DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de...

101
DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS FAVORABLE QUE PERMITA IMPLEMENTAR UN SISTEMA DE DRENAJE URBANO SOTENIBLE – SUDS EN EL PARQUE METROPOLITANO SAN CRISTÓBAL. LUIS ALEJANDRO VANEGAS GUERRERO UNIVERSIDAD CATÓLICA DE COLOMBIA FACULTAD DE INGENIERÍA PROGRAMA DE ESPECIALIZACIÓN EN RECURSOS HÍDRICOS BOGOTÁ D.C – 2015

Transcript of DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de...

Page 1: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS FAVORABLE QUE PERMITA

IMPLEMENTAR UN SISTEMA DE DRENAJE URBANO SOTENIBLE – SUDS EN EL

PARQUE METROPOLITANO SAN CRISTÓBAL.

LUIS ALEJANDRO VANEGAS GUERRERO

UNIVERSIDAD CATÓLICA DE COLOMBIA

FACULTAD DE INGENIERÍA

PROGRAMA DE ESPECIALIZACIÓN EN RECURSOS HÍDRICOS

BOGOTÁ D.C – 2015

Page 2: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS FAVORABLE QUE PERMITA

IMPLEMENTAR UN SISTEMA DE DRENAJE URBANO SOTENIBLE – SUDS EN EL

PARQUE METROPOLITANO SAN CRISTÓBAL.

LUIS ALEJANDRO VANEGAS GUERRERO

Trabajo de grado para obtener el título de especialista en Recursos Hídricos.

ASESOR: MAURICIO GONZÁLEZ MÉNDEZ

INGENIERO CIVIL.

UNIVERSIDAD CATÓLICA DE COLOMBIA

FACULTAD DE INGENIERÍA

PROGRAMA DE ESPECIALIZACIÓN EN RECURSOS HÍDRICOS

BOGOTÁ D.C – 2015

Page 3: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de
Page 4: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

Nota de aceptación

______________________________________

______________________________________

______________________________________

______________________________________

Presidente del Jurado

______________________________________

Jurado

______________________________________

Jurado

Bogotá D.C., Junio de 2015.

Page 5: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

Dedicatoria

A mi madre, mi hermana y mi sobrina, que me brindaron todo su apoyo en este proceso de

formación personal y profesional, ya que ellas hacen más meritorio culminar con éxito esta etapa

de la vida.

Page 6: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

Agradecimientos

Agradecimiento a los profesionales y compañeros de trabajo del Instituto Distrital de Gestión de

Riesgos y Cambio Climático que con sus aportes profesionales y orientación contribuyeron a la

culminación del presente trabajo de grado.

Page 7: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

TABLA DE CONTENIDO

INTRODUCCIÓN .................................................................................................................................. 2

1 GENERALIDADES DEL TRABAJO DE GRADO ..................................................................... 5

1.1 LÍNEA DE INVESTIGACIÓN .................................................................................................................. 5

1.2 PLANTEAMIENTO DEL PROBLEMA ...................................................................................................... 5

1.2.1 Antecedentes del problema ...................................................................................................... 5

1.2.2 Pregunta de investigación ....................................................................................................... 9

1.3 JUSTIFICACIÓN ................................................................................................................................. 10

1.4 OBJETIVOS ....................................................................................................................................... 12

1.4.1 Objetivo general .................................................................................................................... 12

1.4.2 Objetivos específicos ............................................................................................................. 12

2 MARCOS DE REFERENCIA .................................................................................................... 13

2.1 MARCO CONCEPTUAL ...................................................................................................................... 13

2.2 MARCO TEÓRICO ............................................................................................................................. 14

3 METODOLOGÍA ........................................................................................................................ 19

3.1 FASES DEL TRABAJO DE GRADO ....................................................................................................... 19

3.2 INSTRUMENTOS O HERRAMIENTAS UTILIZADAS ............................................................................... 20

4 LOCALIDAD DE SAN CRISTÓBAL ........................................................................................ 21

4.1 DESCRIPCIÓN Y CARACTERIZACIÓN DE LA LOCALIDAD. ............................................... 21

4.2 IDENTIFICACIÓN DEL RIESGO EN LOS ESCENARIOS TERRITORIALES DE LA LOCALIDAD. ................ 24

4.3 ANÁLISIS DE LAS EMERGENCIAS OCURRIDAS EN LA LOCALIDAD DE SAN

CRISTÓBAL. 24

5 SISTEMAS URBANOS DE DRENAJE ...................................................................................... 27

5.1 ¿QUÉ ES DRENAJE URBANO? ............................................................................................................ 27

5.2 EFECTOS DE LA URBANIZACIÓN SOBRE EL DRENAJE. ..................................................... 29

5.3 SUDS. ............................................................................................................................................. 32

5.4 DESARROLLO. ............................................................................................................................. 34

5.5 TIPOLOGÍA DE SUDS. ................................................................................................................. 35

5.5.1 Medidas no estructurales....................................................................................................... 35

Page 8: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

5.5.2 Medidas estructurales. .......................................................................................................... 36

5.6 SUDS EN BOGOTÁ. ...................................................................................................................... 37

6 INFORMACIÓN DISPONIBLE. ................................................................................................ 39

6.1 INFORMACIÓN HIDROMETEOROLÓGICA ............................................................................. 39

6.2 CARTOGRAFÍA DE REFERENCIA. ............................................................................................ 40

7 DISEÑO HIDRÁULICO. ............................................................................................................ 43

7.1 CARACTERÍSTICAS FISIOGRÁFICAS DE LA CUENCA ........................................................................... 43

7.2 ANÁLISIS DE LOS DATOS DE LLUVIA EN LA CUENCA ......................................................................... 49

7.3 SELECCIÓN DEL ESCENARIO DE DISEÑO. ........................................................................................... 51

7.4 CAUDALES DE DISEÑO. ..................................................................................................................... 52

7.4.1 Estimación del coeficiente de escorrentía, C......................................................................... 52

7.4.2 Calculo de caudales. ............................................................................................................. 54

7.4.3 Estimación del número de curva de escorrentía, CN ............................................................ 54

7.4.4 Clasificación hidrológica de los suelos. ................................................................................ 54

7.4.5 Determinación del número de curva de escorrentía.............................................................. 55

7.4.6 Calculo del tiempo de concentración .................................................................................... 56

7.4.7 Hidrograma unitario sintetico método SCS........................................................................... 56

7.5 DISEÑO DEL SISTEMA DE ALMACENAMIENTO. .................................................................. 57

7.5.1 Sistema Modular de Tanques Subterraneos. ......................................................................... 59

8 CONCLUSIONES Y RECOMENDACIONES ........................................................................... 60

8.1 CONCLUSIONES. ......................................................................................................................... 60

8.2 RECOMENDACIONES. ................................................................................................................ 61

BIBLIOGRAFÍA .................................................................................................................................. 63

APÉNDICES ......................................................................................................................................... 66

ANEXOS ............................................................................................................................................... 73

ANEXO A. GLOSARIO. .......................................................................................................................... 73

ANEXO B. DATOS DE PRECIPITACIÓN MENSUAL MULTIANUAL, ESTACIÓN EL DELIRIO. . 77

ANEXO C. TIPOLOGÍAS DE SUDS CON MEDIDAS ESTRUCTURALES. ........................................ 79

ANEXO D. CLASIFICACION HIDROLÓGICA DE LOS SUELOS ...................................................... 91

Page 9: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

LISTA DE FIGURAS

FIGURA 1. UBICACIÓN LOCALIDAD DE SAN CRISTÓBAL. .............................................................................................. 22

FIGURA 2. INTERFACES PRINCIPALES DEL DRENAJE URBANO. ....................................................................................... 28

FIGURA 3. EFECTOS DE LA URBANIZACIÓN SOBRE EL DESTINO DE LAS LLUVIAS. .......................................................... 30

FIGURA 4. EFECTO DE LA URBANIZACIÓN EN LA TASA PICO DE ESCORRENTÍA. ............................................................. 31

FIGURA 5. OBJETIVOS DEL DRENAJE SOSTENIBLE. ....................................................................................................... 33

FIGURA 6 ESTRATEGIA DE ADAPTACIÓN Y ORDENAMIENTO ALREDEDOR DEL AGUA EN BOGOTÁ ................................. 38

FIGURA 7.CUENCA DEL RÍO SAN CRISTÓBAL. .............................................................................................................. 42

FIGURA 8. MODELO DE ELEVACIÓN DIGITAL DE CUENCA DEL RÍO SAN CRISTÓBAL .................................................... 43

FIGURA 9. DELIMITACIÓN DE LA CUENCA DEL RÍO SAN CRISTÓBAL .............................................................................. 44

FIGURA 10. RED PRIMARIA DE DRENAJE CUENCA DEL RÍO SAN CRISTÓBAL. ................................................................. 45

FIGURA 11. RED SECUNDARIA DE DRENAJE CUENCA DEL RÍO SAN CRISTÓBAL. ............................................................ 45

FIGURA 12. MODELO DE ELEVACIÓN DIGITAL DE LA CUENCA DEL RÍO SAN CRISTÓBAL, SE DESTACA LA DELIMITACIÓN

DE LA MICROCUENCA DE LA ZONA URBANIZADA DE LA MISMA ........................................................................... 47

FIGURA 13. MODELO DIGITAL DE ELEVACIÓN DE LA MICROCUENCA DE LA ZONA URBANA DEL RÍO SAN CRISTÓBAL. .. 47

FIGURA 14. ORTOFOTO DE LA MICROCUENCA DE LA ZONA URBANA DEL RÍO SAN CRISTÓBAL ..................................... 48

FIGURA 15. RED DE DRENAJE DE LA MICROCUENCA DE LA ZONA URBANA DEL RÍO SAN CRISTÓBAL. ........................... 48

FIGURA 16. DISTRIBUCIÓN PROMEDIO DE LA PRECIPITACIÓN PARA LA ESTACIÓN EL DELIRIO ..................................... 50

FIGURA 17. ALMACENAMIENTO: HIDROGRAMAS DE ENTRADA Y SALIDA DE FLUJO ..................................................... 58

FIGURA 18. MODULO DEL SISTEMA DE TANQUES SUBTERRANEO. ................................................................................. 59

