico de nuestro planeta, visto desde el espacio, es la gran cantidad de agua que Características del Agua Es incoloro e inodoro. Es buen conductor de la electricidad. Es buen disolvente. No tiene forma y adquiere la forma del Recipiente. Se presenta en tres estados naturales sólido, líquido y gaseoso. Propiedades del agua El agua por ser materia, pesa y ocupa un lugar en el espacio. Está conformada por dos elementos: el hidrógeno (H) y el oxígeno (O2) El agua se puede presentar en la naturaleza en tres estados físicos: sólido, líquido y gaseoso. El agua pura no tiene olor, sabor y olor. No tiene forma y toma la forma del recipiente que lo contiene. El agua es buen disolvente de muchas sustancias. COMPOSICIÓN DEL AGUA Y ESTRUCTURA MOLECULAR Consiste en 2 átomos de hidrógeno y uno de oxígeno y cada átomo de hidrógeno está fijado al oxígeno con un enlace covalente sencillo. La longitud entre los dos núcleos de hidrógeno es muy pequeña y la molécula no es lineal, tiene forma de casi un tetraedro con un ángulo de 105° entre los H. Esta estructura la hace polar o sea que tiene mucha carga negativa acumulada en un extremo y poca carga negativa en el otro extremo o polo positivo. El hombre siempre ha estado interesado en la manera en que esta agua se relaciona con la atmósfera y la superficie terrestre, originando nubes, lluvia, nieve, corrientes, evaporación e infiltración, al igual de la relación con el interior de la tierra. El agua es una de las sustancias más importantes en nuestro planeta ya que en ella se formó la vida hace millones de años y sin ella no podríamos sobrevivir, tomando en cuenta que es un elemento fundamental en todos los organismo vivientes y en el funcionamiento de la Tierra. Para muchos investigadores el agua es un compuesto muy singular y una de las sustancias naturales más notables de la naturaleza, la cual posee una gran variedad de propiedades físicas y químicas, mostrándose en 3 estados fundamentales: Sólido,

Transcript of Capitulo 2 analisis de aguas

Page 1: Capitulo 2 analisis de aguas

CAPITULO 2.

ANALISIS DE AGUAS

2.1 GENERALIDADES

El agua es un componente de nuestra naturaleza que ha estado presente en la Tierra

desde hace más de 3.000 millones de años, ocupando tres cuartas partes de la superficie

del planeta. Su naturaleza se compone de tres átomos, dos de oxígeno que unidos entre

si forman una molécula de agua, H2O, la unidad mínima en que ésta se puede encontrar.

La forma en que estas moléculas se unen entre sí determinará la forma en que

encontramos el agua en nuestro entorno; como líquidos, en lluvias, ríos, océanos, etc.,

como sólidos en témpanos y nieves o como gas en las nubes. El aspecto más

sorprendente y característico de nuestro planeta, visto desde el espacio, es la gran

cantidad de agua que Características del Agua

Es incoloro e inodoro. Es buen conductor de la electricidad. Es buen disolvente. No

tiene forma y adquiere la forma del Recipiente. Se presenta en tres estados naturales

sólido, líquido y gaseoso.

Propiedades del agua

El agua por ser materia, pesa y ocupa un lugar en el espacio. Está conformada por dos

elementos: el hidrógeno (H) y el oxígeno (O2) El agua se puede presentar en la

naturaleza en tres estados físicos: sólido, líquido y gaseoso. El agua pura no tiene olor,

sabor y olor. No tiene forma y toma la forma del recipiente que lo contiene. El agua es

buen disolvente de muchas sustancias.

COMPOSICIÓN DEL AGUA Y ESTRUCTURA MOLECULAR

Consiste en 2 átomos de hidrógeno y uno de oxígeno y cada átomo de hidrógeno está

fijado al oxígeno con un enlace covalente sencillo. La longitud entre los dos núcleos de

hidrógeno es muy pequeña y la molécula no es lineal, tiene forma de casi un tetraedro

con un ángulo de 105° entre los H. Esta estructura la hace polar o sea que tiene mucha

carga negativa acumulada en un extremo y poca carga negativa en el otro extremo o

polo positivo.

