CENTRO DE INVESTIGACIÓN EN CIENCIA APLICADA Y ......Centro de Investigación en Ciencia Aplicada y...

98
ELABORACIÓN DE POLÍMEROS BIODEGRADABLES POLIETILENO-ALMIDÓN Y ESTUDIO DE BIODEGRADABILIDAD TESIS QUE PARA OBTENER EL GRADO DE: MAESTRO EN TECNOLOGÍA AVANZADA PRESENTA: HORACIO VIEYRA RUIZ DIRECTOR DE TESIS: DR. EDUARDO SAN MARTÍN MARTÍNEZ México, D.F. Junio de 2009. CENTRO DE INVESTIGACIÓN EN CIENCIA APLICADA Y TECNOLOGÍA AVANZADA INSTITUTO POLITÉCNICO NACIONAL UNIDAD LEGARIA

Transcript of CENTRO DE INVESTIGACIÓN EN CIENCIA APLICADA Y ......Centro de Investigación en Ciencia Aplicada y...

  • ELABORACIÓN DE POLÍMEROS

    BIODEGRADABLES POLIETILENO-ALMIDÓN

    Y ESTUDIO DE BIODEGRADABILIDAD

    TESIS QUE PARA OBTENER EL GRADO DE:

    MAESTRO EN TECNOLOGÍA AVANZADA

    PRESENTA:

    HORACIO VIEYRA RUIZ

    DIRECTOR DE TESIS:

    DR. EDUARDO SAN MARTÍN MARTÍNEZ

    México, D.F. Junio de 2009.

    CENTRO DE INVESTIGACIÓN EN CIENCIA APLICADA Y

    TECNOLOGÍA AVANZADA

    INSTITUTO POLITÉCNICO NACIONAL

    UNIDAD LEGARIA

  • INSTITUTO POLITÉCNICO NACIONALSECRETARíA DE INVESTIGACiÓN Y POSGRADO

    ACTA DE REVISIÓN DE TESIS

    En la Ciudad de México siendo las 14:00 horas del día 25 del mes de

    junio del 2009 se reunieron los miembros de la Comisión Revisora de Tesis designada

    por el Colegio de Profesores de Estudios de Posgrado e Investigación de CICATA - Legariapara examinar la tesis de titulada:

    Elaboración de Polímeros biodegradables polietileno-almidón y estudio debiodegradabilidad

    Presentada por el alumno:

    VieyraApellido paterno

    RuizApellido materno

    aspirante de:

    Maestría en Tecnología Avanzada

    Después de intercambiar opiniones los miembros deAPROBACION DE LA TESIS, en virtud de que satisfacedisposiciones reglamentarias vigentes.

    la Comisión manifestaron SUlos requisitos señalados por las

    LA COMISiÓN REVISORA

    Dr. Jós

    Director de tesis

    :'~Mardo San MartinMartínez

    ,~~ j;edJw~Dra. Ruth Pedro~a Islas

    ~;AWODr. Fernando Trejo Zarraga

    DELIPN

  • INS11TUTOPOUTÉCNcoNACIONALC()()IUNAaÓN GENERAl DEPOSGRAOO EINVES1IGAClÓN

    CARTA DE CESiÓN DE DERECHOS

    En la Ciudad de México D. F. el día 25 de Junio del año 2009 el que suscribeHoracio Vieyra Ruiz alumno del programa de Maestría en Tecnología Avanzadacon número de registro 8071720 adscrito a C.I.C.A.T.A-IPN manifiesta que esautor intelectual del presente trabajo de tesis bajo la dirección del Dr. EduardoSan Martín Martínez y cede los derechos del trabajo intitulado "Elaboración depolímeros biodegradables polietileno-almidón y estudio debiodegradabilidad" al Instituto Politécnico Nacional para su difusión, con finesacadémicos y de investigación.

    Los usuarios de la información no deben reproducir el contenido textual, gráficas odatos del trabajo sin permiso expreso del autor y/o direcciones del trabajo. Estepuede ser obtenido escribiendo a la siguiente dirección Centro de Investigaciónen Ciencia Aplicada y Tecnología Avanzada del IPN. Legaría 649, Col.Irrigación, 11500 D.F. México. Teléfono 015557296300 ext 67769 Fax e-mail:~orac~evra ru~hoo.com.mx, [email protected]. Si el permiso seotorga, el usuario deberá dar el agradecimiento correspondiente y citar la fuentedel mismo.

    .','

    Vieyra Ruizv

    Nombre y Firma

  • 2

    Este trabajo se realizó en el Laboratorio de Pruebas Físicas del Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada del Instituto Politécnico Nacional bajo la dirección del Dr. Eduardo San Martín Martínez. Con el apoyo del CONACYT y PIFI.

  • 3

    A Esmeralda, por su amor, apoyo y comprensión.

    A Emilio y Santiago, mis razones para hacer las cosas.

    A mis padres y hermanos, por su confianza y cariño.

  • 4

    Mi gratitud para:

    Dios, por su amor y por su palabra. Dr. Eduardo San Martín Martínez, por su apoyo, paciencia y visión en el desarrollo de este proyecto.

    Dr. José Guzmán Mendoza, Dra. Ruth Pedroza Islas, Dr. Fernando Trejo Zarraga, Dra. Patricia Rodríguez Fragoso y Dr. José Antonio Irán Díaz Góngora por su disposición y valiosas sugerencias en la revisión de este trabajo. Adrián y Gabriel Ríos de Maquimtra, S.A., por el apoyo de la

    infraestructura para la inyección de las tazas, parte vital de este proyecto. M en C Miguel Ángel Aguilar Méndez, por esas maravillosas micrografías electrónicas. Sr. Miguel López y Biol. Isabel Contreras, por su amabilidad y soporte técnico. Matilde Villa y Julia Colín, por su amistad, regalo de este posgrado. CONACYT y el IPN por darme la oportunidad. Al pueblo de México, ningún proyecto de investigación sería realizado sin su contribución.

  • 5

    ÍNDICE

    Índice de Tablas 8

    Índice de figuras 9

    Resumen 10

    Abstract 11

    Capítulo 1. Introducción 12

    Capítulo 2. Antecedentes 15

    Capítulo 3. Justificación 35

    Capítulo 4. Materiales y Métodos 38

    Capítulo 5. Resultados y Discusión 42

    Capítulo 6. Conclusiones 92

    Referencias 95

  • 6

    ÍNDICE DE TABLAS Tabla 1. Características y aplicaciones del polietileno de baja y alta densidad.

    18

    Tabla 2. Residuos fuente de la composta producida por el Gobierno del Distrito Federal.

    24

    Tabla 3. Clasificación de polímeros biodegradables en base a su fuente

    27

    Tabla 4. Microorganismos degradadores de plásticos 34

    Tabla 5. Diseño del experimento 37

    Tabla 6. Pérdida de peso 47

    Tabla 7. Prueba de tensión 53

    Tabla 8. Prueba de elongación

    57

    Tabla 9. Punto de deformación plástica

    62

    Tabla 10. Pérdida de peso después de la exposición equivalente a 1 año a la intemperie

    84

  • 7

    ÍNDICE DE FIGURAS Figura 1. Estructura molecular del polietileno. 16Figura 2. Símbolo para la certificación de biodegradabilidad de plásticos. 19Figura 3. Biodegradación de plásticos. 20Figura 4. La mezcla de PE-Almidón puede ser inyectada por moldeo en una taza. 42Figura 5. Inyección de todas las mezclas PE almidón en el molde de una taza. 43Figura 6. Efecto del contenido de almidón en el aspecto del plástico inyectado. 44Figura 7. Recuperación de los cupones enterrados en composta. 45Figura 8. Acercamiento de un cupón recuperado de la composta. 45Figura 9. Las preparaciones de polímero PE-almidón pierden peso en función del tiempo que pasan bajo composta y el contenido de almidón

    48

    Figura 10. Pérdida de peso de diferentes mezclas de PE-Almidón. 49Figura 11. La pérdida de peso correlaciona con el contenido de almidón en la mezcla.

    50

    Figura 12. Prueba de tensión para las diferentes mezclas de PE-Almidón. 52Figura 13. Prueba de tensión para las diferentes mezclas de PE-Almidón. 53Figura 14. Prueba de elongación a la ruptura para las diferentes mezclas de PE-Almidón.

    54

    Figura 15. Prueba de elongación a la ruptura diferentes mezclas de PE-Almidón. 56Figura 16. Prueba de punto de deformación para las diferentes mezclas de PE-Almidón.

    58

    Figura 17. Prueba de punto de deformación de las diferentes mezclas de PE-Almidón.

    61

    Figura 18. Curvas de Calorimetría diferencial de barrido a los cero días. 63Figura 19. Curvas de Calorimetría diferencial de barrido a los 25 días. 65Figura 20. Curvas de Calorimetría diferencial de barrido a los 50 días. 67Figura 21. Curvas de Calorimetría diferencial de barrido a los 75 días. 68Figura 22. Curvas de Calorimetría diferencial de barrido a los 100 días. 69Figura 23. Curvas de Calorimetría diferencial de barrido a los 100 días. 70Figura 24. Micrografía electrónica de las muestras 1, 3, 4 , 6, 10 y 14 al día cero. 71Figura 25. Micrografía electrónica de la evolución de la muestra 14 (0% de almidón). 73Figura 26. Micrografía electrónica de la evolución de la muestra 4 (10% de almidón). 74Figura 27. Micrografía electrónica de la evolución de la muestra 1 (25% de almidón). 76Figura 28. Micrografía electrónica de la evolución de la muestra 10 (39.9% de almidón).

    77

    Figura 29. Micrografía electrónica de la evolución de la muestra 3 (25% de almidón). 78Figura 30. Micrografía electrónica de la evolución de la muestra 6 (50% de almidón). 79Figura 31. Micrografía electrónica de las muestras 1, 3, 4, 6, 10 y 14 a los 125 días. 80Figura 32. Prueba de tensión de las muestras sometidas al intemperismo acelerado. 82Figura 33. Porcentaje de elongación a la ruptura de las muestras sometidas al intemperismo acelerado.

    86

    Figura 34. Punto de deformación de las muestras sometidas al intemperismo acelerado.

    89

    Figura 35. Micrografía electrónica de muestras especificas: a) bolsa biodegradable; b) muestra 15 sin lavar ni secar; c) muestras después del intemperismo.