Page 10: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

LISTA DE TABLAS

TABLA 1. ZONIFICACIÓN DE AMENAZA POR INUNDACIÓN DE BOGOTÁ. ....................................................................... 15

TABLA 2. NÚMERO DE BARRIOS Y SUPERFICIE EN HECTÁREAS. ................................................................................... 23

TABLA 3. CARACTERIZACIÓN DE RIESGO PARA EL ESCENARIO ALUVIAL EN LA LOCALIDAD. ........................................ 24

TABLA 4. EMERGENCIAS REALACIONADAS CON EVENTOS DE REPRESAMIENTO DE CAUCE, INUNDACIÓN O

ENCHARCAMIENTOS. ........................................................................................................................................... 25

TABLA 5. AFECTACIONES GENERADAS POR EMERGENCIAS RELACIONADAS CON REPRESAMIENTO DE CAUCE,

INUNDACIÓN O ENCHARCAMIENTO 1. .................................................................................................................. 26

TABLA 6. COEFICIENTES PARA EL CÁLCULO DE LAS CURVAS IDF DE LA ESTACIÓN EL DELIRIO. ................................. 39

TABLA 7. CARÁCTERÍSTICAS MORFOMÉTRICAS DE LA CUENCA DEL RÍO SAN CRISTÓBAL ........................................... 46

TABLA 8. CARÁCTERÍSTICAS MORFOMÉTRICAS DE LA MICROCUENCA DE LA ZONA URBANA DEL RÍO SAN CRISTÓBAL

........................................................................................................................................................................... 49

TABLA 9. SELECCIÓN DEL COEFICIENTE DE ESCORRENTÍA............................................................................................ 53

TABLA 10. CALCULO DE CAUDALES PARA LAS CONDICIONES NATURALES Y MODIFICADAS DE LA MICROCUENCA DE LA

ZONA URBANA DEL RÍO SAN CRISTÓBAL .............................................................................................................. 54

TABLA 11. NUMERO DE CURVA DE ESCORRENTÍA PARA ÁREAS URBANAS. ................................................................... 55

TABLA 12. CALCULO DE TIEMPO DE CONCENTRACIÓN ................................................................................................. 56

TABLA 13. CALCULOS DE LOS PARÁMTEROS TC Y QP PARA LAS CONDICIONES NATURALES Y MODIFICADAS DE LA

MICROCUENCA URBANA DEL RÍO SAN CRISTÓBAL. ............................................................................................. 57

Page 11: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

1

RESUMEN

En este trabajo de grado se propone presentar el efecto que se genera sobre la escorrentía

producida por las aguas lluvias y como los efectos de la urbanización y el cambio en las

coberturas del suelo modifican drasticamente el comportamiento de la escorrentía superficial en

las zonas urbanas, adicionalmente pretende hacer visible la importancia de plantear un cambio en

el modelo de uso del recurso hídrico y proyectar un modelo con acciones sostenibles

ambientalmente, para este fin se plantea la implementación de un sistema urbano de drenaje

sostenible para la cuenca del río san cristóbal, cual se utiliza la modelación hidráulica de la

cuenca objeto de estudio mediante el software arc-gis, partiendo desde la obtención de las curvas

de nivel empleando el software Global Mapper, se determinan los caudales teniendo en cuenta la

precipitación histórica medida en la zona, la cobertura del suelo y el área de la cuenca,

adicionalmente usando el método del SoilConservationService –SCS es posible determinar los

hidrogramas unitarios de la cuenca de análisis en su condición natural y su condición

modificada, finalmente es importante destacar las variaciones significativas de los tiempos de

concentración en relación con las condiciones naturales de la cuenca y las condiciones

modificadas así como los efectos de un sistema de almacenamiento del caudal proveniente de las

aguas lluvias y sus efectos a corto y largo plazo.

Palabras clave: Inundación, Sistema Urbano de Drenaje Sostenible, Escorrentía Superficial,

Cobertura de suelo, modelación hidráulica.

ABSTRACT

In this paper grade it is planning to present the effect generated on runoff caused by rain waters

and the effects of urbanization and changes in land cover drastically modify the behavior of

surface runoff in urban areas, further aims to make visible the importance to propose a change in

the pattern of use of water resources and project a model environmentally sustainable actions, for

this purpose the implementation of a sustainable urban drainage system for the basin of San

Cristobal River arises, which used hydraulic modeling of the basin under study by the arc-gis

software, starting from obtaining the contour using the Global Mapper software, flows are

determined taking into account the historical measured precipitation in the area coverage soil and

watershed area, additionally using the method of SoilConservationService -SCS is possible to

determine the unit hydrograph basin analysis in its natural condition and its modified condition

finally is important to highlight the significant changes in concentration relative times with the

natural conditions of the basin and the changed conditions and the effects of a storage system

from storm water flow and its effects in the short and long term.

Keywords: Flood, Sustainable Urban Drainage System, surface runoff, soil coverage, hydraulic

modeling

Page 12: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

2

INTRODUCCIÓN

La cuenca del río san Cristóbal hace parte del río Fucha y se encuentra al sur este de la ciudad de

Bogotá D.C., dentro de la localidad 4 de San Cristóbal, y se extiende no sobre el altiplano, sino

sobre las estribaciones montañosas, cuenta con una extensión total de 4909.88 hectáreas (ha),

1629.19 ha estpan clasificadas como suelo urbano y 3187.13 han sido definidas como suelo

rural, el área de los terrenos de la localidad de san Cristóbal están comprendidos entre los 2600 y

los 3200 m.sn.m., con una temperatura promedio anual de 10.5°C en la zona baja y 3.5°C en la

zona alta y la población de la localidad es de 404.385 personas, en cuanto a la zona objeto de

estudió es necesario mencionar que si bien no es la más problemática en Bogotá en lo que se

refiere a eventos de emergencia relacionados con inundación o desbordamiento, se destaca por

contar con un área rural y una urbana como se mencionoanteriromente, esta última densamente

poblada y con graves problemas de vulnerabilidad física y social.

El Plan de Desarrollo Bogotá Humana, incorpora medidas de adaptación al cambio climático en

los procesos de gestión de riesgos del Distrito Capital, con énfasis en reducir la exposición y la

vulnerabilidad de la ciudad. Se busca aumentar la resiliencia a los impactos adversos potenciales

de los extremos climáticos, sobre las personas, la actividad económica, los servicios ambientales,

sociales o culturales y la infraestructura1.

1COLOMBIA. SECRETARÍA DE PLANEACIÓN. Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento

Territorial POT, 2013. P. 111

Page 13: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

3

Para mitigar los posibles efectos derivados de la inadecuada gestión del recurso hídrico el Plan

de Desarrollo, presenta como objetivo la generación de espacio público verde para mejorar la

capacidad hídrica del tejido urbano; la reducción del endurecimiento de las superficies2.

La meta que unifica los objetivos propuestos por los programas de Estrategia Territorial

Regional Frente al Cambio Climático y de Gestión Integral del Riesgo está relacionada con la

implementación de Sistemas Urbanos de Drenaje Sostenible - SUDS y de manera particular la

ejecución de SUDS, en 8 parques de escala zonal, aplicando modelos de ecourbanismo y

construcción sostenible adicional con estas acciones se busca reducir el número de personas

afectadas por deslizamientos e inundaciones.

El sistema de drenaje urbano convencional está diseñado para recoger la escorrentía superficial

generada por un evento de lluvia, transportarla a lo largo de una vía o cuneta y descargarla lo

más rápidamente posible, evitando el riesgo de inundación.

El drenaje urbano convencional funciona adecuadamente. Sin embargo, hoy en día han ido

surgiendo otros conceptos de diseño del drenaje que tienen en cuenta objetivos adicionales,

basados principalmente en el desarrollo sostenible.

Dentro de las medidas planteadas para reducir la vulnerabilidad territorial al riesgo por

inundaciones se destacan las medidas de adaptación, en particular la relacionada con

implementar nuevas formas sostenibles de construcción de la ciudad, mediante el aumento de

coberturas vegetales y capacidad de permeabilidad del suelo, que incentiven la disminución de

islas de calor.

2COLOMBIA. ALCALDÍA MAYOR DE BOGOTÁ D.C. Plan de Desarrollo 2012 – 2016 Bogotá Humana, 2012.

P. 183.

Page 14: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

4

Los objetivos adicionales de los sistemas de drenaje urbano buscan disminuir el volumen de

escorrentía y los picos de escorrentía producidos por las zonas impermeables que van

apareciendo en las ciudades y mejorar lo más cerca del sitio la captación puntual y la calidad de

las aguas lluvias contaminadas por las vías urbanas.

La propuesta se orienta a reducir la vulnerabilidad territorial en Bogotá frente a las nuevas

condiciones de amenaza, derivadas del cambio climático, mediante la incorporación de medidas

de adaptación y mitigación que inciden en la protección de la vida y la funcionalidad ambiental

de los espacios naturales de montaña, ríos y quebradas.

Page 15: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

5

1 GENERALIDADES DEL TRABAJO DE GRADO

1.1 LÍNEA DE INVESTIGACIÓN

La línea de investigación que seguirá el proyecto está relacionada con el área de

saneamiento de comunidades, en el marco del presente proyecto pretende impactar

positivamente a la comunidad aledaña al mismo mejorando su calidad de vida mediante

la reducción de los riesgos por inundación presentes en la cuenca del río san Cristóbal

como históricamente se ha evidenciado, además por medio del mismo se pretende

comenzar a generar conocimiento a nivel comunitario e institucional sobre la importancia

de emprender acciones que garanticen a mediano y largo plazo sostenibilidad ambiental.

1.2 PLANTEAMIENTO DEL PROBLEMA

1.2.1 Antecedentes del problema

En los últimos años la ciudad ha experimentado mayor ocurrencia de eventos climáticos

extremos. La pasada temporada de lluvias, acrecentada por el fenómeno de la Niña

durante el segundo semestre del año 2010 y el año 2011, es la mayor tragedia a nivel de

invierno que ha vivido el país en los últimos 50 años. Aunque, en Bogotá, la afectación

por este fenómeno estuvo por debajo del promedio nacional, es claro que la afectación

fue superior la que generalmente se presenta en términos de número de afectados,

movilidad, salud pública y pérdidas económicas a la comunidad3.