El hombre siempre ha estado interesado en la manera en que esta agua se relaciona con

la atmósfera y la superficie terrestre, originando nubes, lluvia, nieve, corrientes,

evaporación e infiltración, al igual de la relación con el interior de la tierra. El agua es

una de las sustancias más importantes en nuestro planeta ya que en ella se formó la vida

hace millones de años y sin ella no podríamos sobrevivir, tomando en cuenta que es un

elemento fundamental en todos los organismo vivientes y en el funcionamiento de la

Tierra.

Para muchos investigadores el agua es un compuesto muy singular y una de las

sustancias naturales más notables de la naturaleza, la cual posee una gran variedad de

propiedades físicas y químicas, mostrándose en 3 estados fundamentales: Sólido,

Page 2: Capitulo 2 analisis de aguas

líquido y gaseoso, y en la enorme escala de temperaturas que se presenta en el mar. El

aspecto más sorprendente y característico de nuestro planeta, visto desde el espacio, es

la gran cantidad de agua que tiene su superficie. Por eso la tierra ha sido llamada El

planeta de agua.

2.2 CONCEPTO DE DUREZA DE AGUAS

Dureza. La dureza del agua se define como la suma de las concentraciones de calcio y

magnesio, expresadas como CaCO3 en mg/L. El rango de dureza varía entre 0 y cientos

de mg/L, dependiendo de la fuente de agua y el tratamiento a que haya sido sometida.

La dureza de las aguas naturales es producida sobre todo por las sales de calcio y

magnesio, y en menor proporción por el hierro, el aluminio y otros metales. La que se

debe a los bicarbonatos y carbonatos de calcio y magnesio se denomina dureza temporal

y puede eliminarse por ebullición, que al mismo tiempo esteriliza el agua. La dureza

residual se conoce como dureza no carbónica o permanente. Las aguas que poseen esta

dureza pueden ablandarse añadiendo carbonato de sodio y cal, o filtrándolas a través de

ceolitas naturales o artificiales que absorben los iones metálicos que producen la dureza,

y liberan iones sodio en el agua (véase Intercambio iónico). Los detergentes contienen

ciertos agentes separadores que inactivan las sustancias causantes de la dureza del agua.

En generalmente los iones de Ca y Mg se los conoce como los formadores de la dureza

del agua para lo cual existe una evaluación de odh (grados alemanes)

0-4 odh agua muy blanda

4-8 odh agua blanda

8-18 odh agua semidura

18-30 odh agua dura

> 30 odh agua muy dura

2.2.1 Dureza total.- la dureza total es la suma de de la dureza temporal y

dureza permanente.

DTOTAL = DPERMANENTE + DTEMPORAL

para esta determinación los cationes que producen dureza (Ca,Mg) son complexados

por adición del etilendiamintetraacetato disodico EDTA el punto final es detectado por

medio de un indicador que es el negro de eriocromo T (NET) el cual en presencia de

calcio y magnesio toma un color rojo vinoso y vira a azul .

Procedimiento.-

- se toma 50 ml de muestra con una pipeta volumétrica en un erlenmeyer.

- Se añade de 2ml de buffer (solución amortiguadora) 16.9 gr de NH4Cl +143

ml de amoniaco el ph de la muestra debe ser 10

Page 3: Capitulo 2 analisis de aguas

- Se agrega el indicador NET y se titula con la solución de EDTA hasta que

desaparezca el color rojo vinosa y vire a azul.

1ml de EDTA -- 1mg de Ca CO3

PM EDTA= 372,24 --1M

Pesamos 1,01025 gr. De Ca CO3 pa. Para un litro

1010,25m gr. De Ca CO3 ------------------- 1000 ml

X ------------------------10 ml x = 10.1025 mg De Ca CO3

10.1025 mg De Ca CO3 -------------- 9.75ml EDTA

X -- ---------- 1 ml EDTA X= 1.036153 mg Ca CO3/ml

EDTA

2.2.2 Dureza Temporal .- esta dureza se debe a la existencia de Carbonatos y

bicarbonatos de calcio y magnesio, puede ser eliminado por ebullición del agua

,también se la conoce como dureza de carbonatos.