    90

  • 8

    RESUMEN

    El incremento mundial en el consumo de plásticos remarca la necesidad de tener plásticos biodegradables. Sin embargo, la disponibilidad de éstos es limitada y restringida para usos específicos debido a sus pobres propiedades físicas y mecánicas. Los plásticos biodegradables constituyen menos del 0.1% de todos los desechos plásticos, por tanto, los plásticos biodegradables han ganado importancia en los últimos años. El propósito del presente trabajo fue la preparación de mezclas polietileno (PE)-Almidón adecuadas para la producción de productos plásticos gruesos más susceptibles a la biodegradación. Se prepararon por extrusión mezclas de PE con proporciones de almidón que van de 0 a 50% bajo condiciones diferenciales de temperatura y velocidad de extrusión. Cada preparación se inyectó en el molde de una taza de 125ml. Las tazas se cortaron en cupones de 5X5cm. La biodegradabilidad de las mezclas se determinó enterrando las muestras en un apila de 50 cm de composta enriquecida de nutrientes. Después de 25, 50, 75, 100 y 125 días, las muestras se recuperaron, lavaron, secaron y pesaron. Se analizaron la pérdida de peso y las modificaciones estructurales por microscopía electrónica (SEM). Además se evaluaron las propiedades mecánicas resistencia a la tensión, elongación a la ruptura y punto de deformación plástica en un texturómetro antes y después del tratamiento de composta. Se observó una correlación entre el porcentaje de almidón contenido en la mezcla y la pérdida de peso. Las muestran con 10, 25 y 39.9% de almidón perdieron peso durante el tiempo de la evaluación. La mezcla con 39.9% exhibió la mayor pérdida de peso, siendo ésta de 2.8, 6.2, 10.16, 11.33 y 12.04% en los puntos evaluados. Mientras que la muestra de PE puro perdió solamente el 0.33% al final de los 125 días. El análisis por SEM detectó fracturas y poros, como consecuencia de la biodegradación, en las mezclas PE-Almidón, la mezcla que contiene el 39.9% de almidón fue la que más cambios en su estructura presentó. Las muestras de PE puro permanecieron prácticamente sin cambios. Las preparaciones PE-Almidón mezcladas por extrusión y moldeadas por inyección representan un método potencialmente viable para reducir el impacto de los desechos plásticos en el ambiente.

  • 9

    ABSTRACT The worldwide increment in plastic consumption underlies the need of biodegradable plastics. However, availability of such plastics is limited and restricted to specific uses due to poor physical and mechanical properties. Biodegradable plastics accounts for less than 0.1% of all plastic wastes, therefore biodegradation of plastics has assumed increasing importance in the last few years. The present study aimed at preparing polyethylene-starch blends suitable for production of thick plastic items more susceptible to biodegradation. Polyethylene-starch blends were prepared by extrusion in proportions ranging from 0 to 50% of starch under differential temperature and speed of screw the extrusion. Each preparation was injected into a 125 ml cup mold. Cups were cut into 5X5 cm samples. Biodegradability was assessed by burying samples in 50 cm pile of nutrient enriched compost. After 25, 50, 75, 100 and 125 days, samples were retrieved, washed, dried and weighed. Weight loss and microscopy analysis (SEM) in structure were investigated. Also, mechanical properties such as elongation at break, strength tension and yield point were measured in a texture analyzer on samples before and after compost treatment. A positive correlation between percentage of starch in the blend and increased weight loss was observed, samples of material containing 10, 25 and 40% starch lost weight increasingly during time of evaluation. The maximum weight loss was observed for the 40% starch blend with 2.8, 6.2, 10.16, 11.33 and 12.04% weight loss at each time of analysis. Whereas polyethylene sample lost only 0.33% of its weight at the final time of assessed, SEM analysis detected fractures and pores of the compost exposed material surface as a result of polymer degradation in all starch containing preparations, although 40% starch registered more changes in the structure of material. Cups injected with polyethylene only remained practically unchanged. Polyethylene-starch blended by extrusion and mold injection represents a potentially viable method to reduce impact of plastic waste on the environment.

  • 10

    CAPÍTULO 1

    INTRODUCCIÓN

    Después de la generación de energía (54% en los países de la Organización para la

    Cooperación Económica y el Desarrollo OECD) y transportación (35%), la industria

    química le sigue en tercera posición como consumidor de las reservas de petróleo

    (12%, de los cuales son usados en la síntesis de materiales plásticos y para la

    generación de energía)(D1D). En la industria química la mayor parte de los materiales

    son transformados en polímeros. El éxito de los productos de plásticos en los

    pasados 50 años es atribuido no solamente a la versatilidad de aplicaciones, sino

    también a su características termoplásticas de procesamiento (D2D). Como resultado

    de las crisis del petróleo de 1973, la investigación de energías alternativas y de

    materiales de fuentes diferentes a las del petróleo se intensificó notablemente. El

    desarrollo geopolítico y económico de los países ha puesto a consideración la

    disponibilidad limitada del combustible fósil así como la desventaja de su

    dependencia (D3D).

    Las poliolefinas como el polietileno de alta densidad (HDPE), el polietileno de baja

    densidad (LDPE) y el polipropileno (PP), constituyen los plásticos mayormente

    usados como materiales de empaque; constituyen una clase de polímeros sintéticos

    relativamente inertes y generalmente considerados no biodegradables. Los

    productos desarrollados de estos polímeros han jugado un papel muy útil en nuestra

    sociedad y continúan satisfaciendo necesidades en todo el mundo. Los polímeros

    sintéticos son ampliamente usados en en los hogares, en la agricultura, en la marina

    y hasta en aplicaciones en la arquitectura entre otras. Los plásticos fueron

    desarrollados como materiales durables y de bajo peso, y han remplazado a

    compuestos naturales como los metales y el vidrio. Sin embargo, los problemas

    ambientales y los relacionados con el desecho de residuos sólidos asociados a

    estos polímeros, ha propiciado la búsqueda de nuevas alternativas.

    La demanda actual de plásticos en el mundo es de millones de toneladas por año.

    En México en el año 2007 el volumen de ventas internas de polietileno ascendió a

    448,000 toneladas y además se importaron 1’135,085 toneladas de este polímero

  • 11

    (INEGI, Anuario Estadístico Petroquímico. www.inegi.gob.mx). El crecimiento en el

    consumo de plástico en los últimos años ha preocupado a los ambientalistas sobre

    el manejo efectivo de los desechos de estos materiales después de su consumo, así

    como de la dependencia de los combustibles fósiles. Existe un énfasis mundial en

    minimizar el uso innecesario de los plásticos y en favorecer el uso de métodos para

    la recuperación y reciclaje de los residuos plásticos. En la Ciudad de México, la Ley

    de Residuos Sólidos en su capítulo II artículo 11 nos menciona que se debe prevenir

    la liberación de los residuos sólidos que puedan causar daños al ambiente. La

    alternativa del reciclaje ofrece una solución limitada para este problema desde el

    punto de vista económico y además existe la posibilidad de liberación de sustancias

    tóxicas, como la dioxina (generada al incinerar el PVC como parte de su reciclaje),

    por lo que el uso de plásticos biodegradables se ha propuesto como un mecanismo

    clave para reducir el impacto ambiental de los plásticos (D4D). Recientemente en el

    Distrito Federal se aprobó la iniciativa a la Reforma de Ley de Residuos Sólidos, en

    la cual sólo se permitirá la utilización de bolsas, empaques y embalajes plásticos que

    sean biodegradables.

    La demanda para polímeros biodegradables ha tenido un crecimiento constante

    durante los últimos diez años a una taza de crecimiento entre 20 y 30%. Sin

    embargo solo representa menos del 0.1% del total de los plásticos en el mercado. El

    crecimiento limitado de este tipo de plásticos en los últimos años se explica en los

    pocos productos disponibles de manera comercial, el comportamiento en sus

    propiedades no ha sido del todo satisfactoria, los altos precios, la atención legislativa

    limitada, el hecho de que la biodegradabilidad es una propiedad funcional no

    percibida inmediatamente por los consumidores finales, requiriendo grandes

    esfuerzos de comunicación; en Europa el escenario para el año 2010 es reemplazar

    el 10% de los plásticos convencionales por plásticos biodegradables (D5D).

    El almidón es un polímero natural compuesto de carbono que es fácilmente

    degradado por una variedad de microorganismos del suelo y se espera que también

    lo sea en las condiciones ambientales de los rellenos sanitarios; se ha utilizado

    modificado en copolímeros de uso laminar para cubrir superficies diversas (D6D); sin

    embargo, nosotros proponemos que la mezcla de polietileno-almidón que

    preparamos en este trabajo es factible de ser utilizada en productos manufacturados

    por el proceso de inyección. Con esto, cubrimos un espectro más amplio de

  • 12

    productos plásticos que pueden ser biodegradados en condiciones naturales de

    desecho.

    En este trabajo desarrollamos un polímero, mezcla de polietileno y almidón,

    preparado por extrusión y moldeado por el método de inyección. Se prepararon 20

    mezclas diferentes en concentración de almidón, temperatura y velocidad de

    extrusión. Las mezclas se inyectaron en un molde de una cavidad, una taza de

    125ml de capacidad, y se evaluaron las propiedades mecánicas, térmicas y

    estructurales del producto sometido a biodegradación en composta desde 0 a 125

    días. La mezcla que contiene 39.9% de almidón extruído a 153.9 °C y una

    frecuencia de 32Hz es la más susceptible a biodegradación, medida por pérdida de

    peso a lo largo del tiempo enterradas en composta y pérdida de la resistencia a la

    tensión y compresión, así como pérdida de elongación y modificaciones

    estructurales registradas por microscopía electrónica.

    En contraste con la celulosa, el almidón puede ser procesado termoplásticamente

    sin tener que modificarlo si tiene la humedad adecuada. Sin embargo,

    adicionalmente a su sensibilidad a la humedad, las propiedades mecánicas del

    almidón presentan una gran limitación. Ambos factores se mejoran mezclando el

    almidón con productos termoplásticos como el polietileno o algún poliéster. Las

    mezclas con algún poliéster son degradables en composta (D7D).

  • 13

    CAPÍTULO 2

    ANTECEDENTES

    POLIETILENO, CARACTERÍSTICAS Y APLICACIONES

    En el 2007 la capacidad mundial de producción de polietileno fue de 70 millones de

    toneladas por año, y en el 2005 fue de 65 millones por año. Al mismo tiempo la

    demanda creció 5% anual a nivel mundial (D8D). Por su alta producción mundial el

    polietileno es también el polímero más barato.

    El polietileno (PE) es químicamente el polímero más simple. Es, además, el plástico

    más popular del mundo por ser un material versátil y tener una estructura muy

    simple, la más simple de todos los polímeros comerciales. Se representa con su

    unidad repetitiva (CH2-CH2)n. Una molécula de polietileno es una cadena larga de

    átomos de carbono, con dos átomos de hidrogeno unidos a cada átomo de carbono.

    En ocasiones es un poco más complicado. A veces algunos de los carbonos, en

    lugar de tener hidrógenos unidos a ellos, tienen asociadas largas cadenas de

    polietileno. Esto se llama polietileno ramificado, o de baja densidad, o LDPE.

    Cuando no hay ramificación, se llama polietileno lineal, o HDPE. El polietileno lineal

    es mucho más fuerte que el polietileno ramificado, pero el polietileno ramificado es

    más barato y más fácil de hacer (Figura 1).