En la ciudad, los eventos climáticos extremos han afectado principalmente la población

de menores ingresos que se localiza cerca de humedales, riberas de los ríos y laderas de

3COLOMBIA, SECRETARÍA DE PLANEACIÓN. Modificación Excepcional de Normas Urbanísticas del Plan de

Ordenamiento Territorial 2013, Documento Técnico de Soporte, 2013, P. 17 y 259

Page 16: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

6

las montañas (4545 familias / 19131 personas viven en zonas de riesgo). Igualmente, la

vida silvestre en ecosistemas frágiles se ha visto afectada.

En los últimos 30 años, Bogotá ha sufrido grandes inundaciones producidas por el

desborde de ríos que afectaron la normalidad cotidiana de los habitantes y que produjeron

grandes pérdidas económicas4, entre los eventos de emergencia por inundación se

destacan en el Distrito Capital se destacan entre otros el presentado en Noviembre de

1979, el río Bogotá se desborda cerca de la desembocadura del río Fucha, afectando

principalmente el barrio Patio Bonito de la localidad de Kennedy, así como el que se

presento en 1984 con la inundación del barrio Meissen.

Estos eventos hicieron visible la necesidad que tenía el Distrito Capital de contar con una

entidad para la atención y prevención de emergencias y por medio del Acuerdo 11 de

1987 se crea el FOPAE. En ese mismo año se presenta el evento de inundación generado

por el rebose del río arzobispo.

En el año de 1994 se presenta la avalancha proveniente de la cantera el Zuque y que fue

trasportada por la Quebrada del mismo nombre y la Quebrada Chiguaza afectando

principalmente a los habitantes de las zonas de ronda de las localidades de San Cristóbal

y Rafael Uribe Uribe.

En mayo 14 de 1996, el barrio San Benito de la localidad de Tunjuelito a orillas del río

del mismo nombre sufrió inundaciones inicialmente por reflujo de los sistemas de

alcantarillado del barrio, y luego por el desborde del río Tunjuelo debido a la rotura del

jarillón cerca de la desembocadura de la quebrada La Chiguaza.

4COLOMBIA, SECRETARÍA DISTRITAL DE AMBIENTE. Sistemas Urbanos de Drenaje Sostenible Para el Plan

de Ordenamiento Zonal Norte POZN, 2011, P. 7 – 9.

Page 17: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

7

En el año 2002 se produce la inundación de las cárcavas producto de la explotación

minera sobre el río Tunjuelo.

Hasta ahora, el evento con mayores repercusiones sociales y económicas a nivel distrital,

asociado a un evento de emergencia, parece ser el ocurrido en la Quebrada Limas de la

localidad de Ciudad Bolívar, ocurrido en el año 2004.

A fin de disminuir la condición de riesgo por inundación para los habitantes, en el año

2005 la Empresa de Acueducto de Bogotá finaliza las obras de construcción de la presa

seca “Canta Rana”, con la cual se busca amortiguar las crecientes del río Tunjuelito y

mitigar sus consecuencias en las zonas bajas de la ronda del río, la implementación de

esta medida estructural ha sido importante para mitigar los efectos en una parte de la

ciudad, pero desafortunadamente los eventos de inundación se han vuelto recurrentes en

otras zonas de la ciudad donde históricamente no se habían presentado o se presentaban

con menor intensidad.

En marzo 10 de 2008, la Avenida Caracas con Calle 26 se inunda. Este sector aparece

identificada como una zona crítica por la Unidad de Emergencias, por ser un lugar con un

alto porcentaje de basuras en su alcantarillado, lo que no permite que las aguas se

evacúan rápido, las consecuencias de este evento le demostraron a la ciudad que su

sistema de drenaje pluvial no se encontraba preparado para evacuar de manera eficiente

un evento con picos de lluvia altos asociado con granizo.

En el año 2011 debido a la presencia de la temporal invernal habitual al segundo semestre

del año, acrecentada por el fenómeno de “La Niña” de acuerdo con los análisis realizados

por el IDEAM, este fenómeno sumado al presentado durante la temporada invernal que

inicio en el segundo semestre del 2010 y se extendió hasta el primer semestre de 2011.

Page 18: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

8

Esta situación genero precipitaciones por encima de lo normal, con mayor número de días

lluviosos para los meses de Diciembre de 2011 y Enero, Febrero y Marzo 20125.

En la ciudad de Bogotá se evidenció que debido a la presencia del fenómeno de “La

Niña”, los períodos de lluvia habituales por su régimen bimodal se vieron incrementados

generando excesos de lluvia, los cuales son un factor detonante en la generación de

eventos de emergencia tales como los fenómenos de remoción en masa, inundaciones,

encharcamientos y reflujo, la precipitación presentada en toda la ciudad sobrepaso los

promedios históricos característicos de la ciudad.

Producto de lo anterior se presentó la inundación por reflujo con láminas de agua hasta de

1,20 metros de altura, en un amplio sector, debido posiblemente a la sobrecarga de

volúmenes de agua y/o caudales en el sistema de alcantarillado del Canal Cundinamarca

y sus canales afluentes que tienen la función de drenar gran parte de las localidades de

Bosa y Kennedy, lo cual conllevó a sobrepasar la capacidad máxima de almacenamiento

del sistema, generando el reflujo del sistema por las redes menores de alcantarillado de

aguas lluvias hacia las vías, parqueaderos, zonas comunes y zonas residenciales de los

conjuntos ubicados en las áreas de influencia de los canales Tintal IV, Santa Isabel y

Tintal III, desde la Avenida ALO, paralela al Canal Cundinamarca, hasta inmediaciones

de la Carrera 106A.

Se destaca que el sistema del Canal Cundinamarca es un elemento estructural del sistema

de drenaje de la llamada Cuenca del Tintal, la cual además de este canal, cuenta con un

interceptor paralelo los cuales se apoyan en la Estación elevadora de Gibraltar para

entregar al Río Bogotá.

5COLOMBIA, FONDO DE PREVENCIÓN Y ATENCIÓN DE EMERGENCIAS – FOPAE. Diagnóstico Técnico

DI-6103, 2011. P. 5, 14 y 15.

Page 19: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

9

El 18 de Noviembre de 2013 se presentó una avenida torrencial en el río Fucha, que

según lo observado, hacia la parte alta de la ladera en la zona de Cerros Orientales, en

algunos sectores se generó el desbordamiento del río Fucha, generando encharcamiento e

inundación de algunos predios rurales, situación que no se generó hacia la parte media y

baja del mencionado río, dado que en estos sectores el cauce se profundiza, es de notar

que producto de la cantidad de aguas aportadas por la cuenca del río Fucha al parecer por

las fuertes precipitaciones presentadas en la cabecera del río, lodos y materiales vegetales

arrastrados durante la avenida torrencial, el nivel del río Fucha alcanzó en la zona media

y baja una altura de aproximadamente 3,5 m6.

De igual manera se apreció que en diferentes puntos del río Fucha, producto del gran

caudal que circuló por el cauce del mismo, se generaron múltiples procesos de remoción

en masa tanto en los taludes marginales derecho e izquierdo; procesos de remoción en

masa que en algunos puntos alcanzaron un volumen de masa movilizada de hasta 300m3,

materiales que fueron arrastrados por la avenida torrencial.

1.2.2 Pregunta de investigación

El planteamiento del interrogante de la investigación se presenta a continuación:

¿Cuál es la alternativa técnica más favorable que permita implementar un Sistema

Urbano de Drenaje Sostenible – SUDS, en el parque metropolitano san Cristóbal, y

que cumpla con el objetivo de mitigar los efectos producidos por los caudales punta y

los picos de las crecientes de la cuenca del río San Cristóbal, con el fin de reproducir

de manera natural su ciclo hidrológico y que a su vez posibiliten reducir o minimizar

los riesgos por inundación, como propone en el Plan de Desarrollo Bogotá Humana?

6COLOMBIA, FONDO DE PREVENCIÓN Y ATENCIÓN DE EMERGENCIAS – FOPAE. Diagnóstico Técnico

DI-7027, 2013. P. 7- 8.

Page 20: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

10

1.3 JUSTIFICACIÓN

Para conocer a profundidad los estudios y avances realizados en el contexto nacional e

internacional en el tema de los SUDS, que emergen con mucha fuerza en diferentes países con

amplios antecedentes, a diferencia del nivel nacional en donde hasta ahora se empieza a tener en

cuenta estas tecnologías como parte de la solución para el manejo de la escorrentía pluvial.

En otras latitudes, los sistemas urbanos de drenaje sostenible están concebidos como un

componente integral dentro de la concepción del manejo de la escorrentía que se genera dentro

de los procesos de urbanización. Esta filosofía de manejo consiste en buscar reproducir con la

mayor fidelidad posible las características del ciclo hidrológico natural presente en la zona a

desarrollar una vez el proceso de urbanización haya tenido lugar. Más en detalle, las regulaciones

establecidas en muchas regiones del mundo establecen que una vez se adelanta el proceso de

urbanización, los caudales provenientes de la escorrentía pluvial que deben entregarse en los

cuerpos de agua receptores no deben exceder los caudales que generaba originalmente la zona

desarrollada en sus condiciones de pre desarrollo, como estudio de caso se puede mencionar que

las regulaciones de varios estados de los Estados Unidos. Por ejemplo, el estado de Virginia

especifica niveles de diseño de los sistemas de bioretención en función del porcentaje buscado de

reducción de la escorrentía que llega al SUDS, mientras que el estado de Carolina del Norte,

presenta metodologías ya definidas para verificar el dimensionamiento de SUDS propuestos.

Esta filosofía de diseño es la que obliga a la implantación de sistemas de detención de las aguas

lluvias, como por ejemplo los sistemas de pondaje, con el objetivo específico de disminuir picos

de caudal en las zonas urbanizadas hasta los valores naturalmente generados antes de su

urbanización. Nótese entonces como la necesidad de utilizar sistemas de detención se hizo

fundamentalmente con el objetivo claro de disminuir la posibilidad de tener inundaciones

causadas por el cambio en la permeabilidad de las superficies.

Con esto en mente, los objetivos encontrados con los sistemas de detención se han ido

progresivamente ampliando hacia otras tecnologías alternativas, tales como la bioretención, el

Page 21: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

11

filtrado de aguas lluvias y la implantación de humedales artificiales en donde, como siempre, se

busca cumplir simultáneamente con los objetivos de mitigación de picos de creciente y mejorar

la calidad del agua de la escorrentía. No obstante, la adopción de criterios con fines de diseño y

regulación de las diferentes tipologías de SUDS por parte de diferentes entidades ambientales y

territoriales se ve claramente influenciada por el nivel de conocimiento que se tenga de su

desempeño real.