DTEMPORAL = Ca (HCO3)2 , Mg (HCO3)2

Ca (HCO3)2 + O ------- Ca CO3 + CO2 + H2O

Mg (HCO3)2+ O ------- Mg CO3 + CO2 + H2O

2.2.3 Dureza Permanente .- esta determinado por sales de Calcio y Magnesio como

cloruros, sulfatos, y nitratos . Cl- , SO4, NO3..

La dureza permanente no puede ser eliminada por ebullición. La dureza permanente se

analiza de la siguiente manera:

- Se toma una alicuota de 50 ml , en un erlenmeyer (se lleva a un volumen de 100

ml con agua destilada) se hierve durante 15 mint. Se enfría , se completa con agua

destilada hasta 100 ml lego se añade la solución amortiguadora, el indicador NET y se

valora con solución EDTA 0.01M hasta cambio de color.

Dureza permanente mg/lt de Ca CO3 = AXB X1000

ml “M”

Para eliminar la dureza permanente se trata con:

Ca SO4 +Na2 CO3 ------- Ca CO3 + Na2 SO4

Mg SO4 +Na2 CO3 ------- Mg CO3 + Na2 SO4

Page 4: Capitulo 2 analisis de aguas

2.2.4 Toma de muestra.- para la toma de muestra de agua se bebe tener la precaución

de que sea homogénea y representativa, y por sobre todo que en la extracción no se

modifiquen las propiedades del agua a analizar.

Es necesario recoger la muestra de agua en envases de plástico o de vidrio incoloro

con tapón esmerilado. En general los recipientes para muestras deben ser elegidos en

base a tres consideraciones.

a) el material del recipiente puede causar contaminación en las muestras por Ejm.

El sodio y la sílice puede lixiviarse del vidrio, y las sustancias orgánicas del

plástico.

b) Las substancias a determinar pueden ser absorbidas por las paredes del

recipiente. Por ejm. Trazas metálicas por los procesos de cambio de iones en

superficies de vidrio.

c) Los constituyentes de la muestra pueden reaccionar con el recipiente . Por ejm.

El fluoruro puede reaccionar con el vidrio.

Por regla general deben usarse botellas de vidrio cuando van a determinarse

compuestos orgánicos y de polietileno y vidrio para determinaciones de dureza,

cloruros, alcalinidad.

La limpieza del material debe realizarse ya sea con HCL cp. y KMnO4 los recipientes

de plástico y H2S04 o una mezcla sulfocrómica los envases de vidrio, sin embargo el

analista debe ser advertido de que dichos envases deben ser cuidadosamente enjuagados

, 3 veces recomendablemente con agua común y finalmente con agua destilada o

desionozada.

2.3 Planificación.- para la planificación se debe programar puntos de muestreo para tener

una muestra representiva. Además se debe definir una estrategia proporcionando instrucciones

específicas.

2.3.1 Recolección.- para todo tipo de análisis es necesario adoptar todas las precauciones

para que sea representativa la muestra de agua que se desea estudiar y para evitar la

contaminación accidental durante el muestreo.

Para recoger la muestra de agua de un estanque, río o deposito se sumerge el recipiente

en el agua internamente por debajo de las superficie, evitando recoger el agua

superficial, generalmente la toma de muestra se realiza en la parte media.

Cuando se trata de un pozo o manantial hondo la toma de muestra se realiza de la

siguiente manera , se sujeta el frasco con una cuerda se baja hasta el nivel más bajo del

agua se saca el recipiente y se tapa de inmediato, se guarda la muestra en un sitio

fresco 4o C.

Si el agua a analizar es de un sistema de distribución, se abre el grifo, se deja correr 4 ó

5 minutos (ya que el volumen próximo a la punta de la canilla sufre corrosión) y se

toma la muestra.

Cuando la muestra proceda de ríos, arroyos, lagos, estanques, etc., se tratará de efectuar

Page 5: Capitulo 2 analisis de aguas

las tomas lejos de las costas y a mediana profundidad, evitando hacerlo en sitios

afectados por aportes accidentales de otros cursos y descargas de líquidos industriales,

pluviales o cloacales.