  • 14

    Figura 1. Estructura molecular del polietileno. A) polietileno lineal o de alta densidad. B) Polietileno ramificado o de baja densidad.

    Este polímero puede ser producido por diferentes reacciones de polimerización, por

    ejemplo: Polimerización por radicales libres, polimerización aniónica, polimerización

    por coordinación de iones o polimerización catiónica. Cada uno de estos

    mecanismos de reacción produce un tipo diferente de polietileno (D9D).

    El Polietileno se usa para diferentes tipos de productos finales de acuerdo a sus

    características (Tabla 1), además, se le han dado aplicaciones modernas. El

    polietileno puede formar una red tridimensional cuando éste es sometido a una

    reacción covalente de "vulcanizado" (cross-linking en inglés). El resultado es un

    polímero con efecto de memoria. El Efecto de memoria en el polietileno y otros

    polímeros consiste en que el material posee una forma estable o permanente y a

    cierta temperatura, conocida como temperatura de obturación, ya sea Tg o Tm, o

  • 15

    una combinación, se puede obtener una forma temporal, la cual puede ser

    modificada simplemente al calentar el polímero a su temperatura de obturación. El

    Efecto térmico de memoria en los polímeros es diferente del efecto térmico de

    memoria en los metales, encontrado en 1951 por Chang y Read en el cual hay un

    cambio en el arreglo cristalino por medio de un reacomodo martensístico, en los

    polímeros este efecto se basa en fuerzas entrópicas y puntos de estabilidad física

    (nudos entre cadenas) o química (vulcanizado).

    De acuerdo al tipo de producto final generado es el tipo de proceso requerido para

    su manufactura, entre los más comunes se encuentran:

    -Extrusión: Película, cables, hilos, tuberías.

    -Moldeo por inyección: Partes en tercera dimensión con formas complicadas

    -Inyección y soplado: Botellas de diferentes tamaños

    -extrusión y soplado: Bolsas o tubos de calibre delgado

    -extrusión y soplado de cuerpos huecos: Botellas de diferentes tamaños

    -Rotomoldeo: Depósitos y formas huecas de grandes dimensiones.

  • 16

    Tabla 1. Características y aplicaciones del polietileno de baja y alta densidad.

  • 17

    BIODEGRADACIÓN

    La biodegradación de polímeros normalmente se refiere al ataque de los

    microorganismos sobre materiales plásticos, sin embargo, el deterioro o la pérdida

    de la integridad física del polímero se ha confundido con biodegradación porque no

    hay un consenso en la definición de biodegradación de plásticos. No obstante, la

    biodegradación es un proceso biológico natural llevado a cabo por procesos

    bioquímicos y que puede ser clasificado en función del producto final (D10D,D11D,D12D,D13D),

    lo que nos permite precisar algunas definiciones:

    Biodegradación. Proceso inducido por actividad biológica que resulta en el cambio

    estructural del material en productos metabólicos naturales.

    Biodegradación parcial. Es la alteración de la estructura química que resulta en la

    pérdida de propiedades específicas del polímero.

    Biodegradación total. Los microorganismos mineralizan e incorporan totalmente el

    polímero, con producción final de CO2 (en condiciones aeróbicas) o metano (en

    condiciones anaeróbicas), agua, sales minerales y biomasa.

    Biodegradabilidad. Capacidad de un material plástico para el cual la totalidad de sus

    constituyentes son susceptibles de biodegradación total. Los materiales comerciales

    biodegradables portan el símbolo que los identifica (Figura2).

    Figura 2. Símbolo para la certificación de biodegradabilidad de plásticos. De acuerdo con German standard test method DIN V54900.

  • 18

    La biodegradación de plásticos es un proceso usualmente heterogéneo. La falta de

    solubilidad en agua y el tamaño de las moléculas del polímero impiden que los

    microorganismos incorporen el material directamente, es necesario que primero

    ocurra una liberación de enzimas extracelulares, las cuales inician la degradación

    del polímero fuera de las células; inicialmente el polímero se fragmenta generando

    intermediarios que pueden ser solubles en agua, transportados al interior de los

    microorganismos e incorporados a sus rutas metabólicas. El resultado final del

    metabolismo microbiano se genera CO2, agua y nueva biomasa (Figura 3). Es

    importante señalar que las enzimas no pueden penetrar profundamente en los

    polímeros complejos, por lo que el proceso de degradación ocurre en la superficie

    como un proceso de erosión.

    Figura 3. Biodegradación de plásticos. Los microorganismos del suelo producen las enzimas extracelulares que darán inicio al proceso de romper los enlaces moleculares del polímero, debido a que las enzimas no pueden penetrar a profundidad en el material de desecho, el proceso de biodegradación se manifiesta como erosión de la superficie del plástico.

  • 19

    Los polímeros biodegradables tienen características moleculares estructurales

    particulares. Los polímeros que contienen dobles enlaces éter o éster y enlaces

    peptídicos en el esqueleto como la goma natural, poliéters, poliéster proveniente de

    microorganismos y poliamidas, son más o menos biodegradables porque sus

    enlaces éster son hidrolizables por acción de microorganismos (D14D). Las

    excepciones son los poliésteres alifáticos y aromáticos como el PET, que poseen

    excelentes propiedades materiales y comercialmente son ampliamente usados pero

    son considerados resistentes a la degradación por microorganismos; y el

    poli(vinylalcohol) (PVOH) que contiene enlaces puros C-C y sí es biodegradable vía

    oxidación primaria de los grupos hidroxilo, seguida por esqueleto de la cadena del

    polímero (D15D). Otros polímeros naturales biodegradables como la lignina, la celulosa,

    el almidón y el poliéster natural PHB, tienen un esqueleto de átomos de carbono

    interrumpidas por hetero-átomos como nitrógeno y oxigeno en la cadena principal

    del polímero. Estos hetero-átomos representan puntos potenciales de ataque para la

    hidrólisis enzimática y el rompimiento por oxidación (D16D). Estas características

    moleculares son deseables en polímeros preparados sintéticamente, pero también

    se han aprovechado en mezclas con polímeros no biodegradables.

    La mezcla de almidón, con polímeros inertes como el polietileno, ha recibido mucha

    atención. La propuesta es que el componente biodegradable será removido por los

    microorganismos en los rellenos sanitarios, y el componente inerte restante del

    material se deberá despolimerizar y desaparecer.

    Las películas comerciales biodegradables son generalmente hechas de polietileno

    de baja densidad (LDPE) con aditivos degradadores como el almidón y

    prooxidantes. Griffin y cols. han sugerido el almidón naturalmente disponible como

    un complemento biodegradable que satisface la estabilidad térmica y tiene una

    interferencia mínima con las propiedades de flujo y de fusión en las aplicaciones de

    manufactura. La incorporación del almidón produce una capa plástica con una

    estructura porosa, la cual incrementa la accesibilidad de las moléculas de plástico al

    oxigeno y los microorganismos. Debido a las propiedades hidrofílicas, la

    incorporación del almidón puede, sin embargo, producir propiedades indeseables en

    la película del polietileno. Estas propiedades incluyen un incremento a la sensibilidad

    al agua y un decremento en la fuerza y porcentaje de elongación. El uso de

  • 20

    derivados hidrofóbicos del almidón, compatibilizadores, y ácidos grasos, se han

    reportado que reducen los efectos negativos.

    Un gran número de alternativas han surgido, sin embargo, una de las principales

    limitaciones para los polímeros sintéticos biodegradables como el poliéster y las

    mezclas basadas en almidón es su alto costo comparado con los polímeros

    sintéticos comunes como el LPDE, PP, PS y PET. Otro gran obstáculo es la carencia

    de infraestructura adecuada para su manufactura, reciclaje, composteo y rellenos

    sanitarios para su desecho (D17D).

    COMPOSTEO El composteo es la descomposición de la materia orgánica por microorganismos en

    un ambiente con condiciones controladas, facilitando un incremento de la

    temperatura para destruir los patógenos. Los niveles de oxigenación y de humedad

    de este proceso también son controlados para reducir el potencial de producción de

    malos olores. Durante el proceso, los materiales orgánicos son degradados a un

    material parecido al humus con excelentes propiedades para el suelo, con un pH en

    rangos de 6.5 a 8, que favorece el crecimiento saludable de las plantas y tiene la

    capacidad de retención de agua. La composta se puede obtener mediante la

    descomposición de la materia orgánica en condiciones aerobias o anaerobias (con o

    sin oxígeno, respectivamente). La aerobia, o en un medio con oxígeno, es más

    utilizada que la descomposición anaerobia, debido a que esta última genera olores

    desagradables y requiere de infraestructura y conocimiento técnico especializados;

    se lleva a cabo en contenedores sellados que permiten la recuperación y uso de

    biogás que se genera en el proceso de descomposición de los residuos. Por el

    contrario, el composteo en condiciones aerobios registra un incremento espontáneo

    en la temperatura que favorece la descomposición de la materia orgánica, elimina

    microorganismos patógenos y no libera olores.

    El Gobierno del Distrito Federal opera la planta de composta más grande de la

    República Mexicana, la planta de Bordo Poniente, ubicada en el antiguo Lago de

    Texcoco dentro del territorio del Estado de México. Las delegaciones del DF que

  • 21

    cuentan con una planta de composta operan en predios asignados por cada

    delegación.

    En el relleno sanitario del bordo poniente predomina el clima templado a húmedo,

    con lluvias en verano. La temperatura media anual máxima es de 19.2°C. Situado a

    una altitud media de 2240 msnm.

    El principal objetivo de la planta es reducir el volumen de residuos orgánicos que se

    depositan en el relleno sanitario y así alargar su vida útil. La composta que se

    produce se utiliza en los parques y jardines de las delegaciones del DF, en las áreas

    verdes de escuelas públicas, y para sanear las celdas del relleno sanitario. El Distrito

    Federal produce 12,000 t de residuos sólidos diarios de los cuales el 50% son

    orgánicos. La planta de Bordo Poniente recibe 10 t de residuos orgánicos al día. La

    planta de Bordo Poniente está administrada por la Dirección General de Servicios

    Urbanos de la Secretaría de Obras y Servicios del Gobierno del Distrito Federal.

    La poda y pasto de las áreas verdes y jardines de las delegaciones son recolectados

    de manera separada y entregados a la planta. Así mismo, los desperdicios de

    alimentos de la Central de Abastos ingresan a la planta. Algunos generadores

    particulares de alto volumen están autorizados para ingresar sus productos en la

    planta. Los residuos orgánicos separados en los domicilios de algunas delegaciones

    también se depositan en esta planta (Tabla 2). Un pequeño laboratorio en la planta

    permite medir el pH y la temperatura de las pilas. Se ha establecido colaboración

    con el IPN para realizar diversos estudios de carácter medioambiental y técnico en la

    planta. La composta que se produce en la planta no se vende debido a restricciones

    administrativas. La planta es totalmente financiada por el Gobierno del DF y la

    composta se utiliza en parques y jardines de las delegaciones, escuelas y

    deportivos; para producción de plantas en viveros y para el saneamiento de celdas

    del relleno sanitario.