En el ámbito nacional se desarrolla un primer estudio en cuanto al tema de los SUDS en el

documento producto de la consultoría realizada para la Empresa de Acueducto de Bogotá

denominado “Factibilidad técnica, ambiental, económica y financiera para el desarrollo de la

infraestructura de acueducto y alcantarillado sanitario y sistema de drenaje pluvial del borde

norte de la ciudad de Bogotá”, dicha consultoría aborda de manera conceptual el tema de los

SUDS.

Con esto en mente, la adopción de SUDS en el medio colombiano deberá necesariamente pasar

por la adaptación de las tecnologías ya utilizadas en otras partes del mundo a nuestras

condiciones locales con el fin de evolucionar con el tiempo hacía una normatización técnica

propia que involucre la especificación a utilizar en temas tales como, la composición

granulométrica de los medios filtrantes, su profundidad, configuración de drenaje, vegetación a

utilizar y necesidades de mantenimiento, temas que hoy en día aún son también objeto de debate

en otras partes del mundo.

Page 22: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

12

1.4 OBJETIVOS

1.4.1 Objetivo general

Diseño de la alternativa técnica más favorable que permita implementar un Sistema

Urbano de Drenaje Sostenible – SUDS, en el parque metropolitano san Cristóbal, y que

cumpla con el objetivo de mitigar los efectos producidos por los caudales punta y los

picos de las crecientes de la cuenca del río San Cristóbal, con el fin de reproducir de

manera natural el ciclo hidrológico y que a su vez posibiliten reducir o minimizar los

riesgos por inundación.

1.4.2 Objetivos específicos

Modelar la microcuenca del río San Cristóbal y estimar el caudal generado en la

mencionada cuenca mediante el empleo de software, para determinar el caudal

máximo a captar por el Sistema Urbano de Drenaje Sostenible – SUDS,

seleccionado de acuerdo con las características propias del entorno del río y su

Zona de Ronda.

Compilar la información existente a nivel nacional e internacional sobre los

diferentes Sistemas Urbanos de Drenaje Sostenible – SUDS, a fin de identificar y

generar los criterios más relevantes en la selección del tipo de sistema más

adecuado y que proporcione la solución integral al manejo de picos de caudal en

el río San Cristóbal.

Diseño conceptual de las estructuras hidráulicas más eficientes que almacenaran o

retendrán los picos de excesos de caudal que son transportados por el cauce del río

San Cristóbal y que serán devueltos al medio de manera apropiada, de tal manera

que se mitigara o reducirá el riesgo de inundación en el sector aledaño a la cuenca

del río.

Page 23: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

13

2 MARCOS DE REFERENCIA

2.1 MARCO CONCEPTUAL

Fuente: Autor

Page 24: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

14

2.2 MARCO TEÓRICO

La inundación en un evento natural y recurrente que se produce en las corrientes de agua como

resultado de lluvias intensas y continuas que, al sobrepasar la capacidad de retención del suelo y

de los cauces, desbordan e inundan aquellos terrenos aledaños a los cursos de agua7, afectando

los bienes y la capacidad económica de los habitantes y las ciudades, para lo cual se requiere de

un sistema de gestión de riesgos con la capacidad de generar el conocimiento, la mitigación del

riesgo y la atención de eventos de emergencia de la manera más eficiente y oportuna.

La definición del modelo de gestión del riesgo implica la consideración de las causas y fuentes

del riesgo, sus consecuencias y la probabilidad de que dichas consecuencias puedan ocurrir. Es el

modelo mediante el cual se relaciona la amenaza y la vulnerabilidad de los elementos expuestos,

con el fin de determinar los posibles efectos sociales, económicos y ambientales y sus

probabilidades. Se estima el valor de los daños y las pérdidas potenciales, y se compara con

criterios de seguridad establecidos, con el propósito de definir tipos de intervención y alcance de

la reducción del riesgo y preparación para la respuesta y recuperación.

Bajo este modelo, se precisa interpretar las condiciones locales como condiciones de frontera del

Riesgo, Amenaza y Vulnerabilidad, que son categorías discretas y no generalizables. Las

condiciones de Alta amenaza son entendidas como aquellas en las cuales se presenta de manera

recurrente un evento climático negativo (inundación, deslizamiento) en unas condiciones

geográficas particulares que requieren la adopción de medidas de gestión del Riesgo más

enfocadas a la adaptación del Cambio Climático que a su mitigación, por efecto de escala8.

7COLOMBIA, SECRETARÍA DISTRITAL DE AMBIENTE. Sistemas Urbanos de Drenaje Sostenible Para el Plan

de Ordenamiento Zonal Norte POZN, 2011, P. 22.

8COLOMBIA, SECRETARÍA DE PLANEACIÓN. Modificación Excepcional de Normas Urbanísticas del Plan de

Ordenamiento Territorial 2013, Documento Técnico de Soporte, 2013, P. 296

Page 25: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

15

Tabla 1. Zonificación de Amenaza por Inundación de Bogotá.

CATEGORIZACION

DE LA AMENAZA DESCRIPCION

PROBABILIDAD

DE OCURRENCIA

ALTA

Zona delimitada por la línea de inundación producida por el

desborde del cauce calculado para el caudal de creciente de

un período de retorno menor o igual a 10 años, ya sea por

causas naturales o intervención antrópica no intencional con

una profundidad de lámina de agua igual o superior a 0,50

m, duración, caudal y velocidad con efectos potencialmente

dañinos graves. Esta franja tiene una probabilidad de estar

inundada por lo menos una vez cada diez años durante la

vida útil del jarillón hasta ese nivel.

>65%

MEDIA

Zona delimitada por la línea de inundación producida por el

desborde del cauce calculado para el caudal de creciente

entre los períodos de 10 y 100 años, ya sea por causas

naturales o intervención antrópica no intencional con una

profundidad de lámina de agua duración, caudal y velocidad

con efectos potencialmente dañinos moderados.

10% - 65%

BAJA

Zona delimitada por la línea de inundación producida por el

desborde del cauce calculado para el caudal de creciente de

un período de retorno mayor o igual a 100 años, ya sea por

causas naturales o intervención antrópica no intencional con

una profundidad de lámina de agua con efectos

potencialmente dañinos leves. Esta franja tiene una

probabilidad de estar inundada por lo menos una vez cada

cien años durante la vida útil del jarillón.

<10%

Fuente: http://www.idiger.gov.co

Las definiciones anteriores y mostradas en la Tabla 1, permiten generar un panorama de riesgos

por inundación en el Distrito Capital y como componentes principales del riesgo por inundación

se tiene que para un período de retorno de entre 10 y 100 años se tienen expuestas 820 hectáreas

lo que equivale al 30% del área urbana de Bogotá y la población expuesta a este riesgo se estima

en 344.269 familias de las cuales 7.152 familias se encontrarían en riesgo inminente.

Aunado a lo anterior y considerando el manejo que se ha dado al sistema de drenaje del río

Bogotá el cual se caracteriza por que presenta un incremento del volumen de agua en la cuenca

del río Bogotá, este incremento es producido por el transvase de agua desde la cuenca de

Page 26: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

16

Chingaza a la cuenca del río Bogotá con un caudal promedio de 10,5 m3/seg, para el consumo de

los habitantes de la ciudad, esto a su vez produce el aumento del caudal en la cuenca receptora en

cerca del 80% (8 m3/seg), que finalmente son dispuestos y transportados al río Bogotá por medio

del sistema de cuencas de drenaje de Bogotá, compuesto a su vez por las cuencas de los ríos

Torca, Salitre, Fucha, Tintal y Tunjuelo.

El sistema de Drenaje Pluvial Sostenible para Bogotá está definido como el conjunto de espacios

naturales e infraestructuras encargadas del manejo de las aguas lluvias en la ciudad para

devolverlas a los cauces naturales, dentro de los objetivos del mencionado sistema se encuentran

los siguientes:

- Separación definitiva de la red de alcantarillado sanitario

- Revitalización de los cuerpos de agua y del río Bogotá.

- Implementar la renaturalización de la ciudad.

- Incorporar las actuaciones urbanísticas que conlleva la gestión sostenible del drenaje

pluvial.

- Aumentar la conectividad hídrica y ecológica de la ciudad9.

Bogotá es pionera en Latinoamérica en la generación de un Sistema de Prevención y Atención de

Emergencias (SDPAE), el cual se actualizará en el sistema distrital para la gestión del riesgo

transversal a toda la institucionalidad de la ciudad, capaz de reflejarse en la norma de materiales

9COLOMBIA. FONDO DE PREVENCIÓN Y ATENCIÓN DE EMERGENCIAS – FOPAE. Presentación Proyecto

de Acuerdo 279, Transformar el Sistema Distrital de Prevención y Atención de Emergencias – SDPAE en el Sistema

Distrital de Gestión de Riesgos y Cambio Climático SDGR-CC, 2013.

Page 27: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

17

y técnicas de construcción y generador de obligaciones concretas y controladas con el sector

privado10

.

El cambio climático tiene impactos también en la salud humana tanto por efectos directos como

por efecto en sus determinantes. El panel intergubernamental de Cambio Climático agrupa los

efectos del cambio climático en diez categorías: 1) efectos del calor y el frío; 2) inundaciones

tormentas y vientos; 3) sequias, nutrición y seguridad alimentaria; 4) inocuidad/higiene de

alimentos; 5) agua y enfermedad; 6) calidad del aire y enfermedades; 7) alérgenos aéreos y

enfermedad; 8) enfermedades transmitidas por vectores (ETV) y otras infecciosas; 9) salud

ocupacional; 10) radiación ultravioleta y salud.

Los lineamientos para la reducción de riesgos y la implementación de medidas de adaptación y

mitigación al cambio climático, se desarrollaran a través de los siguientes instrumentos11

:

- Plan Distrital de Mitigación y Adaptación al Cambio Climático: constituye la estrategia de

gestión, planificación y control que le permite a la ciudad evaluar la vulnerabilidad actual, los

riesgos climáticos futuros y la integración de las diferentes acciones de mitigación y

adaptación.