Siempre se destapará el recipiente y rápidamente será sumergido a una profundidad de

20 cm., tomándolo del cuello. Si hay corriente, la boca del recipiente se orientará en

sentido contrario a ella. Si no hay corriente, se moverá el recipiente en semicírculo. Una

vez lleno, se levantará rápidamente y se tapará de inmediato.

Si el agua a analizar es de un pozo excavado o fuente similar, el procedimiento es el

mismo que en el caso anterior. Se puede atar una pesa en la parte externa del recipiente

de recolección, para facilitar el procedimiento.

En todos los casos se llena completamente el envase y se tapa. Es importante que no

quede cámara de aire en el envase. Mantener la tapa en mano. Rotular y enviar al

laboratorio.

La muestra recogida se identificará debidamente; de preferencia fijando una etiqueta

rotulada al recipiente. La identificación deberá incluir: nombre del muestreador,

remitente, solicitante, fecha de la toma, lugar de procedencia, tipo de análisis requerido

(aptitud para riego, consumo animal), fuente de provisión (si es de origen superficial

indicar río, arroyo, laguna, estanque o lo que corresponda). Si es de origen subterráneo

indicar pozo surgente, semisurgente, de balde, etc., profundidad de la napa, distancia y

orientación de los pozos negros más próximos y todo otro dato que se considere de

interés.

El envío debe ser en forma refrigerada ó a temperatura no muy alta, ya que hay varios

parámetros (nitratos, nitritos, amoníaco) que pueden modificarse por efecto del calor

debido a la proliferación microbiana.

La muestra debe ser enviada al laboratorio inmediatamente después de la toma, en caso

contrario debe mantenerse refrigerada.

Cuanto menor sea el tiempo transcurrido desde la toma hasta el envío al laboratorio,

más exactos serán los resultados obtenidos.

2.4 Análisis fisicoquímicos.- el objetivo básico de un laboratorio de análisis de aguas es

dar la producción de datos exactos que describan las características físicas y químicas

de la muestra de agua que se estudia.

Para un análisis físico químico se requieren 2 Litros de agua.

Preferentemente se debe tomar la muestra en un envase de vidrio; puede usarse envase

de plástico.

Es necesario que el envase se encuentre perfectamente limpio (para esto debe lavarse

con jabón o detergente, enjuagar varias veces con agua potable y por último enjuagar

con el agua a analizar), y que su tapa o cierre no permita la salida del líquido, ni

tampoco la entrada de elementos contaminantes.

Solidos totales.- los sólidos presentes en el agua pueden ser materia orgánica e inorgánica ya sea en suspensión o pueden ser disueltos.

Los sólidos comúnmente se clasifican en suspendidos, disueltos y totales.

Page 6: Capitulo 2 analisis de aguas

Todas la materia, excepto el agua contenida en los materiales líquidos, es

considerada como materia sólida. La definición más generalizada de sólidos es la

que se refiere a toda materia sólida que permanece como residuo de evaporación y

secado bajo una temperatura entre 103-105 grados centígrados.

Sólidos disueltos: Los sólidos disueltos, a veces denominados sólidos filtrantes, son

aquellos que pasan a través del medio filtrante cuando se determinan los sólidos

suspendidos.

Sólidos disueltos totales: Indicador de la calidad de sales y sólidos disueltos en una

muestra de agua. Existe una relación directa entre los sólidos disueltos totales y la

conductividad, ya que ambos miden los compuestos iónicos disueltos.

Sólidos filtrables: Son aquellos que atraviesan un filtro que puede retener sólidos de

diámetro mayor a una micra.

Sólidos flotantes/material flotante: Grasas, sólidos, líquidos y espuma removibles

de la superficie de un líquido.

Sólidos sedimentales: Se determinan como el volumen de sólidos en un litro de

desecho, que sedimenta después de una hora en un cono Imhoff. Se expresa en

mililitros por litro.

Sólidos suspendidos: Material que permanece en suspensión en el agua residual y

se determina como la cantidad de material retenido después de realizada la

filtración de una muestra.

Sólidos suspendidos volátiles: Representan la fracción de sólidos suspendidos que

se volatiliza a 600 grados centígrados.