  • 22

    Tabla 2. Residuos fuente de la composta producida por el

    Gobierno del Distrito Federal.

  • 23

    POLÍMEROS BIODEGRADABLES En la década de los 70´s en los Estados Unidos de América se inicio el trabajo de

    desarrollar plásticos fotodegradables y biodegradables para la industria del empaque

    y embalaje. Las especificaciones necesarias para estos polímeros eran:

    1) Materiales no tóxicos con productos de degradación no tóxicos y que no

    puedan afectar los mantos acuíferos una vez en los rellenos sanitarios.

    2) Polímeros con propiedades mecánicas adecuadas para usos específicos.

    3) Viabilidad económica.

    4) Factibilidad de manufactura.

    5) Control de degradación de los plásticos vía modificación del polímero.

    La degradación o envejecimiento de los polímeros se refiere a los cambios que

    sufren estos materiales en sus propiedades, al interaccionar con el medio y el

    ambiente en que se encuentren. La degradación de los polímeros es un proceso que

    ocurre por la ruptura de la cadena principal o la de los enlaces de los grupos

    laterales.

    Tradicionalmente, las poliolefinas son consideradas no biodegradables por tres

    razones. La primera es su carácter hidrofóbico que hace a este material resistente a

    la hidrólisis. La segunda, es el uso de antioxidantes y estabilizadores durante el

    proceso de manufactura protege a las poliolefinas de la oxidación y la

    biodegradación (D18D). La tercera es que poseen un alto peso molecular entre 4000 a

    28000 (D19D).

    En la elaboración de resinas biodegradables con base almidón, se emplean aditivos

    que se biodegradan en medios biológicamente activos debido al consumo

    microbiano de los gránulos de almidón. Ya se comercializan aditivos específicos que

    se utilizan para la producción de bolsas que pueden degradarse con el contacto con

    el medio ambiente. Este aditivo se utiliza proporcionalmente con respecto a la resina

    de polietileno mezclado con almidón.

  • 24

    Se han desarrollado mezclas de sales organometálicas que actúan en forma

    sinérgica con el almidón y con oxidantes para formar películas que se degraden en

    un tiempo relativamente corto

    También se están comercializando polímeros con aditivos fotodegradables para

    emplearlos a gran escala en el envasado industrial y de consumo. Por otro lado

    existen aditivos especificos para olefinas, principalmente polietileno que sirven como

    reguladores de tiempo de la degradación del material.

    Comercialmente existen biopolímeros base acido láctico y almidón con un aditivo

    que es un complejo de betaciclodextrina que actúa como acelerador de degradación

    de plásticos. Este tipo de biopolímero es soluble en agua, extruíble y moldeable.

    La fuente de los materiales biodegradables es de dos tipos: material natural

    conocido por ser biodegradable y polímeros sintéticos (D20D). La tabla 3 enlista las

    ventajas y desventajas de cada uno de los grupos pertenecientes a la siguiente

    clasificación:

    1) Polímeros naturales.

    2) Polímeros naturales químicamente modificados.

    3) Polímeros sintéticos compuestos de bloques de polímeros naturales.

    4) Polímeros sintéticos a partir de bloques de origen petroquímico.

    5) Mezclas de polímeros naturales biodegradables con polímeros sintéticos no

    degradables.

  • 25

    Tabla 3. Clasificación de polímeros biodegradables en base a su fuente.

    MÉTODOS PARA MEDIR BIODEGRADABILIDAD

    1) Pruebas de campo, simulación y laboratorio para medir biodegradación Existe un problema concerniente a las pruebas aplicadas y las conclusiones que se

    pueden obtener. En principio, las pruebas se pueden dividir en tres categorías:

    Pruebas de campo, Pruebas de simulación y Pruebas de laboratorio.

    Aunque las pruebas de campo, tales como enterrar el plástico en suelo, en lagos o

    ríos, representan las pruebas ideales, presentan muchas desventajas. Un problema

    son las condiciones ambientales como temperatura y humedad no pueden ser

  • 26

    controladas. Otro problema es la dificultad de monitorear el proceso de degradación;

    en muchos casos sólo es posible evaluar los cambios visibles en el polímero y quizá

    determinar la desintegración midiendo la pérdida de peso; esta determinación es

    poco precisa, especialmente si el plástico se fragmenta y no es posible recuperar

    todas las piezas. El análisis de los residuos e intermediarios es difícil de realizar

    debido al ambiente complejo y finalmente, la mera fragmentación del plástico no

    puede ser considerada como biodegradación de acuerdo con las definiciones.

    Las pruebas de simulación en laboratorio son una mejor alternativa. Éstas incluyen

    la degradación en composta, suelo o agua en condiciones controladas

    (D21D,D22D,D23D,D24D,D25D). Aunque las condiciones ambientales son muy parecidas a las

    presentes en el campo, los parámetros externos como humedad y pH pueden ser

    controlados y ajustados y las herramientas de análisis son mejores que las de las

    pruebas de campo (por ejemplo: análisis de residuos e intermediarios, determinación

    de generación de CO2 o consumo de O2). En ocasiones, para reducir el tiempo de

    evaluación, se añaden nutrientes que incrementen la actividad microbiana y aceleren

    la degradación.

    Las pruebas de laboratorio son las pruebas de biodegradación más reproducibles.

    En ellas, se utilizan medios de cultivo sintéticos bien definidos inoculados con

    poblaciones microbianas puras o mezclas de ellas seleccionadas por su capacidad

    de degradar polímeros específicos. Estas pruebas pueden ser optimizadas de

    acuerdo a los microorganismos utilizados; además, en estas pruebas los polímeros

    exhiben una mayor tasa de degradación que la observada en condiciones naturales.

    Esto puede ser considerado como una ventaja cuando se estudian los mecanismos

    básicos o moleculares de la biodegradación, pero las conclusiones son limitadas en

    cuanto al comportamiento esperado en condiciones naturales.

    En pruebas de laboratorio más controladas, se utilizan las enzimas microbianas

    extracelulares cuya capacidad de despolimerizar un grupo particular de polímeros es

    bien conocida. Este método no se puede utilizar para probar la biodegradación en

    términos de metabolismo microbiano, pero el sistema es valioso para establecer

    correlación entre la estructura del polímero y su biodegradabilidad; además, la

    reproducibilidad, la corta duración y el uso mínimo de materiales son puntos

    importantes cuando se evalúan materiales industriales en desarrollo. Una evaluación

  • 27

    que pude requerir hasta un año en pruebas de composta, solamente toma semanas

    o días utilizando este sistema (D26D,D27D,D28D,D29D).

    2) Procedimientos analíticos de monitoreo de la biodegradación.

    Las herramientas utilizadas para monitorear la biodegradación dependen del

    propósito de la investigación y del ambiente en el que se llevan a cabo las pruebas.

    a. Observación visual.

    b. Cambios en las propiedades mecánicas y masa molar

    c. Determinación del polímero residual (pérdida de peso)

    d. Pruebas en placas de agar

    e. Otras

    a. Observaciones visuales

    La evaluación de los cambios visibles en los plásticos puede realizarse en la

    mayoría de los experimentos. Los efectos para describir la degradación incluyen la

    rugosidad de la superficie, la formación de huecos o fracturas, defragmentación,

    cambio en el color o la formación de biopelículas en la superficie. Estos cambios no

    prueban la presencia de un proceso de biodegradación en términos del

    metabolismo, pero el parámetro de cambios visuales puede ser usado como un

    primer indicativo de un ataque microbiano. Para obtener información sobre el

    mecanismo de degradación, observaciones más sofisticadas pueden hacerse

    usando el microscopio electrónico de barrido o el microscopio de fuerza atómica.

    b. Cambios en las propiedades mecánicas

    Igual que en las observaciones visuales, los cambios en las propiedades mecánicas

    del material no pueden ser determinantes para probar la biodegradabilidad. Sin

    embargo, los cambios en las propiedades mecánicas son usualmente válidos

    cuando se observan cambios menores en la masa del espécimen. Propiedades

    como la resistencia a la tensión son muy sensibles a los cambios en la masa molar

    de los polímeros, la cual es frecuentemente tomada como un indicador de

    degradación (Erlandsson et al., 1997). Cuando existe una despolimerización

    inducida por una acción enzimática, las propiedades del material solo cambian si es

    observada una pérdida significante de la masa del material (la muestra se vuelve

    más delgada a causa del proceso de erosión de la superficie; la parte interna del

  • 28

    material no es afectada por el proceso de degradación), para un proceso de

    degradación abiótico (el cual toma lugar en todo el material e incluye la hidrólisis de

    los poliésteres o la oxidación del polietileno) las propiedades mecánicas pueden

    cambiar significativamente, a pesar de que no existe una pérdida de masa debido a

    que ocurre una solubilización de los productos intermedios en este proceso.

    Como consecuencia, este tipo de medición es frecuentemente usada para

    materiales donde un proceso abiótico del primer paso de la degradación, ejemplo, la

    hidrólisis química para el poli-ácido láctico del polietileno modificado (Breslin, 1993;

    Tsuji and Suzuyoshi, 2002).

    c. Pérdida de peso: Determinación del polímero residual.

    La perdida de peso en muestras como películas o cupones es muy usada en las

    pruebas de degradación (especialmente en pruebas de campo), a pesar de que

    tampoco es una prueba determinante de la degradación. Pueden presentarse

    problemas con la limpieza del espécimen, o si hay una desintegración del material.

    En el último de los casos, la muestra puede ser colocada en mallas para su fácil

    recuperación; este método es usado en procedimiento de composta a gran escala.

    Un análisis minucioso de la matriz alrededor de las muestras de plástico permite una

    mejor cuantificación de las características de desintegración.

    Para muestras de polímeros finamente distribuidos (ejemplo, polvos) la disminución

    del polímero residual puede ser determinada por una adecuada separación y una

    técnica de extracción (polímero separado de la biomasa o polímero extraído del

    suelo o de la composta). Combinando un análisis estructural del material residual y

    el bajo peso molecular de los productos intermedios, se puede tener información

    detallada en cuanto al proceso de degradación (Witt et al., 2001).

    d. Formación de halo en placa de agar.