- Plan Distrital de Gestión de Riesgos: es el instrumento que define los objetivos, programas,

acciones y presupuesto, en el marco de los procesos de conocimiento del riesgo, reducción del

riesgo y manejo del desastre, para realizar el seguimiento y evaluación de la Gestión de

Riesgos en el Distrito.

10

COLOMBIA, SECRETARÍA DE PLANEACIÓN. Modificación Excepcional de Normas Urbanísticas del Plan de

Ordenamiento Territorial 2013, Documento Técnico de Soporte, 2013, P. 294 y 296

11COLOMBIA. ALCALDÍA MAYOR DE BOGOTÁ D.C. Plan de Desarrollo 2012 – 2016 Bogotá Humana, 2012.

P. 141.

Page 28: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

18

Las medidas que conllevan a la reducción de amenazas y riesgos por inundación se resumen de

la siguiente manera:

- Integración del drenaje pluvial con los demás elementos del sistema hídrico.

- Desarrollo de SUDS que aporten a la recuperación del sistema hídrico, aumentando la

permeabilidad de la ciudad.

- El sistema debe fomentar la renaturalización y el uso de la bioingeniería

- Priorizar intervenciones en sectores con mayores niveles de caudal pluvial.

Page 29: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

19

3 METODOLOGÍA

3.1 FASES DEL TRABAJO DE GRADO

La metodología a seguir para la elaboración del informe final de la propuesta consistió en la

investigación documental preliminar sobre los Sistemas Urbanos de Drenaje Sostenible, que

permitió identificar claramente su clasificación, características, criterios de diseño e

implementación, para la adecuada selección de la estructura de captación y almacenamiento, la

fuente de consulta para la investigación documental estuvó basada en la Biblioteca de la

Universidad Nacional de Colombia, la Biblioteca de la Universidad de los Andes, el Instituto

Geográfico Agustín Codazzi – IGAC, la Empresa de Acueducto de Bogotá – EAB, el Instituto

Distrtital de Gestión de Riesgos y Cambio Climático – IDIGER antes FOPAE, la Secretaría

Distrital de Ambiente – SDA, el Instituto Distrital de Recreación y Deporte – IDRD y el Instituto

de Hidrología, Meteorología y Estudios Ambientales - IDEAM.

Con los resultados obtenidos producto de la modelación hidráulica y la información aportada por

entidades como el IDEAM, EAB y el IDIGER sobre precipitaciones en la zona objeto de

estudios así como el resultado de la modelación con el programa GlobbalMapper sobre la

topografía para la zona de influencia del proyecto, se procedió al cálculo del caudal que

transporta la cuenca del río San Cristóbal y el que debe ser captado por el SUDS proyectado.

Las alternativas para definir la estructura hidráulica apropiada a implementar en el parque

metropolitano San Cristóbal y cuyo objetivo principal es la retención de los picos de caudal se

seleccionó de acuerdo con la información bibliográfica consultada, adicionalmente su realizó el

diseño preliminar según las consideraciones presentadas por la bibliografía antes mencionada de

lo que se obtuvo como producto que los resultados plasmados en el informe final responden a los

lineamientos y objetivos de los programas, planes y proyectos enmarcados en los temas de

gestión del riesgo, políticas de ecourbanismo y construcción sostenible definidos en el Plan de

Ordenamiento Territorial de Bogotá.

Page 30: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

20

3.2 INSTRUMENTOS O HERRAMIENTAS UTILIZADAS

Para la modelación de los parámetros morfométricos de la cuenca del rio San Cristóbal, se

empleó un software de modelación hidráulica como esArcGIS, información topográficade base

la generada por el programa GlobbalMapper, así como la información adicional que sobre el

sector se encuentre en otras entidades como la EAB, el FOPAE y la SDA, acontinuación se hace

una descripción mas detallada del software utilizado.

Inicialmente se utilizó el software Globbal Mapper el cual y partiendo de un polígono definido

en formato KMZ permite obtener la topografía de la zona, para el caso en particular el polígono

definido corresponde con la cuenca del río san Cristóbal, es importante mencionar que una vez

obtenidas las curvas de nivel porducto de la modelación con Globbal Mapper fue necesario

refinar las misma utilizando el programa Autocad, la información obtenida mediante la

modelación suminsitrada por el programa fue de gran utilidad, lo anterior debido a que el acceso

a la misma mediante la consulta a fuentes oficiales no arrojo resultados positivos.

Una vez obtenida la topografía de la zona de estudio se ejecutó la modelación hidráulica de la

cuenca la cual consistió en obtener los parámetros morfométricos de la misma como son área,

perímetro, pendiente, longitud del cauce principal entre otros, para esto se utilizó el programa

ArcGis, el cual permitió ingresar la topografía obtenida anteriormente y con una serie de

procesos y operaciones adicionales genero los parámetros necesarios para avanzar en el diseño

hidráulico de la propuesta.

Page 31: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

21

4 LOCALIDAD DE SAN CRISTÓBAL

4.1 DESCRIPCIÓN Y CARACTERIZACIÓN DE LA LOCALIDAD12

.

La localidad de San Cristóbal está ubicada al sur oriente de Bogotá, D.C.; cuenta con una

extensión total de 4.816,32 Km. Sus principales vías de acceso son: La calle 11 sur, la Avenida

Primero de Mayo o calle 20 sur, la calle 27 sur, la carrera 10 y la Circunvalar y/o Avenida

Oriente y Antigua vía a Villavicencio.

Los límites de la localidad son: Límite con el municipio de Ubaque por el este; límite con la

localidad de Usme, por el Sur; límite con la localidad de Rafael Uribe por el oeste y límite con

La Localidad de Antonio Nariño por el Oeste, como se muestra en la Figura 1.

Respecto a sus características físicas, el área de los terrenos de la Localidad de San Cristóbal

están comprendidos entre los 2600 y los 3200 m.s.n.m., con una temperatura promedio anual de

10.5°C en la zona baja y 3.5°C en la zona alta. Los períodos de lluvias son bimodales de Marzo a

mediados de Junio y de Septiembre a mediados de Diciembre. Los períodos secos se dan en los

meses de Junio a Agosto y de finales de Diciembre a finales de Febrero.

12

Universidad Nacional de Colombia- Fondo de Prevención y Atención de Emergencias - FOPAE, Análisis e

investigación de procesos de avenidas torrenciales como eventos generadores de riesgo en la cuenca alta del río San

Cristóbal, 2006

Page 32: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

22

Figura 1. Ubicación Localidad de San Cristóbal.

Fuente: Análisis e investigación de procesos de avenidas torrenciales como eventos generadores de riesgo de la

cuenca alta del río San Cristóbal – Universidad Nacional de Colombia – Fondo de Prevención y Atención de

Emergencias – FOPAE – 2006.

El área de estudio, mostrada en la figura 1, compromete tanto zona urbana como rural, y su

perímetro está delimitado así: la parte norte sigue la calle 1A Sur desde la carrera 10ª hasta la

Diagonal 1 Sur, continua por la vía que va desde esta última hasta el tanque el consuelo

(E.A.A.B), luego en línea recta hasta el Alto Aguanoso y por la divisoria de aguas finaliza en el

Cerro de la Viga. Para la zona oriental el límite lo marca la divisoria de aguas, desde el Alto de

Cruz Verde hasta el Cerro de la Teta. Por último, la margen occidental del área de estudio

comienza en el Cerro de la Teta hasta el Alto del Zuque, siguiendo la divisoria de aguas, hasta el

cerro del Aguanoso y la Escuela Logística del Ejercito Nacional.

En general, el límite norte del área de estudio es la localidad de Santa Fe, al oriente los

municipios de Ubaque, Chipaque y Choachí, al sur la localidad de Usme y al occidente las

localidades de Rafael Uribe Uribe y Antonio Nariño.

Page 33: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

23

En cuanto a su hidrología, la zona está irrigada por un gran número de corrientes de agua como

son las quebradas de: San Blas y Ramajal, que vierten sus aguas al río San Cristóbal; La

Verejones, La Nutria, San Dionisio Sur, Morales, Chorro Colorado (Moralva), El Curi, Puente

Colorado, La Seca, Nueva Deli y San Miguel que desembocan en el río Tunjuelito como

vertientes de la Chiguaza Alta. También se encuentran obras de infraestructura como el Canal

del río Fucha o San Cristóbal y los colectores de San Blas y los Alpes.

San Cristóbal tiene una extensión total de 4.909.88 hectáreas (ha), 1.629.19 ha están clasificadas

como suelo urbano y 3.817.13 ha han sido definidas como suelo rural, cifra que equivale al

66,2% del total de la superficie de la localidad; está no tiene suelo de expansión. Está

conformada por tres sectores, en la parte baja se encuentran los barrios con las mejores

condiciones físicas y de acceso. En la parte media está ubicado el 70% de los barrios y su

principal característica es el uso residencial y comercial intensivo, así como la concentración de

barrios de estratos 1 y 2. El tercer sector se ubica en la parte alta y afronta difíciles condiciones

en cuanto a la calidad de vida de sus habitantes que son predominantemente de estrato 1.

La población de la localidad es de 404.385 personas; 195673 hombres y 208.712 mujeres. En la

Tabla 2 UPZ San Cristóbal se registra información del número de barrios y superficie en

hectáreas, entre otras.

Tabla 2. Número de barrios y Superficie en Hectáreas.

N° UPZ Extensión UPZ

(ha) %

Número total

de barrios

32 San Blas 331.40 21.62 64

33 Sosiego 235.49 14.45 20

34 20 de Julio 266.55 16.36 27

50 La Gloría 355.88 23.69 46

51 Los Libertadores 389.07 23.88 54

TOTAL 1629.19 100.00 211

Fuente: Plan Local de Prevención y Atención de Emergencias Localidad San Cristóbal 2008.

Page 34: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

24

4.2 IDENTIFICACIÓN DEL RIESGO EN LOS ESCENARIOS TERRITORIALES DE

LA LOCALIDAD13

.

Localización, caracterización y calificación de los escenarios de gestión relacionados con

procesos comunes de ocupación y transformación del territorio o con una cadena de producción e

intercambio de bienes o servicios. Tomando el Decreto 423 de 2006 se establecen en la Tabla 3

para el Escenario de Gestión Aluvial en la Localidad de San Cristóbal.