Sólidos totales: Es la cantidad de materia que permanece como residuo después de

una evaporación, entre 103 y 105 grados centígrados; de estos hacen parte los

sólidos suspendidos y los sólidos disueltos.

Determinación de sólidos totales –Residuo total.- el residuo total es la suma de los

sólidos en suspensión y sólidos disueltos contenidos en el agua involucra la materia

orgánica e inorgánica .

Page 7: Capitulo 2 analisis de aguas

Procedimiento.-

- 1ro. Se tara la capsula o un vaso o sea previamente se calcina a 550oC durante 1

hora, se enfría , se desca y se pesa.

- Se agita y se homogeniza la muestra y se toma una alícuota de 5oml -100ml

- Se transfiere la muestra a la capsula y se evapora, se puede utilizar un horno

desecador pero la temperatura deberá ser baja mas o menos 98oC para evitar

que hervir (hierva) y salpique.

- Luego secar la muestra 2 horas a 105oC

- Enfriar la capsula en un desecador y pesar

Sólido total mg/lt = (A-B) *1000

ml “M”

donde:

A=peso de la capsula + “M”

B= peso de la capsula

Determinación del PH: el PH es un término universalmente usado para expresar la

intensidad de la condición ácida o alcalina de una muestra de agua. El pH se mide con

un PH metro o varillas indicadoras de PH.

Determinación de conductividad.- la conductividad es medida de la capacidad que

tiene una muestra de agua de transmitir corriente eléctrica. Este parámetro depende de

la concentración total de de substancias iónicas disueltas en el agua. La conductividad

se mide con un conductímetro. Us/cm.

Peso específico del agua.- se lo determina con un picnómetro.

DETERMINACIÓN DE CALCIO Y MAGNECIO

- Homogenizar bien la muestra y con una pipeta volumétrica tomar 50 ml de

muestra o menos.

- Colocar la muestra en un erlenmeyer de 250 ml

- Añadir solución alcali de Na OH hasta pH 12 -13.

Page 8: Capitulo 2 analisis de aguas

- Añadir 0,2 gr. de indicador murexida .

- Llenar la bureta con solución valorada de EDTA

- Titular la muestra hasta que el indicador vire de color rosa a púrpura.

- Anotar los ml dastados.

mg/lt de Ca = AXB X1000

ml “M”

mg/lt de Ca = AXB X400,8

ml “M”

A = ml gastados de EDTA

B = Factor EDTA mg de Ca equivalente a 1ml de EDTA

Determinación de Alcalinidad.- La alcalinidad de un agua se denomina al consumo

de ácido para neutralizar sus bases.

La alcalinidad es importante en el control de aguas, el contenido de carbonato,

bicarbonato e hidróxido se determina por la titulación de una alicuota de la muestra con

solución valorada de ácido, estableciendo los puntos sucesivos de equivalencia del

bicarbonato y ácido carbónico.

En el agua la alcalinidad se debe generalmente a la presencia de hidróxido, carbonatos

y bicarbonatos, utilizando dos indicadores, Pfenoftaleina (C20 H14 O4) da color

rosado en presencia de hidróxido o carbonato. Anaranjado de metilo (CH3)2NC6H4N:

NC6SO3Na) es amarillo en presencia de cualquier tipo de alcalinidad.

El primer punto (PH 8.3) se determina usado como indicador fenolftaleina y se le

atribuye el gasto el gasto del titulante a la neutralización de los hidróxidos y paso de los

carbonatos y bicarbonatos.

El segundo punto (PH 4,5) puede ser ligeramente afectado por la presencia de sales

disueltas y se determina con el indicador metil naranja , el gasto del titulante

corresponde al usado en la neutralización de los bicarbonatos a anhidro carbónico.

La alcalinidad en el agua tanto natural como tratada, usualmente es causada por la

presencia de iones carbonatos ( CO3=

) y bicarbonatos ( HCO3-

), asociados con los

cationes Na+, K

+ Ca

+2 y Mg

+2 .

Page 9: Capitulo 2 analisis de aguas

La alcalinidad se determina por titulación de la muestra con una solución valorada de

un ácido fuerte como el HCl, mediante dos puntos sucesivos de equivalencia, indicados

ya sea por medios potenciométricos o por medio del cambio de color utilizando dos

indicadores ácido-base adecuados.