    Un método simple y semicuantitativo es llamado prueba del halo. Se realiza en una

    placa de agar en la cual partículas finas del polímero son dispersadas en agar

    sintético, esto produce una apariencia opaca en el agar. Después de la inoculación

    con microorganismos, la formación de una zona clara alrededor de la colonia indica

    que los microorganismos al menos son capaces de la despolimerización, lo cual es

    el primer paso de la biodegradación. Este método es regularmente usado para

  • 29

    probar microorganismos que puedan degradar polímeros específicos (Nishida and

    Tokiwa, 1993; Abou-Zeid et al., 2001).

    e. Otros

    Otros métodos analíticos para monitorear el proceso de biodegradación,

    especialmente para experimentos que incluyen enzimas son:

    -Medición del carbono disuelto en el medio que rodea los plásticos, por la

    determinación del contenido de carbono orgánico disuelto (Tokiwa et al., 1990)

    -Disminución en la densidad óptica de pequeñas partículas del polímero dispersadas

    en agua (Jaeger et al.,1995).

    - Análisis de la disminución del tamaño de partícula en pequeñas partículas de

    polímero usando dispersión de luz (Gan et al., 1999).

    -Determinación de ácidos libres formados a través del rompimiento enzimático de

    poliésteres por determinación de pH (Walter et al., 1995; Marten, 2000; Welzel et

    al., 2002)

    AGENTES BIOLÓGICOS QUE PARTICIPAN EN LA BIODEGRADACIÓN

    En el suelo, composta o superficies sólidas, los microorganismos son necesarios

    para llevar a cabo la actividad biológica. En el suelo, la vida microbiana se desarrolla

    en delgadas películas acuosas localizadas entre las partículas. Una humedad entre

    el 50-60% es óptima para los procesos biológicos aeróbicos. Aunque el agua es un

    componente básico para la microflora, algunos microorganismos prefieren el

    contacto con la matriz sólida. Por ejemplo, algunos hongos crecen mejor en

    superficies sólidas que en líquidos, en parte porque los micelios son sensibles a las

    fuerzas mecánicas. Las diferencias en los requerimientos de cada grupo de

    microorganismos causan la presencia comunidades especializadas en varios

    ambientes y, por tanto, a distintos comportamientos en la degradación de sustancias

    (Bastioli).

    Dos tipos de microorganismos son de particular interés en la biodegradación de

    polímeros sintéticos y naturales; estos son las bacterias (incluyendo a los

    actinomicetos) y los hongos. Una cantidad innumerable de estos microorganismos

    son encontrados en la naturaleza Chandra and Rustgi (1998).

  • 30

    1) Hongos

    Eumicetos, u hongos verdaderos, son microorganismos de particular importancia en

    la degradación de materiales. Los hongos se componen de células con núcleo, son

    formadores de esporas, organismos sin clorofila, los cuales se reproducen ya sea

    sexualmente como asexualmente; la mayoría de ellos poseen estructura somática

    filamentosa y pared celular de quitina y/o celulosa. Más de 80000 especies son

    conocidas.

    Los hongos verdaderos están presentes en todas partes. Su importancia como sus

    agentes degenerativos es el resultado de la producción de enzimas los cuales

    rompen en los sustratos inertes a fin de proveerse nutrientes presentes en la

    composición de los polímeros. Ciertas condiciones ambientales son esenciales para

    el óptimo crecimiento y para su actividad degenerativa. Éstas incluyen una

    temperatura ambiente óptima, la presencia de nutrientes, y una humedad alta.

    Los hongos cultivados con propósito de ensayos de laboratorio, que se han

    desarrollado en el campo de los polímeros naturales y fueron seleccionados en

    función de su utilidad para polímeros sintéticos, comprenden un grupo

    taxonómicamente heterogéneo. Muchos son seleccionados primordialmente por que

    se reproducen por medio de esporas (minimiza las variaciones en las cepas

    inherentes a la reproducción sexual), los resultados son reproducibles por largos

    períodos de tiempo de incubación en condiciones de laboratorio y pueden crecer en

    medios de cultivo sintéticos en condiciones estrictamente controladas.

    2) Bacterias

    Las bacterias pueden ser bacilos, cocos o espiroquetas; se pueden encontrar

    aisladas o formando cadenas o filamentos. También pueden ser aerobias o

    anaerobias; en contraste con los hongos que son necesariamente aerobios. Algunas

    bacterias son móviles; las bacterias son predominantemente no fotosintéticas. Su

    acción degenerativa es también el resultado de su producción de enzimas y

    rompimiento del sustrato inerte con el propósito de obtener nutrientes.

  • 31

    Las bacterias presentes en el suelo son agentes importantes para la degradación de

    la materia. Entre la materia que degradan está la celulosa, productos de la madera y

    textiles sujetos a degradación celulolítica, y algunas especies pueden degradar

    plásticos.

    3) Degradación de polímeros por microorganismos

    Los biopolímeros están en la naturaleza durante los ciclos de crecimiento de los

    organismos. También son referidos como polímeros naturales. Los polímeros

    naturales son por ejemplo la celulosa, la lignina y la quitina. En la naturaleza,

    muchos microorganismos secretan diferentes enzimas, las cuales pueden degradar

    estos polímeros naturales. Existen hongos y bacterias que secretan enzimas

    celulolíticas que pueden degradar la celulosa. Estas celulasas incluyen tres

    principales tipos de enzimas: 1) endo-1,4-ß-gluconasas, que aleatoriamente atacan

    los enlaces 1,4- ß-glucosiditos a través de la cadena principal generan polímeros de

    menor peso molecular y oligómeros; 2) exo-1,4-ß-gluconasas, las cuales

    selectivamente hidrolizan unidades terminales en la cadena; 3) 1,4- ß-glucosidasas,

    las cuales catalizan la hidrólisis de la celubiosa y celudextrinas solubles al agua a

    glucosa para proveer nutrientes para los organismos (Schlegel 1992). La lignina es

    un polímero complejo presente en las plantas. Las enzimas de hongos y

    actinomicetos están involucradas en la degradación de la lignina (Crawford and

    Sutherland 1980, Kirk and Farrell 1987).

    Una gran variedad de hongos y bacterias se han descrito como capaces de degradar

    plásticos, tanto los considerados biodegradables como los considerados no

    biodegradables (Tabla 5) (Referencias D30D, D31D,D32D,D33D, D34D,D35D,D36D,D37D, D38D,D39D,D40D,D41D),

    sin embargo, es necesario notar que todos pueden degradar películas delgadas,

    bolsas o emulsiones solamente; aquellos probados para degradación de productos

    como tazas, por ejemplo, no las pueden degradar (D42D).

  • 32

    Tabla 4. Microorganismos degradadores de plásticos

  • 33

    CAPÍTULO 3

    JUSTIFICACIÓN La investigación actual sobre polímeros biodegradables está relacionada con áreas

    de utilización del polímero bien definidas. Los plásticos biodegradables ofrecen una

    solución para el manejo de desechos sólidos y se usan para aplicaciones diversas

    que incluyen materiales de empaque (bolsas de basura, envolturas, contenedores de

    alimentos y papel laminado), elementos desechables (telas), productos de higiene

    (tela para pañales, toallitas de algodón) y bienes consumibles (mantelería, cartones

    para huevo y juguetes). Sin embargo, el problema de los plásticos no ha sido

    resuelto porque la mayoría de los envases plásticos de uso rudo, y que representan

    un gran volumen en los desechos sólidos, no son biodegradables debido a que no

    se ha logrado tener un polímero cuyas propiedades físicas y mecánicas le permitan

    ser utilizado con este propósito.

    Adicionalmente, el nivel de biodegradabilidad logrado hasta el momento es válido

    para películas delgadas del polímero (discutido en el capítulo anterior) y no para

    objetos de mayor grosor. El presente trabajo abordará el problema de la falta de

    productos biodegradables de uso estructural mediante la preparación de una mezcla

    de polietileno-almidón preparada por el método de extrusión factible de ser inyectada

    en moldes de mayor calibre.

    Existen en México 3500 empresas dedicadas a la industria del plástico; el país

    ocupa el 12° lugar a nivel mundial en consumo; el 85% de los productos terminados

    en México son productos básicos o materias primas; en el país se están recibiendo

    anualmente 3 millones de toneladas de productos terminados importados de varias

    regiones del mundo como China, Italia, Guatemala, etc; y se generan 5 millones

    anuales de toneladas de basura plástica en México (Foro Consultivo Científico y

    Tecnológico, Instituto Mexicano del Plástico Industrial).

    La urgencia para generar plásticos biodegradables en México debe ser abordada no

    sólo para cubrir las necesidades de disminuir el daño causado por la contaminación

    plástica, sino también para subsanar el impacto económico que causa la importación

    de plásticos.

  • 34

    CAPÍTULO 4

    MATERIALES Y MÉTODOS

    Diseño del experimento Para establecer el diseño del experimento se buscó un modelo que incluya el

    análisis de varias respuestas y que permita la optimización del proceso en tiempo y

    economía. Se eligió un diseño central compuesto (DCC) que incluye un modelo

    factorial 23 con seis puntos centrales y seis corridas axiales para un total de 20

    puntos experimentales (D43D). Los tres factores que se seleccionaron para su

    evaluación por su relevancia fueron la temperatura de boquilla de salida del extrusor

    (4ª zona) en niveles entra 130 a 160° C, el porcentaje de almidón a niveles entre 0 a

    50% y una frecuencia de husillo de extrusor entre 25 y 60 Hertz. Las respuestas a

    evaluar fueron: la resistencia a la tensión, la elongación a la ruptura y el punto de

    deformación plástica. Se utilizó el Software Design-Expert 5.0.4 1996 (Stat-Ease

    Corporation, Minneapolis, MN).

    Los diseños seleccionados para esta investigación corresponden a un Diseño

    Central Compuesto rotable 2k + α + nc, el cual consiste en una parte factorial

    donde 2k permite estimar el efecto que tiene una variable independiente sobre otros

    factores a diferentes niveles, generando conclusiones con validez sobre las

    condiciones experimentales, α denominados puntos axiales los cuales permiten que

    el diseño sea rotable y nc número de puntos centrales los cuales permiten el estudio

    de las variables en un nivel medio establecido por 2k. El resultado arrojado fue el

    diseño siguiente:

  • 35

    Tabla 5. Diseño del experimento

    CORRIDA ALMIDÓN (%)TEMPERATURA

    (°C)FRECUENCIA

    (Hz)TENSIÓN

    (MPa)

    ELONGACIÓN A LA

    RUPTURA (mm)

    PUNTO DE DEFORMACIÓN

    (MPa)1 25 145 432 25 145 253 39.9 136.1 534 10.1 136.1 535 25 160 436 50 145 437 10.1 153.9 328 10.1 153.9 539 25 145 4310 25 145 6011 39.9 153.9 3212 39.9 136.1 3213 25 130 4314 0 145 4315 39.9 153.9 5316 25 145 4317 25 145 4318 25 145 4319 25 145 4320 10.1 136.1 32

    FACTORES RESPUESTAS

    Preparación del plástico y almidón En una balanza analítica (Ohaus GT8000) se pesaron tres muestras de 10g de

    almidón de maíz (Corn Product International Ingredientes de México). En cápsulas

    de aluminio durante 24 horas se secaron estas muestras a una temperatura de 60°C

    en una estufa eléctrica D6F774 (J.M.Ortiz). Se determinó la humedad del almidón y

    en una batidora (Kitchen Ald Classic) se acondicionó el almidón a una humedad de

    15% y posteriormente se dejó reposar durante 24 horas. En una balanza comercial

    (Fairbanks Morse) se pesaron el polietileno de baja densidad LPDE (Certene

    Polyethylene lote 367677) así como el almidón de acuerdo a la Tabla 5 para formar

    una mezcla total de 3 kg por cada corrida.