Tabla 3. Caracterización de riesgo para el escenario aluvial en la localidad.

LOCALIZACIÓN CARACTERIZACIÓN

Quebradas: San Blas, Ramajal, Chiguaza Alta,

Verejones, San Dionisio Sur, Las Mercedes,

Zuque, Nutria.

Ríos: San Cristóbal

Las inundaciones y encharcamientos en la

localidad se han presentado tanto por taponamiento

de alcantarillas en los barrios San Blas y 20 de

Julio, como por desbordamiento de quebradas en

invierno, cuyas consecuencias se ven

incrementadas por la acumulación de basuras y

desechos de construcción dentro de las rondas y

cuerpos de agua.

Debido a la poca cobertura de las zonas altas del

servicio de aseo, los habitantes de estas zonas de

ladera disponen sus residuos sólidos de forma

indiscriminada en los cuerpos de agua de la

localidad.

4.3 ANÁLISIS DE LAS EMERGENCIAS OCURRIDAS EN LA LOCALIDAD DE SAN

CRISTÓBAL14

.

El registro de las emergencias presentadas en la localidad de San Cristóbal, las emergencias

relacionadas con eventos de Represamiento de cauce, inundación o encharcamiento presentados

13

Plan Local de Prevención y Atencion de Emergencias Localidad de San Cristóbal 2008

14Plan Local de Prevención y Atencion de Emergencias Localidad de San Cristóbal 2008

Page 35: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

25

y atendidos se han materializado por causa y coadyuvantes detonadores de estas acciones de

origen natural o antrópico, siendo estos descritos en la Tabla 4; además de una breve descripción

de la minimización de los procesos generadores de riesgo, por su especial efecto.

Tabla 4. Emergencias realacionadas con eventos de represamiento de cauce,

inundación o encharcamientos.

CAUSAS COADYUVANTES

MINIMIZACIÓN DE LOS

PROCESOS GENERADORES

DE RIESGO

• Obstrucción de los cuerpos de

agua

• Alta presencia de sedimentos

por falta de control en las

canteras lo cual redunda en la

colmatación del sistema de

alcantarillado.

• Emplazamiento de viviendas.

• Lluvias intensas que desbordan

la capacidad hidráulica del

cauce.

• Colmatación de los sistemas de

alcantarillados sanitario y

pluvial.

• Manejo inadecuado de residuos

sólidos domésticos y generados

por diferentes actividades

económicas en la localidad,

ocasionando taponamiento en

sumideros.

• Inexistencia de redes de

Alcantarillado en algunas zonas

de la localidad.

• Entrega de conexiones erradas

a los cuerpos de agua existentes.

• Explotación minera ilegal, no

tecnificada.

• Explotación del margen de los

cuerpos de agua de manera

indiscriminada.

• Activación de Deslizamientos

en las márgenes de los cuerpos

de agua.

• Falta de mantenimiento

constante de los cuerpos de agua

de la localidad.

• Estructuras hidráulicas

inapropiadas en los cauces

(puentes peatonales, desniveles y

pasos vehiculares)

• Estudios en las zonas que

puedan presentar riesgos, para

definir el tipo de intervención a

realizar.

• Campañas de prevención sobre

el manejo de los cuerpos de agua

existentes.

• Jornadas de sensibilización a la

comunidad en el manejo de

basuras y escombros.

• Realizar jornadas de limpieza

periódicas.

• Mantenimiento de las redes de

captación de aguas en vía.

• Control y vigilancia a la

ocupación ilegal de cuerpos de

agua y sus zonas de ronda

hidráulica.

• Vigilancia y control de las

entidades sobre normas en el

manejo de residuos sólidos.

Dado que las emergencias y/o eventos al tener su ocurrencia, pueden producir una afectación o

posibilidad de alteración al ser humano, en la economía, seguridad, servicios y/o medio

ambiente, es necesario realizar una descripción de ello; pero en la localidad de San Cristóbal no

se han adelantado cuantificación de dichos impactos generados, sin embargo en la tabla 5 se

describen algunas de las posibles afectaciones que se generan, cuando se presenta una

emergencia o evento relacionado con represamiento de cauce, inundación o encharcamiento.

Page 36: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

26

Tabla 5. Afectaciones generadas por emergencias relacionadas con represamiento de

cauce, inundación o encharcamiento 1.

EVENTO

IMPACTO

En

cha

rcam

i

ento

Inu

nd

aci

ón

Rep

resa

mie

nto

del

cau

ce

Pérdida de vidas Humanas X X

Lesiones temporales o permanentes en las personas afectadas X X

Contaminación ambiental (agua, aire, suelo, flora y fauna) X X X

Obstrucción de cuerpos de agua X X

Obstrucción de vías de acceso X X X

Pérdidas económicas de la población afectada X X X

Afectación de redes de servicios públicos (acueducto,

alcantarillado, energía teléfono, gas) X X

Deterioro de las condiciones de estabilidad del suelo X X X

Destrucción de viviendas involucradas en el evento X X

Destrucción de industrias involucradas en el evento X X

Destrucción de establecimientos comerciales involucrados en el

evento X X

Destrucción de equipamiento local involucrados en el evento X X

Deterioro de las zonas aledañas X X X

Afectación de la capacidad productiva X X X

Afectación sicológica de las personas afectadas X X

Afectación económica del núcleo familiar X X X

Proliferación de epidemias y vectores X X X

Fuente: Plan Local de Prevención y Atención de Emergencias Localidad San Cristóbal 2008.

Page 37: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

27

5 SISTEMAS URBANOS DE DRENAJE15

5.1 ¿QUÉ ES DRENAJE URBANO?

Los sistemas de drenajes son necesarios en el desarrollo de las áreas urbanas por la interacción

entre las la actividad humana y el ciclo natural del agua. Esta interacción tienes dos formas

principales: la extracción del agua desde el ciclo natural para proveer abastecimiento de agua

para la vida humana, y la cobertura de la tierra con superficies impermeables que desvían el agua

lluvia lejos del sistema local de drenaje natural. Estos dos tipos de interacción dan lugar a dos

tipos agua que requieren drenaje.

El primer tipo, agua residual, es agua que ha sido suministrada para mantener la vida, mantener

un estándar de vida y satisfacer las necesidades de la industria. Después de usada, si no es

drenada apropiadamente, podría causar contaminación y crear riesgos para la salud. El agua

residual contiene material disuelto, sólidos finos y sólidos más grandes originados desde los

baños, desde el lavado de varios tipos, de la industria y de otros usos del agua.

El segundo tipo de agua que requiere drenaje, es el agua lluvia, esta agua lluvia (o agua

resultante de alguna forma de precipitación) que ha caído sobre un área construida. Si el agua

lluvia no fuera drenada apropiadamente, podría causar molestias, daños, inundaciones y futuros

riesgos para la salud, esta contiene algunos contaminantes, originados de la lluvia, el aire o las

captaciones superficiales.

Los sistemas de drenaje urbano manejan estos dos tipos de agua con el objetivo de minimizar los

problemas causados a la vida humana y el medio ambiente. Así el drenaje urbano tiene dos

interfaces principales: con el público y con el medio ambiente, como se muestra en la figura 2. El

público suele encontrarse en la transmisión en lugar de recibir el final de los servicios de drenaje

15

Urban Drainage – Butler David and Davies John W – Spon Press – Londres, Inglaterra.

Page 38: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

28

urbano (“elimina y olvida”) y esto puede explicar en parte la falta de conciencia pública y el

aprecio de un servicios urbanos esenciales.

Figura 2. Interfaces principales del drenaje urbano.

Fuente: UrbanDrainage – Butler David and Davies John W. – SponPress – Londres, Inglaterra.

En algunas áreas urbanas, el drenaje está basado en un sistema de alcantarillas completamente

artificial: tuberías y estructuras que captan y disponen estas aguas. En contraste las comunidades

aisladas o de bajos ingresos normalmente no tienen drenaje principal. El agua residual es tratada

localmente (o nada) y el agua lluvia es drenada naturalmente al suelo.

Así que hay mucho más en el drenaje urbano que el proceso de transportar el flujo de un lugar a

otro mediante un sistema de alcantarillas. Por ejemplo, existe una compleja y fascinante relación

entre agua residual y agua lluvia a medida que pasan a través del sistema, en parte como

resultado de la evolución histórica del drenaje urbano. Cuando el agua residual y el agua lluvia

comienzan a mezclarse, en lo que se llama “alcantarillado combinado” la eliminación es

“eficiente” en términos del impacto ambiental o sostenibilidad. También, mientras el flujo está

siendo transportado a las alcantarillas se somete a una transformación en un número de maneras.

Otro aspecto crítico es el hecho que los sistemas de alcantarillado pueden sanar ciertos

problemas, por ejemplo los riesgos a la salud o inundación, solo para crear otros en la forma de

perturbación al medio ambiente a los cursos de agua naturales en otros lugares.

Page 39: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

29

En general, el drenaje urbano presenta un conjunto clásico de modernos retos ambientalistas: la

necesidad de rentabilidad y mejoras técnicas en los sistemas existentes socialmente aceptables, la

necesidad de una evaluación del impacto de esos sistemas, y la necesidad de la búsqueda de

soluciones sostenibles.

5.2 EFECTOS DE LA URBANIZACIÓN SOBRE EL DRENAJE.

Consideremos los futuros efectos del desarrollo sobre el paso del agua lluvia. El drenaje urbano

reemplaza una parte del ciclo natural del agua y, como cualquier sistema artificial que toma el

lugar de uno natural, es importante que se entiendan la totalidad de los efectos de este.

En la naturaleza, cuando el agua lluvia cae sobre una superficie natural, alguna agua retorna a la

atmosfera a través de la evaporación, o transpiración de las plantas, alguna se infiltra en la

superficie dando origen a las aguas subterráneas; y alguna escurre por la superficie, como se

muestra en la figura 3. Las proporciones relativas dependen de la naturaleza de la superficie, y

varían con el tiempo durante la tormenta. (La escorrentía superficial tiende a incrementar la

saturación del suelo.) Ambos agua subterránea y escorrentía superficial probablemente se

encuentren de camino al río, pero la escorrentía superficial llegara mucho más rápido. El agua

subterránea se convertirá en una contribución al caudal base general del río en lugar de ser parte

del aumento en el caudal debido a cualquier precipitación.