-Almacenaje de la muestra

La muestra se deberá analizar de inmediato. Los resultados de muestras almacenadas no

son representativos.

- Campo de aplicación

Este método, es aplicable para la determinación de la alcalinidad de carbonatos y

bicarbonatos, en aguas naturales, domésticas , industriales y residuales.

La medición de la alcalinidad, sirve para fijar los parámetros del tratamiento químico

del agua, así como ayudarnos al control de la corrosión y la incrustación en los sistemas

que utilizan agua como materia prima o en su proceso.

2.- Principios

En este método, la alcalinidad se determina por titulación de la muestra con una

solución valorada de un ácido fuerte como el HCl, mediante dos puntos sucesivos de

equivalencia, indicados por medio del cambio de color de dos indicadores ácido-base

adecuados.

Cuando se le agrega a la muestra de agua indicador de fenolftaleína y aparece un color

rosa, esto indica que la muestra tiene un pH mayor que 8.3 y es indicativo de la

presencia de carbonatos.

Se procede a titular con HCl valorado, hasta que el color rosa vire a incoloro, con esto,

se titula la mitad CO3=.

En enseguida se agregan unas gotas de indicador metil naranja y se continua titulando

con HCl hasta la aparición de una color rojo salmón.

Con esto, se titula los bicarbonatos (HCO3-)

y la mitad restante de los carbonatos

(CO3=).

Si las muestras de agua tienen un pH menor que 8.3 la titulación se lleva a cabo en una

sola etapa.

Page 10: Capitulo 2 analisis de aguas

1.7 mg de OH- / ml de HCL 0.1N

3.0 mg de CO3= / ml de HCL 0.1N

6.1mg de HCO3- / ml de HCL 0.1 N

- Interferencias

El color de la muestra, alta concentración de cloro y la formación de precipitados al

titular la muestra, interfieren, ya que pueden enmascarar el cambio de color del

indicador.

Procedimiento

Colocar 50 ml de muestra de agua en un matraz Erlenmeyer de 125 ml.

Agregar 3 gotas de indicador fenolftaleína al 0.25%

Si aparece un color rosa, titular con HCl 0.01N hasta un vire incoloro, si no

aparece el color rosa, reportar carbonatos igual a cero.

Agregar 3 metil naranja continuar titulando con HCl 0.01N hasta la color rojo

salmón

Calcular

Cálculos

mg/Lt OH - = A x B x 1000 mg/Lt CO3 = A x B x 1000

ml “muestra ml “muestra”

mg/Lt H CO3 = A x B x 1000

ml “muestra

donde:

A = ml de HCL 0.1N gastados

Page 11: Capitulo 2 analisis de aguas

B = factor 1.7 mg de OH/ml de HCL ;

3.0 mg de CO3/ml de HCL

6.1 mg de HCO3/ml de HCL

Determinación de Sulfatos

Generalidades

Los sulfatos se encuentran en las aguas naturales en un amplio intervalo de

concentraciones.

Las aguas de minas y los efluentes industriales contienen grandes cantidades de

sulfatos provenientes de la oxidación de la pirita y del uso del ácido sulfúrico.

Los estándares para agua potable del servicio de salud pública tienen un límite máximo

de 250 ppm de sulfatos, ya que a valores superiores tiene una acción "purgante ".

Los límites de concentración, arriba de los cuales se percibe un sabor amargo en el

agua son:

Para el sulfato de magnesio 400 a 600 ppm y para el sulfato de calcio son de 250 a

400 ppm.

La presencia de sulfatos es ventajosa en la industria cervecera, ya que le confiere un

sabor deseable al producto.

En los sistemas de agua para uso doméstico, los sulfatos no producen un incremento en

la corrosión de los accesorios metálicos, pero cunado las concentraciones son superiores

a 200 ppm, se incrementa la cantidad de plomo disuelto proveniente de las tuberías de

plomo.

Almacenaje de la muestra

Hay que anotar, que si la muestra contiene materia orgánica y cierto tipo de bacterias (

sulfato reductoras), los sulfatos son reducidos por las bacterias a sulfuros. Para evitar lo

anterior, las muestras que tengan alta contaminación, se deben almacenar en

refrigeración o tratadas con un poco de formaldehido.