    Extrusión En un extrusor de un cañón (CICATA-LEG-IPN) con tres zonas de calentamiento; de

    motor clase I SM-CYCLIO de 10 hp, 50 rpm de salida; con una boquilla de salida de

  • 36

    5mm de diámetro, se incorporaron de manera aleatoria (de acuerdo al Design Expert

    5.0.4) cada una de las corridas de acuerdo a la siguiente tabla:

    No. CORRIDA 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20ORDEN EXTRUSIÓN 20 13 6 5 12 10 3 7 19 14 4 2 11 9 8 16 15 17 18 1

    La temperatura de las zonas de calentamiento fueron de 80, 110, 130°C

    respectivamente. Los parámetros de extrusión se hicieron conforme a la Tabla 6.

    Moldeo por Inyección Para determinar la factibilidad de moldeo y la aplicación de nuestro polímero

    biodegradable a un producto de interés comercial, se realizó un estudio preliminar en

    el que se inyectó en un molde de una taza una muestra preliminar del material con

    un contenido de 15% de almidón y se observó su comportamiento. Las

    temperaturas de salida a evaluar fueron 250, 220, 200, 175, 150°C. La temperatura

    óptima de salida de inyección fue de 150 °C y se utilizó en todas las corridas de

    acuerdo al siguiente protocolo: en un molino industrial cada una de las mezclas se

    procesó utilizando una criba de 3mm de diámetro. Posteriormente en el mismo orden

    de extrusión, las mezclas se moldearon por inyección en una inyectora Engel

    modelo 93 de 55 toneladas de presión de cierre. Se utilizó un molde de una cavidad

    para una taza de 125 ml de capacidad. El molde es de acero 9840, de colada fría y

    cromado para grandes producciones.

    Determinación de Propiedades mecánicas Las propiedades mecánicas de cada muestra se determinaron en un Texturómetro

    Texture Analyser TA-XT2i (Textura Technologies Corp.) ajustando los parámetros

    de acuerdo a la prueba como sigue.

    Resistencia a la Tensión

    Parámetros:

    Dimensiones probeta: 36X5X0.5mm; area de prueba: 25mmX5mm

    Célula de carga 25, pesa de calibración 5 kg;

    velocidad de pre-ensayo: 2mm/s

    velocidad de ensayo: 1mm/s

  • 37

    velocidad de pos ensayo: 2mm/s

    Distancia de recorrido: 10mm

    Sensibilidad 1.47N

    Sonda A/KIE Sonda de extensibilidad de Kieffer

    Velocidad de adquisición: 100 pps

    Repeticiones por corrida: 5

    Los ejes de la gráfica se seleccionaron en fuerza(N) vs Distancia (mm)

    Punto de deformación plástica

    Parámetros:

    Dimensiones de probeta: 50 mm x 50 mm

    Célula de carga 25, pesa de calibración 5 kg;

    velocidad de pre-ensayo: 2mm/s

    velocidad de ensayo: 1mm/s

    velocidad de pos ensayo: 2 mm/s

    Distancia de recorrido: 15 mm

    Sensibilidad 1.47N

    Sonda: P2N aguja

    Velocidad de adquisición: 100 pps

    Repeticiones por corrida: 5

    Los ejes de la gráfica se seleccionaron en fuerza(N) vs Distancia (mm)

    Elongación a la ruptura

    Parámetros:

    Dimensiones probeta: 36X5X0.5mm; area de prueba: 25mmX5mm

    Célula de carga 25, pesa de calibración 5 kg;

    velocidad de pre-ensayo: 2mm/s

    velocidad de ensayo: 1mm/s

    velocidad de pos ensayo: 2mm/s

    Distancia de recorrido: 10mm

    Sensibilidad 1.47N

    Sonda A/KIE Sonda de extensibilidad de Kieffer

    Velocidad de adquisición: 100 pps

    Repeticiones por corrida: 5

    Los ejes de la gráfica se seleccionaron en fuerza(N) vs Distancia (mm)

  • 38

    Determinación de propiedades térmicas Se tomaron pequeñas muestras del plástico a los 0, 25, 50, 75, 100,125 días. En

    una balanza analítica (Explorer Ohaus, Suiza) se pesaron las muestras dando como

    resultado pesos de entre 3 y 6 mg. Se colocaron en las cápsulas y se corrieron en el

    calorímetro diferencial de barrido DSC Pyris 1 (Perkin Elmer). Las condiciones

    iniciales de corrida fueron de 40°C de temperatura, Y inicial 20 mW, 30 ml/min de

    gas nitrógeno de purga. Se mantuvo por 2 minutos a 40°C, para después llevar a

    280°C a una velocidad de 10°C/min. Se evaluó la temperatura de fusión del

    polietileno, así como del almidón y la combinación de ambos.

    Evaluación de biodegradabilidad Se recortaron cupones de 5x5 cm de cada una de las muestras de las diferentes

    mezclas. Se colocaron en una malla metálica con abertura de 1.5x1.5 cm y se fijaron

    con hilo, se repitió el procedimiento hasta tener 5 mallas y se colocaron en una pila

    de composta Organodel (Agroformuladora Delta, México) entre 50 cm de capa

    inferior y 30 cm de capa superior. La composta se acondicionó a una humedad del

    50%. La composta contiene materia orgánica, humus y ácidos húmicos, además de

    elementos nutritivos N,P,K y Ca. Las mallas fueron ordenadas y marcadas para

    facilitar su posterior localización. Las mallas se recuperaron en intervalos de 25 días

    y hasta 125 días para evaluación de las propiedades mecánicas, térmicas y

    estructurales de las muestras de plástico (D44D).

    .

    Evaluación de la pérdida de peso Se recuperaron las mallas correspondientes a los 25, 50, 75, 100 y 125 días. Se

    desató cada una de las muestras, y se lavaron cuidadosamente con agua

    desionizada hasta eliminar cualquier rastro de composta. Se secaron durante 24

    horas a 60°C en un horno de secado (Felisa). Se dejaron tres horas a temperatura

    ambiente y posteriormente se pesaron.

    Análisis de características Estructurales por Microscopía Electrónica Se tomaron las muestras de las mezclas 1, 3, 4, 6, 10 y 14 (muestras

    representativas en su contenido de almidón) correspondientes a los 25, 50, 75, 100

    y 125 días. Se recubrieron por el método de sputtering durante 90 segundos y se

  • 39

    analizaron a 100x, 250x, 500x, 1000x y 1500x por microscopía SEM en un

    microscopio JSM-6390 LV (JEOL).

    .

    Intemperismo acelerado Se colocaron muestras por duplicado de 12X5 cm en un weatherometer Atlas DMC

    (Atlas Electric Devices Co.) por 300 horas luz ultravioleta de alta intensidad

    equivalentes a un año de exposición al ambiente. Se escogió la muesca de

    aspersión CAM no. 7 que se acerca a las condiciones ambientales de la ciudad de

    México y se seleccionó una temperatura de muestra de 25° C. Una vez terminado el

    ciclo se retiraron las muestras para su evaluación en sus propiedades mecánicas,

    térmicas y estructurales.

  • 40

    CAPÍTULO 5 RESULTADOS Y DISCUSIÓN

    Moldeo por inyección Previo a la preparación de varias mezclas de polietileno (PE) de baja densidad con

    almidón de maíz de acuerdo al diseño generado con el software Design Expert

    (Tabla 5), preparamos una muestra de un polímero con 15% de almidón. El objetivo

    fue elaborar un producto de interés comercial, resistente y de usos múltiples

    adecuado para el moldeo por inyección.

    Para determinar la factibilidad de moldeo y la aplicación de nuestro polímero mezcla

    PE-Almidón, se realizó un estudio preliminar en el que se inyectó en un molde de

    una taza de 125 ml una muestra del material con un contenido de 15% de almidón

    y se observó su comportamiento (Fig. 4). La temperatura que permite la inyección de

    la taza fue de 150°C, a esta temperatura se puede inyectar el material en un

    producto cuyo color se aprecia natural y translúcido; además, es posible pigmentarlo

    para propósitos comerciales sin que el proceso de inyección se modifique.

    250250°°CC 200200°°CC 170170°°CC 150150°°CC 150150°°CC220220°°CC

    Figura 4. La mezcla de PE-Almidón puede ser inyectada por moldeo en una taza. Se probó la inyección del polímero en un rango de 250 a 150°C y se incluyó una muestra teñida para evaluar la factibilidad de moldeo por inyección.

  • 41

    Preparación de las mezclas diseñadas para el experimento y composteo Una vez comprobado que el polímero es factible de ser inyectado, procedimos a la

    preparación de las mezclas determinadas en el diseño experimental. Cada mezcla

    se inyectó en 10 tazas de 125ml, en la figura 5 se aprecia que para algunas

    preparaciones, como la mezcla 3, no se llena completamente el molde

    probablemente debido a que el orificio de la boquilla está preparado para la

    inyección de PE puro y la densidad de esa mezcla (39.9% de almidón extruída a

    153.1°C/53Hz) es mayor, sin embargo fue posible hacer adecuaciones mecánicas o

    hacer la inyección en una máquina de mayor capacidad de tal manera que se

    inyectaron 10 tazas de cada mezcla sin problemas y con visibles mejoras respecto a

    los ejemplares inyectados en el estudio de factibilidad (Fig.4). La mezcla 6 es la que

    tiene mayor contenido de almidón y la 14 es PE puro. En la figura 6 se aprecia la

    dispersión de los gránulos de almidón en función del contenido del mismo y también

    se incluyó una muestra a la que se añadió un pigmento blanco para probar que no

    se modifica el proceso de inyección y que su apariencia es similar a la del PE puro.

    Figura 5. Inyección de todas las mezclas PE almidón en el molde de una taza. Las flechas indican un representativo de proporción de almidón 3(39.9%), 6(50%), 8(10.1%), 14(0%) y 17 (25%).

  • 42

    Figura 6. Efecto del contenido de almidón en el aspecto del plástico inyectado. En orden creciente de contenido de almidón se muestran las tazas preparadas con las mezclas PE-Almidón, al final se muestra una taza a la que se incorporó un pigmento.