Page 40: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

30

Figura 3. Efectos de la urbanización sobre el destino de las lluvias.

Fuente: UrbanDrainage – Butler David and Davies John W. – SponPress – Londres, Inglaterra.

El desarrollo de un área urbana, implica la cobertura del suelo con superficies artificiales, lo que

tiene un efecto significativo en estos procesos. Las superficies artificiales incrementan la

cantidad de escorrentía superficial en relación a la infiltración y por lo tanto aumento en el

volumen total de agua que llega al río durante o poco tiempo después de la lluvia, como se

muestra en la figura 3, la escorrentía superficial viaja rápidamente sobre las superficies duras y a

través de alcantarillas que lo que lo hace sobre superficies naturales y a lo largo de los arroyos

naturales. Esto significa que el flujo llegará y morirá más rápido, y por lo tanto el flujo pico será

mayor, como se muestra en la figura 4. (Además la infiltración reducida significa recarga más

pobre en las reservas de agua subterránea). Esto obviamente incrementa el riesgo de inundación

repentina del río. Lo que también tiene fuertes implicaciones en la calidad del agua. La

escorrentía rápida de agua lluvia probablemente causa contaminación y sedimentos que serán

lavados por la superficie o desgrasados por el río. También, los sistemas de drenaje en los cuales

se mezclan aguas residuales y aguas lluvias pueden permitir que desde las aguas residuales

lleguen contaminantes al río.

Page 41: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

31

Figura 4. Efecto de la urbanización en la tasa pico de escorrentía.

Fuente: UrbanDrainage – Butler David and Davies John W. – SponPress – Londres, Inglaterra

La existencia de aguas residuales en cantidades significativas es en sí misma una consecuencia

de la urbanización. Gran parte de esta agua no se ha hecho particularmente “sucia” por su uso.

Así como es una conveniencia standard en un país desarrollado abrir una llave para llenar un

tazón, es una conveniencia standard tirar de la cadena para dejar que el agua desaparezca. El

agua es también usada como el medio principal para la disposición de los desechos corporales, y

varias cantidades de baños. En el desarrollo de un sistema, mucho del material que es agregado

al agua mientras se va convirtiendo en aguas residuales es retirado por una planta de tratamiento

de aguas residuales antes de su regreso al ciclo urbano del agua. La naturaleza por si misma

podría ser capaz de tratar algunos tipos de material, por ejemplo desechos humanos, pero no en

las cantidades generadas por la urbanización. La proporción de material que requiere ser

removido dependerá en parte de la capacidad del río para asimilar lo que queda.

Page 42: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

32

Así que los efectos generales de la urbanización sobre el drenaje, o los efectos de reemplazar el

drenaje natural por el drenaje urbano, producirán picos más altos y repentinos en el caudal de los

ríos, introducirá contaminantes y genera la necesidad de tratamiento artificial de las aguas

residuales. Si bien en cierta medida el drenaje urbano impone en gran medida, la suplantación de

la naturaleza.

En términos humanos, el beneficio más valioso de un sistema de drenaje urbano efectivo es el

mantenimiento de la salud pública.

El drenaje urbano tiene un numero de grandes roles en el mantenimiento de la salud pública y la

seguridad. La excreta humana (particularmente las heces) es el vector principal para la

transmisión de muchas enfermedades transmisibles. Sin embargo, existe un potencial de futuros

problemas en las grandes cuencas fluviales en las cuales los vertidos aguas abajo de un

asentamiento pueden convertirse en la abstracción de otro aguas arriba.

5.3 SUDS.

Los Sistemas Urbanos de Drenaje Sostenible – SUDS, se definen como el conjunto de soluciones

que se adoptan con el objetivo de retener el mayor tiempo posible las aguas lluvias en su punto

de origen, sin generar problemas de inundación, minimizando los impactos del sistema

urbanístico, en cuanto a la cantidad y calidad de la escorrentía, evitando así

sobredimensionamientos o ampliaciones innecesarias en el sistema16

.

Los sistemas de drenaje del agua superficial desarrollados en línea con las ideas de desarrollo

sostenible se denominan colectivamente como sistemas de drenaje sostenibles (SUDS). En un

sitio en particular, estos sistemas están diseñados tanto para gestionar los riesgos ambientales

16

Seminario de experiencias locales en SUDS, 21 de Noviembre de 2014, Instituto Distrital de Gestión de Riesgos y

Cambio Climático – IDIGER.

Page 43: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

33

resultantes de la escorrentía y contribuir en lo posible a la mejora del medio ambiente. Así los

objetivos de los SUDS son minimizar los impactos del desarrollo sobre la cantidad y calidad de

la escorrentía, y maximizar las comodidades y la biodiversidad. El concepto de tres vías,

establecido en la Figura 6, muestra los objetivos principales que el enfoque está tratando de

lograr. Los objetivos deberían tener igual categoría, y la solución ideal será lograr beneficios en

las tres categorías, aunque en la medida en que esto es posible dependerá de las características

del lugar y las limitaciones. La filosofía de los SUDS es replicar, lo más cerca posible, el drenaje

natural de un sitio antes del desarrollo.

Figura 5. Objetivos del Drenaje Sostenible.

Fuente: Ciria C697 – TheSuDS Manual – Ciria- Londres, Inglaterra

Nos hemos concentrado hasta ahora en solo uno de los beneficios de este alejamiento de

“soluciones duras de ingeniería” (es decir, los sistemas de alcantarillado por tuberías

convencionales), la de invertir la tendencia de la Figura 4, mediante la reducción de la velocidad

y los picos de escorrentía por lo que las inundaciones y las erosión del curso de agua natural a la

que el agua lluvia se descarga es menos probable. En algunos casos el resultado de utilizar

dispositivos SUDS será que todo el drenaje será por medios naturales y no habrá necesidad de

colectores pluviales. En otros casos, todavía habrá un poco de flujo de un sistema de

alcantarillado, pero la carga de escorrentía reducida significará que necesitamos menos o más

pequeños colectores pluviales, o que un alcantarillado pluvial existente es menos susceptible a

Page 44: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

34

las sobrecargas. Si el sistema actual es combinado, significa menos flujo de tormenta entrando al

sistema y por lo tanto un menor número de derrames por desbordamiento de alcantarillado

combinado. Los SUDS también pueden ayudar a contrarrestar los efectos del cambio climático.

Otros beneficios están en el área de calidad del agua. La reducción en la erosión mejorara la

calidad del agua en los cursos de agua naturales, y los dispositivos SUDS pueden mejora la

calidad del agua de la escorrentía a través de filtración y acción biológica.

Los futuros beneficios son que los SUDS preservan o mejoran la vegetación natural y los

hábitats de vida silvestre en áreas urbanas; pueden recargar la humedad del suelo y las aguas

subterráneas; y pueden ser utilizados para proporcionar agua almacenada para su reutilización.

Dentro de los SUDS se destacan los Sistemas de Drenaje Pluvial Sostenible – SDPS definidos

como el conjunto de elementos conformados por infraestructuras y espacios naturales, alterados

o artificiales, superficiales y/o subterráneos, por donde fluyen las aguas lluvias a través del

territorio urbano de manera controlada y que contribuyen de manera directa a la conservación,

regulación y/o recuperación del ciclo hidrológico y demás servicios ambientales. Así mismo

contribuye a minimizar los impactos del desarrollo urbanístico beneficiando la integración

paisajística, los valores sociales y ambientales de la ciudad17

.

5.4 DESARROLLO.

Países como Australia, los Estados Unidos y Suecia han estado utilizando estos enfoques por

muchos años. Los desarrollos concertados en el Reino Unido iniciaron a finales de la década de

1980, y en 1992 con una serie de guías tituladas Posibilidad de Control de Escorrentía Urbana se

publicó dando orientación sobre un rango de opciones para la rehabilitación de los sistemas de

17

Seminario de experiencias locales en SUDS, 21 de Noviembre de 2014, Instituto Distrital de Gestión de Riesgos y

Cambio Climático – IDIGER.

Page 45: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

35

alcantarillado. Durante la década de 1990 la aceptación de los SUDS avanzó con mayor rapidez

en Escocia que en Inglaterra y Gales, y cuando se publico un importante conjunto de documentos

de orientación en el año 2000, dos manuales independientes de diseño fueron publicados, uno

para Escocia e Irlanda del Norte y uno para Inglaterra y Gales. Poco después un manual de

mejores prácticas fue publicado dando una orientación más general para un público más amplio.

5.5 TIPOLOGÍA DE SUDS.

Aunque no existe un consenso universal para la clasificación de las diferentes tipologías de

SUDS, una de las más recurrentes en la literatura es la que se muestra a continuación:

5.5.1 Medidas no estructurales18

.

• Educación y programas de participación ciudadana para:

- Concienciar a la población del problema y sus soluciones.

- Identificar agentes implicados y esfuerzos realizados hasta la fecha

- Cambio de hábitos

- Hacer partícipe del proceso a la población, integrando sus comentarios en la

implementación de los programas.

• Planificar y diseñar minimizando las superficies impermeables para reducir la

escorrentía.

18

Articulo Los sistemas Urbanos de Drenaje Sostenible: Una alternativa a la gestión de agua lluvia, PERALES

Momparler Sara y DOMENECH Ignacio Andres.

Page 46: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

36

• Limpieza frecuente de superficies impermeables para reducir la acumulación de

contaminantes.

• Controlar la aplicación de herbicidas y fungicidas en parques y jardines.

• Controlar las zonas de obras para evitar el arrastre de sedimentos

• Asegurar la existencia de procedimientos de actuación y equipamiento adecuado para

tratar episodios de vertidos accidentales rápidamente y con técnicas secas en lugar de

limpieza con agua.

• Limitar el riesgo de que la escorrentía entre en contacto con los contaminantes.

• Control de las conexiones ilegales en el sistema de drenaje.

• Recogida y reutilización de pluviales.

5.5.2 Medidas estructurales19

.

Se consideran medidas estructurales aquellas que gestionan la escorrentía contaminada

mediante actuaciones que contengan en mayor o menor grado algún elemento

constructivo o supongan la adopción de criterios urbanísticos ad hoc.