Page 12: Capitulo 2 analisis de aguas

Campo de aplicación

Este método analiza sulfatos por precipitación del Ba Cl2 2H2O.

Principios

La muestra es tratada con cloruro de bario, en medio ácido, formándose un precipitado

blanco de sulfato de bario.

SO4=

+ BaCl2. --------> BaSO4 + 2Cl-

Interferencias En este método las principales interferencias son los sólidos suspendidos, materia

orgánica y sílice, las cuales pueden ser eliminadas por filtración antes del análisis de

sulfatos.

Procedimiento

Colocar 50 ml de la muestra de agua en un vaso de precipitación..

Añadir 10 ml de HCl en presencia de metil naranja .

Se lleva a ebullición

Se precipita con BaCl2 . 2H2O 10%

Reposar 24 Hrs.

Filtrar, lavar con agua caliente hasta desalinizar.

Calcinar en crisol de porcelana previamente tarado.

Cálculos

Mg/lt SO4 = A x B x 1000

ml “M”

A = Peso precipitado y calcinado

B = Factor

Page 13: Capitulo 2 analisis de aguas

DETERMINACIÓN DE CLORUROS

GENERALIDADES

Las aguas naturales contienen cloruros en concentraciones que varían ampliamente, los

cloruros en el agua provienen de sales como el cloruro cálcico, el magnesio y el sodio.

Las aguas de vertientes y montañas contienen usualmente una concentración baja de

cloruros, mientras que aguas de ríos o subterráneas contienen considerable cantidad de

cloruros.

SOLUCIONES NECESARIAS

Solución AgNO3 0.01 N Disolver 1.689 g de AgNO3 en agua destilada y aforar a 1000 ml.

Solución NaCl 0.01 N Disolver 0.5846 g de NaCl secado a 110° C. durante 2 hrs., en agua destilada y aforar a

1000 ml.

Indicador de K2CrO4 al 10 % Disolver 10g K2Cr04 en agua destilada y aforar a 100 ml.

Estandarización

Colocar 15.0 ml de la solución de NaCl 0.01N en un matraz Erlenmeyer de 125 ml. y

agregar 3 gotas de cromato de potasio. La muestra adquiere un color amarillo, titular

con solución de AgNO3 hasta que aparezca el vire color rojo ladrillo.

Calcular la normalidad:

NaCl AgNO3

V1 x N1 = V1xN2

V1xN1

N2= ---------

V2

Donde:

V1 = Volumen de la solución de NaCl

N1 = Normalidad de la solución de NaCl

Page 14: Capitulo 2 analisis de aguas

V2 = Volumen de la solución de AgNO3 gastado en la titulación

N2 = Normalidad de la solución de AgNO3

Procedimiento

1.- Colocar 25 ml. de la muestra de agua en un matraz erlenmeyer de 125 ml.

3.- Agregar 3 gotas K2CrO4 al 10 %

4.- Titular con AgNO3 0.01 N hasta el vire de amarillo a rojo ladrillo.

Cálculos

V X N X 1000

mg/l de Cl = -----------------------

ml de muestra

Donde:

V = ml de AgNO3

N = Normalidad del AgNO3

2.5 Evaluación e interpretación de resultados .- Se utilizó dos métodos

gravimétricos y volumétricos para la evaluación de los datos en el análisis del agua:

- Se hizo la comparación de datos obtenidos en laboratorio con los parámetros de

resultados del agua de la red

Existen tres principales criterios de calidad de agua (en el ambiente receptor) que se

pueden considerar en esta evaluación como:

- Aguas de abastecimiento doméstico con simple desinfección

- Aguas para riego de vegetales de consumo crudo y bebida de animales); y

- Aguas de zonas de preservación de fauna acuática y pesca recreativa o comercial

Con estos resultados de análisis químicos, se ha procedido a efectuar balances de agua y

de carga sobre ciertos elementos.

La siguiente etapa importante ha sido la visita a SELA, donde se efectúan análisis muy

específicos tales como la verificación de los impactos, toma de muestras , desinfección

y bacteriología.