    Evaluación de biodegradabilidad Al término de cada período de tiempo establecido se retiraron las muestras de la

    composta (Fig.7) para el análisis de propiedades físicas, mecánicas, térmicas y

    estructurales que serán revisadas y discutidas más adelante. Desde los 25 días bajo

    composta se apreciaron formaciones filamentosas microbianas blancas (semejantes

    a hongos) sobre las inclusiones de almidón (Fig.8) que nos permitieron suponer que

    habría modificaciones en las mezclas durante el proceso de composteo debidas al

    efecto de los microorganismos presentes en la composta.

    0

    50

    CON PIGMENTO

    % D

    E A

    LMID

    ÓN

  • 43

    Figura 7. Recuperación de los cupones enterrados en composta. Los cupones de las diferentes mezclas fijados en una malla de plástico enterrados entre dos capas de composta se recuperaron a los 25, 50, 75, 100 y 125 días.

    Figura 8. Acercamiento de un cupón recuperado de la composta. Se aprecian formaciones filamentosas microbianas blancas (semejantes a hongos) sobre las inclusiones de almidón.

  • 44

    Pérdida de peso La degradación en suelo parece ocurrir al menos en dos niveles: 1) por hidrólisis

    simple que disminuye el peso molecular del polímero pero que no afecta el peso

    seco del material, y 2) el polímero es degradado en la superficie por enzimas

    microbianas hasta fragmentos que son rápidamente metabolizados por

    microorganismos lo que sí se refleja como pérdida de peso del material. Como un

    indicador de biodegradación se registró la pérdida de peso de nuestras

    preparaciones en cada tiempo que pasaron bajo composta. Todas las mezclas PE-

    almidón presentan pérdida de peso al final de los 125 días bajo composta que va

    desde el 1.45% hasta el 13.03% dependiendo de la concentración de almidón

    presente en la muestra y de las condiciones de extrusión de la misma. La muestra

    de PE puro perdió el 0.25% a lo largo de los 125 días. Los resultados se detallan en

    la tabla 6 y se muestran las curvas de pérdida de peso a lo largo del tiempo bajo

    composta en la figura 9.

    Las muestras que más peso perdieron fueron la 3 (39.9% de almidón extruída a

    136.1°C/53Hz) y la 11 (39.9 % de almidón extruída a 153.9°C/32Hz). En contraste,

    las muestras 4 y 20, ambas con el menor contenido de almidón (10.1%), perdieron

    1.45 y 1.79% de su peso respectivamente. La muestra 6, la de mayor contenido de

    almidón, perdió sólo el 2.71% de su peso al final de los 125 días; esta mezcla es

    más densa que las demás, probablemente las condiciones de extrusión de esta

    preparación (145°C/43Hz) aunada a la gran proporción de almidón modifican el

    espesor del material en el enfriamiento y dificulta el proceso de erosión en la

    superficie del polímero y, por tanto, presenta menor pérdida de peso.

    En la figura 10-A se contrastan las curvas de pérdida de peso de la muestra 11 y la

    muestra 14, la mezcla con 39.9% de almidón perdió 48 veces más peso que la

    muestra de PE puro. Se ha reportado que mezclas de PHB con 30% de almidón bajo

    composta a lo largo de 125 días pierden hasta el 25% de su peso (ref Imam, 1998),

    pero cabe notar que esos experimentos se realizaron con películas delgadas del

    polímero; nuestras preparaciones son de gran espesor, lo que hace más significativo

    nuestro resultado. En la figura 10-B se muestran las curvas de pérdida de peso de

    mezclas seleccionadas por ser representativas del contenido de almidón. La pérdida

    de peso correlaciona con el contenido de almidón como se aprecia en la figura 11.

  • 45

    Tabla 6. Pérdida de peso

  • 46

    Figura 9. Las preparaciones de polímero PE-almidón pierden peso en función del tiempo que pasan bajo composta y el contenido de almidón. Cupones de 5X5 cm de cada preparación se mantuvieron bajo composta 125 días. Las muestras se lavaron y secaron durante 24h a 60°C antes de registrar el peso. Las curvas presentan determinaciones individuales.

    0

    5

    10

    15

    25 50 75 100 125

    TIEM PO BAJO COM POSTA (DIAS)

    PÉR

    DID

    A D

    E PE

    SO (

    12345

    0

    5

    10

    15

    25 50 75 100 125

    T IEM PO BAJO COM POSTA (DIAS)

    PÉR

    DID

    A D

    E P

    ESO

    (

    678910

    0

    5

    10

    15

    25 50 75 100 125

    TIEM PO BAJO COM POSTA (DIAS)

    PÉR

    DID

    A D

    E PE

    SO (%

    1112131415

    0

    5

    10

    15

    25 50 75 100 125

    TIEM PO BAJO COM POSTA (DIAS)

    RD

    IDA

    DE

    PE

    SO

    (

    1617181920

    PÉR

    DID

    A D

    E PE

    SO (%

    )PÉ

    RD

    IDA

    DE

    PESO

    (%)

    PÉR

    DID

    A D

    E PE

    SO (%

    )PÉ

    RD

    IDA

    DE

    PESO

    (%)

    160/43255

    136.1/5310.14

    136.1/5339.93

    145/25252

    145/43251

    °C/Hz%A

    160/43255

    136.1/5310.14

    136.1/5339.93

    145/25252

    145/43251

    °C/Hz%A

    153.9/5339.915

    145/43014

    130/432513

    136.1/3239.912

    153.9/3239.911

    °C/Hz%A

    153.9/5339.915

    145/43014

    130/432513

    136.1/3239.912

    153.9/3239.911

    °C/Hz%A

    145/602510

    145/43259

    153.9/5310.18

    153.9/3210.17

    145/43506

    °C/Hz%A

    145/602510

    145/43259

    153.9/5310.18

    153.9/3210.17

    145/43506

    °C/Hz%A

    136.1/3210.120

    145/432519

    145/432518

    145/432517

    145/432516

    °C/Hz%A

    136.1/3210.120

    145/432519

    145/432518

    145/432517

    145/432516

    °C/Hz%A

  • 47

    Figura 10. Pérdida de peso de diferentes mezclas de PE-Almidón. A) Comparación entre mezcla 14(0%) y mezcla 11(39.9%) B) Se muestran el porcentaje de pérdida de peso para muestras seleccionadas por ser representativas del contenido de almidón: 1(25%), 3(39.9%), 4(10.1%), 6(50%), 10(25%), 11(39.9%) y 14(0%).

    0

    5

    10

    15

    25 50 75 100 125

    TIEMPO BAJO COMPOSTA (DIAS)

    PÉR

    DID

    A D

    E PE

    SO (%

    11

    14

    PÉR

    DID

    A D

    E PE

    SO (%

    )

    0

    5

    10

    15

    25 50 75 100 125

    TIEMPO BAJO COMPOSTA (DIAS)

    PÉR

    DID

    A D

    E PE

    SO (%

    11

    14

    PÉR

    DID

    A D

    E PE

    SO (%

    )A

    0

    5

    10

    15

    25 50 75 100 125

    TIEMPO BAJO COMPOSTA (DIAS)

    PÉR

    DID

    A D

    E PE

    SO (% 3

    4610141

    B

  • 48

    Figura 11. La pérdida de peso correlaciona con el contenido de almidón en la mezcla. Se grafica el porcentaje de pérdida de peso a los 125 días bajo composta. La correlación se calculó por regresión lineal.

    Propiedades físicas y mecánicas Resistencia a la Tensión Las figuras 12 y 13 y la tabla 7 muestran los resultados de la prueba de tensión. La

    resistencia a la tensión es una propiedad mecánica, si disminuye la resistencia a la

    tensión aplicada (MPa) indica que las mezclas PE-Almidón están perdiendo su

    propiedad mecánica. Aunque la resistencia a la tensión que muestran todas las

    preparaciones disminuye a los 25 días de incubación bajo composta de manera no

    significativa y se presentan variaciones en el comportamiento de las mezclas a lo

    largo del tiempo, no hay una tendencia clara que nos indique debilitamiento de las

    propiedades mecánicas en alguna de las mezclas PE-Almidón.

    La ligera disminución en la resistencia a la tensión que se observa en muestras con

    alto contenido de almidón, como se aprecia en el comparativo de la figura 13A entre

    la muestra 11 (39.9% de almidón) y la 14 (sin almidón), no es significativa. Las

    muestras 1(25%), 3(39.9%), 4(10.1%), 6(50%), 10(25%) y 14(0%) se seleccionaron

    para compararlas entre sí por representar las distintas proporciones de almidón

    R2 = 0.9122

    -4

    -2

    0

    2

    4

    6

    8

    10

    12

    14

    0 5 10 15 20 25 30 35 40 45

    % DE ALMIDÓN

    % P

    ÉR

    DID

    AD

    E PE

    SO

    MEZCLA % ALMIDÓN14 020 10.14 10.11 2513 2511 39.93 39.9

  • 49

    utilizadas en la preparación del polímero biodegradable (Fig. 13B) y no hay

    diferencia en la resistencia a la tensión entre las mezclas de almidón y el PE puro.

    El modelo geométrico de Nicolais y Narkis predice que la resistencia a la tensión de

    una mezcla en la que el relleno son partículas esféricas uniformemente distribuidas

    que no se adhieren a la matriz debe disminuir directamente proporcional a la

    proporción del relleno, esto se cumple para películas de mezclas de PE-Almidón

    30% en las que la disminución en la resistencia a la tensión es muy marcada

    (D45D,D46D). En nuestras preparaciones no hubo diferencias en la prueba de tensión

    probablemente porque no se cumplen las condiciones: 1) las partículas de almidón

    comercial no son esféricas y 2) nuestras preparaciones tenían un proceso de

    inyección adicional y un grosor muy distinto al de las películas. Podemos suponer

    que la interacción entre los componentes de la mezcla después de que fueron

    inyectados es lo suficientemente homogénea para impedir ruptura mecánica en la

    interfase de la mezcla. Esto también permite suponer que las modificaciones

    experimentadas en las otras variables medidas, especialmente la pérdida de peso,

    no se deben a rupturas mecánicas sino al efecto de las poblaciones microbianas

    presentes en la composta. Además podemos decir que las mezclas PE-Almidón son

    de igual de resistentes que el PE puro y por lo tanto pueden ser utilizadas en las

    mismas aplicaciones.

  • 50

    Figura 12. Prueba de tensión para las diferentes mezclas de PE-Almidón. Se muestran la media de 5 réplicas, en la tabla se indica el contenido de almidón de cada mezcla (%A) y los factores de preparación de la mezcla, Temperatura (°C) y Frecuencia de extrusión (Hz).

    160/43255

    136.1/5310.14

    136.1/5339.93

    145/25252

    145/43251

    °C/Hz%A

    160/43255

    136.1/5310.14

    136.1/5339.93

    145/25252

    145/43251

    °C/Hz%A

    153.9/5339.915

    145/43014

    130/432513

    136.1/3239.912

    153.9/3239.911

    °C/Hz%A

    153.9/5339.915

    145/43014

    130/432513

    136.1/3239.912

    153.9/3239.911

    °C/Hz%A

    145/602510

    145/43259

    153.9/5310.18

    153.9/3210.17

    145/43506

    °C/Hz%A

    145/602510

    145/43259

    153.9/5310.18

    153.9/3210.17

    145/43506

    °C/Hz%A

    136.1/3210.120

    145/432519

    145/432518

    145/432517

    145/432516

    °C/Hz%A

    136.1/3210.120

    145/432519

    145/432518

    145/432517

    145/432516

    °C/Hz%A

    0

    2

    4

    6

    8

    10

    0 25 50 75 100 125

    T IEM PO BA JO COM POST A (DIAS)

    TE

    NSI

    ÓN

    (M

    Pa 1

    234

    5

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 25 50 75 100 125

    T IEM PO BA JO C OM POST A (DIA S)

    TE

    NS

    IÓN

    (M

    Pa 6

    78

    910

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 25 50 75 100 125

    T IM EPO BA JO C OM POST A (DIA S)

    TE

    NS

    IÓN

    (M

    P 11

    121314

    15

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 25 50 7 5 1 00 125

    T IEM PO BA J O C O M POST A (DIA S)

    TE

    NS

    IÓN

    (M

    P 161718

    1920

    TIEMPO BAJO COMPOSTA (DIAS)

    TEN

    SIÓ

    N (M

    Pa)

    TIEMPO BAJO COMPOSTA (DIAS)

    TEN

    SIÓ

    N (M

    Pa)

    TIEMPO BAJO COMPOSTA (DIAS)

    TEN

    SIÓ

    N (M

    Pa)

    TIEMPO BAJO COMPOSTA (DIAS)

    TEN

    SIÓ

    N (M

    Pa)

  • 51

    Tabla 7. Prueba de tensión

    5.7625.1084.6315.8725.8727.45320

    5.8635.4316.3486.9164.8666.92319

    5.4995.2745.9285.3084.1045.93718

    5.4385.8686.6705.0804.8055.82917

    5.9685.2085.3704.7165.1387.53316

    4.7596.1784.1444.5633.8507.33315

    5.4116.7145.7085.2625.8496.58014

    5.4136.0607.2755.0005.5967.40013

    5.2463.6484.3035.2314.3037.46712

    4.2225.2515.2953.9744.1065.33311

    6.4566.1026.4555.3645.2579.50010

    5.6855.5055.1124.1585.9687.4809

    6.9005.5195.9465.1554.9375.9508

    8.1856.1755.6726.0446.4256.7577

    7.0285.9556.2216.3207.1197.0776

    6.0457.0006.0016.6415.8555.8695

    5.6326.6037.3836.9905.4755.2194

    4.7593.7216.7523.6673.1445.2543

    4.9294.9323.2894.4295.6025.2092

    5.5795.0844.9116.7655.4686.4501

    1251007550250MUESTRA

    TENSION (MPa) EN EL TIEMPO BAJO COMPOSTA (DIAS)

    5.7625.1084.6315.8725.8727.45320

    5.8635.4316.3486.9164.8666.92319

    5.4995.2745.9285.3084.1045.93718

    5.4385.8686.6705.0804.8055.82917

    5.9685.2085.3704.7165.1387.53316

    4.7596.1784.1444.5633.8507.33315

    5.4116.7145.7085.2625.8496.58014

    5.4136.0607.2755.0005.5967.40013

    5.2463.6484.3035.2314.3037.46712

    4.2225.2515.2953.9744.1065.33311

    6.4566.1026.4555.3645.2579.50010

    5.6855.5055.1124.1585.9687.4809

    6.9005.5195.9465.1554.9375.9508

    8.1856.1755.6726.0446.4256.7577

    7.0285.9556.2216.3207.1197.0776

    6.0457.0006.0016.6415.8555.8695

    5.6326.6037.3836.9905.4755.2194

    4.7593.7216.7523.6673.1445.2543

    4.9294.9323.2894.4295.6025.2092

    5.5795.0844.9116.7655.4686.4501

    1251007550250MUESTRA

    TENSION (MPa) EN EL TIEMPO BAJO COMPOSTA (DIAS)

  • 52

    Figura 13. Prueba de tensión para las diferentes mezclas de PE-Almidón. A) Comparación entre mezcla 14(0%) y mezcla 11(39.9%). B) Se muestran la media de 5 réplicas para muestras seleccionadas de la Fig.12 por ser representativas del contenido de almidón: 1(25%), 3(39.9%), 4(10.1%), 6(50%), 10(25%), 11(39.9%) y 14(0%).

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 25 50 75 100 125

    TIEMPO BAJO COMPOSTA (DIAS)

    TEN

    SIÓ

    N (M

    Pa)

    11

    14

    A

    2

    3

    4

    5

    6

    7

    8

    9

    10

    0 25 50 75 100 125

    TIEMPO BAJO COMPOSTA (DIAS)

    TEN

    SIÓ

    N (M

    Pa)

    13461014

    B

  • 53

    Elongación a la ruptura Las propiedades mecánicas de un polímero no se remiten exclusivamente a conocer

    cuán resistente es. La elongación es un tipo de deformación. La deformación es

    simplemente el cambio en la forma que experimenta cualquier cosa bajo tensión.

    Cuando hablamos de elongación, la muestra se deforma por estiramiento,

    volviéndose más larga. La elongación a la ruptura es crucial para todo tipo de

    material. Representa cuánto puede ser estirada una muestra antes de que se rompa.

    Aunque se presentan variaciones en el tiempo para cada mezcla, se puede notar

    una ligera disminución en el porcentaje de elongación a la ruptura a los 125 días en

    las mezclas PE-Almidón. El PE puro presenta un 17.88% de elongación a la ruptura,

    las diferentes mezclas muestran ligeras modificaciones que van desde 17.9% para

    mezcla con 10% de almidón (sin cambios respecto al PE puro) hasta 7.9% para la

    mezcla con 39.9% de almidón (Fig.14, tabla 8). En la figura 15A y B se muestra el

    comparativo entre la muestra 11(39.9% de almidón) y la 14 (PE puro) además de la

    selección de muestras representativas del contenido de almidón.

    En mezclas de polímeros sintéticos la adición de una segunda fase inmiscible a una

    matriz de material dúctil usualmente significa disminución de la elongación a la

    ruptura, en estas mezclas, la elongación a la ruptura se considera una prueba

    altamente sensible a la interacción entre las fases de la mezcla (D47D). La disminución

    de la elongación a la ruptura se ha reportado para películas PE-Almidón hasta 100

    veces menor para películas de PE-20%Almidón comparado con películas de PE

    puro (D48D). Para nuestras preparaciones, la mezcla con 39.9% de almidón el

    porcentaje de elongación a la ruptura es apenas 2.2 veces menor que el del PE

    puro, esta disminución es debida a la presencia del almidón y es muy pequeña

    comparad con el reporte de Lim y cols. (ref 47) sin embargo es necesario notar que

    el resultado obtenido por Lim y cols. se determinó en películas cuyo grosor es de

    35μm. Lo anterior confirma nuestra observación analizada en la prueba de tensión

    de que nuestras mezclas son más homogéneas en la interacción entre sus fases y

    que la pérdida de peso no se debe a fragilidad del material sino al efecto biológico

    de las poblaciones microbianas presentes en la composta.

  • 54

    Figura 14. Prueba de elongación a la ruptura para las diferentes mezclas de PE-Almidón. Se muestran la media de 5 réplicas por muestra en cada uno de los puntos de evaluación.

    160/43255

    136.1/5310.14

    136.1/5339.93

    145/25252

    145/43251

    °C/Hz%A

    160/43255

    136.1/5310.14

    136.1/5339.93

    145/25252

    145/43251

    °C/Hz%A

    153.9/5339.915

    145/43014

    130/432513

    136.1/3239.912

    153.9/3239.911

    °C/Hz%A

    153.9/5339.915

    145/43014

    130/432513

    136.1/3239.912

    153.9/3239.911

    °C/Hz%A

    145/602510

    145/43259

    153.9/5310.18

    153.9/3210.17

    145/43506

    °C/Hz%A

    145/602510

    145/43259

    153.9/5310.18

    153.9/3210.17

    145/43506

    °C/Hz%A

    136.1/3210.120

    145/432519

    145/432518

    145/432517

    145/432516

    °C/Hz%A

    136.1/3210.120

    145/432519

    145/432518

    145/432517

    145/432516

    °C/Hz%A

    0

    5

    10

    15

    20

    25

    30

    0 25 50 75 100 125

    TIEMPO BAJO COMPOSTA (DIAS)

    % D

    E EL

    ON

    GA

    CIÓ

    A L

    A R

    UPT

    UR

    A

    1

    2

    3

    45

    0

    5

    10

    15

    20

    25

    30

    0 25 50 75 100 125

    TIEMPO BAJO COMPOSTA (DIAS)

    % D

    E EL

    ON

    GA

    CIÓ

    A L

    A R

    UPT

    UR

    A

    6

    78

    910

    0

    5

    10

    15

    20

    25

    30

    0 25 50 75 100 125

    TIEMPO BAJO COMPOSTA (DIAS)

    % D

    E EL

    ON

    GA

    CIÓ

    A L

    A R

    UPT

    UR

    A

    1112

    13

    1415

    0

    5

    10

    15

    20

    25

    30

    0 25 50 75 100 125

    TIEMPO BAJO COMPOSTA (DIAS)

    % D

    E EL

    ON

    GA

    CIÓ

    A L

    A R

    UPT

    UR

    A

    1617

    18

    19

    20

    % D

    E EL

    ON

    GAC

    IÓN

    A

    LA R

    UPT

    UR

    A%

    DE

    ELO

    NG

    ACIÓ

    N

    A LA

    RU

    PTU

    RA

    % D

    E EL

    ON

    GAC

    IÓN

    A

    LA R

    UPT

    UR

    A%

    DE

    ELO

    NG

    ACIÓ

    N

    A LA

    RU

    PTU

    RA

  • 55

    Tabla 8. Prueba de elongación

    17.94013.2108.9208.6508.65012.11720

    9.9108.87010.3108.0104.6406.72119

    9.34011.31010.2906.7604.14011.25018

    9.66012.1508.6907.2104.8408.35717

    9.12010.4506.6705.9704.5509.71716

    9.13013.1806.6106.0706.41010.56715

    17.88020.39019.68010.26015.14017.66014

    12.7609.3708.3209.3006.21011.22513

    12.1508.0808.4807.3303.8608.39212

    7.9509.8207.6005.9705.5506.07511

    15.13014.17011.9507.06010.01017.17510

    12.01012.7106.2008.5307.62010.4009

    17.26011.5807.7006.7906.4008.4838

    15.02012.32010.7707.2505.3106.7507

    11.3709.8804.8404.4606.0105.1926

    11.89011.8006.2407.3605.2607.4075