Las medidas estructurales más utilizadas son entre otras tanques de almacenamiento de

aguas lluvias,sistema de techos verdes o cubiertas vegetalizadas, drenes filtrantes, cunetas

verdes (Swales),zonas de bioretención,sumidero tipo alcorque inundable,superficies

permeables,pondaje húmedo vegetado

19

Documento Técnico de Soporte Sistemas Urbanos de Drenaje Sostenible, Secretaría Distrital de Ambiente, 2011,

Bogotá, Colombia.

Page 47: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

37

Las caracteristicas y especificaciones de esta ultimas se detallan en los anexos.

5.6 SUDS EN BOGOTÁ20

.

La ciudad de Bogotá se encuentra asentada en una planicie lacustre, en un valle intermontano,

esta condición particular de la ciudad tienen como consecuencias que los patrones de drenaje, el

substrato geológico y las dinámicas del ecosistema siguen condicionando en la mayor parte del

tiempo la capacidad de la ciudad de regular sus efluvios y su balance hídrico.

No debemos olvidar que las ciudades forman parte de unidades mayores de paisajes, de cuencas

hidrográficas y vertientes del drenaje, la ciudad como protagonista en el cambio climático

actualmente vive un escenario en el que ya son evidentes algunas manifestaciones del cambio

climático como son una alteración en el régimen de lluvias, una mayor concentración de

precipitaciones en pocos meses del año, eventos climáticos extremos, olas de calor y sequias

entre otros.

Estas manifestaciones traen como consecuencias entre otras situaciones como: cambios de

estacionalidad (la alteración del régimen de lluvias tiende a concentrar lluvias en pocos meses

con mayor poder erosivo, y mayor arrastre de sedimentos y asolvamiento, mas altos costos de

filtración y dragado), mayores volúmenes de aguas pluviales pueden generar inundaciones

repentinas, y contaminación cruzada por aguas negras, el mal manejo de desechos sólidos, la

falta de limpieza de cauces y desagües pluviales, tienden a aumentar las inundaciones urbanas

repentinas.

Por lo anterior es importante que la ciudad empiece a generar programas planes, programas y

proyectos para adaptarse al cambio climático y empezar a disminuir sus riesgos a consecuencia

20

Seminario de experiencias locales en SUDS, 21 de Noviembre de 2014, Instituto Distrital de Gestión de Riesgos y

Cambio Climático – IDIGER.

Page 48: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

38

del mismo, sin embargo es importante destacar que la adaptación al cambio climático debe

construirse a partir de la gestión de los riesgos actuales, es por esto que se hace necesario la

generación de un Sistema de Drenaje Urbano Sostenible para Bogotá, dentro de los avances

hacia el cumplimiento de este objetivo a continuación se muestran algunas experiencias.

La Secretaría Distrital de Ambiente de Bogotá en la actualidad viene adelantando la estrategia de

adaptación y ordenamiento alrededor del agua cuyo objetivo es fortalecer la adaptación y

capacidad de resiliencia de la ciudad ante situaciones críticas derivadas del cambio climático

como inundaciones y fenómenos de remoción en masa.

Figura 6Estrategia de adaptación y ordenamiento alrededor del agua en Bogotá

Fuente: Presentación Política de Ordenamiento alrededor del agua en Bogotá, Secretaría Distrital de Ambiente, Seminario

Internacional Sistema de Drenaje Pluvial Sostenible: Estrategia para la gestión de riesgos de inundaciones urbanas y adaptación

al cambio climático, 9, 10 y 11 de Octubre de 2014, Instituto Distrital de Gestión de Riesgos y Cambio Climático – IDIGER.

Page 49: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

39

6 INFORMACIÓN DISPONIBLE.

En este capítulo se presenta toda la información preliminar y las consideraciones a tener en

cuenta en la selección del Sistema Urbano de Drenaje Sostenible –SUDS a implementar en la

cuenca del río San Cristóbal que cumpla con las necesidades y se ajuste a las especificaciones

propias de la zona de estudio.

6.1 INFORMACIÓN HIDROMETEOROLÓGICA

En la zona de estudio se tiene información de una estación hidrometeorológica denominada El

Delirio, localizada a 3000 metros de altura sobre el nivel del mar, la cual es administrada por la

Empresa de Acueducto, Alcantarillado y Aseo de Bogotá (EAB), una vez consultada los datos de

la mencionada estación al interior de la EAB se obtuvo como producto la información

relacionada con precipitación en milímetros mensual multianual para el período de tiempo

comprendido entre los años de 1970 al mes de Mayo del año 2014, como se muestra en los

anexos.

Adicionalmente se logró obtener la ecuación y los coeficientes para el cálculo de las curvas de

Intensidad Duración y Frecuencia – IDF de la estación El Delirio como se presenta en la tabla 7 a

continuación:

Tabla 6. Coeficientes para el cálculo de las curvas IDF de la estación El Delirio.

INTENSIDAD = C1 (DURACIÓN + X0)C

2

TIEMPO DE

RETORNO Tr.

AÑOS

C1 X0 C2

3 2300,97 29,3 -0,95767

5 2512,88 29 -0,94733

10 2707,19 28,5 -0,93134

25 3010,89 28,2 -0,9193

Page 50: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

40

TIEMPO DE

RETORNO Tr.

AÑOS

C1 X0 C2

50 3355,99 28,5 -0,9191

100 3502,74 27,0 -0,90908

Fuente: Empresa de Acueducto, Alcantarillado y Aseo de Bogotá – EAB.

6.2 CARTOGRAFÍA DE REFERENCIA.

Para la elaboración del presente informe se realizó la respectiva consulta de cartográfica en las

planchas del Instituto Agustín Codazzi, sin embargo y dado que la zona de estudio se encuentra

en una franja de transición entre la zona urbana y rural del Distrito Capital, no fue posible

localizar de manera completa la topografía de la zona, se procedió a generar la consulta en otras

fuentes de información como son la EAB, Secretaría Distrital de Planeación – SDP, la Unidad

Administrativa Especial de Catastro Distrital – UAECD y el Instituto Distrital de Gestión de

Riesgos y Cambio Climático – IDIGER, donde se encontró que la información de curvas de nivel

se hallaba en formato shape, no obstante lo anterior y por tratarse de la zona de transición

anteriormente descrita, la misma se encontraba a diferentes escalas y presentaba errores en el

cruce de curvas de nivel de zona urbana y zona rural, adelantar el proceso de ajuste de esta

información se convertía en un proceso dispendioso que demandaba mayor tiempo y requería la

intervención de un profesional experto en el manejo de software y sistema de información

geográfica.

Finalmente se decidió utilizar como fuente cartográfica las curvas de nivel generadas con el

programa global mapper, el cual es una aplicación asequible y fácil de usar, que ofrece acceso a

una variedad sin igual de conjuntos de datos espaciales y proporciona el nivel adecuado de

funcionalidad para satisfacer tanto a los profesionales de SIG experimentados y usuarios

principiantes,igualmente adecuado como herramienta de gestión de datos espaciales

independiente, adiconalmente el programa permite entre otras opciones las de calcular distancia,

áreas, elvación, volúmenes de corte y relleno así como opciones más avanzadas como la

Page 51: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

41

rectificación de imágenes, generación de contorno de superficies, la delimitación de cuencas

hidrográficas y modelar el aumento del nivel del mar.

Global Mapper tiene soporte para la importación y exportación de datos de Google Earth en

formato KML / KMZ, el formato KML es el formato utilizado por Google Earth para añadir

datos.

Para manipular las imágenes dentro del Global Mapper solo es necesario colocarlo dentro del

programa, cuando este no logra identificar su proyección automáticamente aparece una ventana

en la que se puede identificar de forma manual la proyección y su Datum. Normalmente se

utiliza la proyección UTM (Universal Transversal de Mercator), aunque para montarlas en el

Google Earth se utiliza la proyección Geográfica. El Datum utilizado normalmente WGS 84

(WorldGeodeticSystem 1984), el cual es un sistema de coordenadas mundiales.

Si las imágenes no tienen información de su proyección se puede georeferenciar con los datos

del archivo de texto, o si tienen las coordenadas de puntos conocidos en la imagen, también se

puede georeferenciar

Empleando el software Global Mapper segenerarón de curvas de nivel de la zona partiendodeel

polígono tomado del programa Google Earth, se logró afinar la topografía de la zona ajustando

las curvas de nivel cada metro y posteriormente se logró obtener la topografía en los formatos

shape y dwg, a continuación se presenta el polígono que delimita la cuenca del río San Cristóbal.

Page 52: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

42

Figura 7.Cuenca del Río San Cristóbal.

Fuente: Google Earth

Page 53: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

43

7 DISEÑO HIDRÁULICO.

7.1 CARACTERÍSTICAS FISIOGRÁFICAS DE LA CUENCA

La primera consideración a tener en cuenta para el diseño hidráulico del SUDS, está relacionada

con la necesidad que se pretende satisfacer al implementar el sistema, como se comentó en los

capítulos precedentes con los SUDS se busca regular o amortiguar los picos de lluvia en un lugar

o zona determinados y modificados principalmente como consecuencia de la urbanización de

estas áreas.

Teniendo en cuenta que la zona o cuenca objeto de estudio se compone de una zona urbana y una

zona rural, el diseño de la alternativa de SUDS contemplara únicamente las condiciones

modificadas en la zona urbana de la cuenca del río san Cristóbal, a continuación se presentan los

modelos digitales de elevación – DEM, de la totalidad de la cuenca del río san Cristóbal y la

zona urbana de la misma obtenidos mediante el programa ArcGis.

Fuente: Autor.

Figura 8. Modelo de Elevación Digital de Cuenca del río san Cristóbal

Page 54: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

44

Adicionalmente mediante el uso del programa Arcgis fue posible delimitar la Cuenca objeto de

estudio como se observa a continuación en la figura 18.

Fuente: Autor.

Tambien es posible generar la red primaria y red secundaria de flujo como se presenta en las

figuras a continuación:

Figura 9. Delimitación de la cuenca del río san cristóbal

Page 55: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

45

Figura 10. Red primaria de drenaje cuenca del río san cristóbal.

Fuente: Autor.

Figura 11. Red secundaria de drenaje cuenca del río san cristóbal.

Fuente: Autor.

Page 56: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

46

Como resultado de la modelación de la cuenca e del río San Cristóbal en el Arcgis se tiene los

resultados presentados en la tabla , 8 como se muestra a continuación:

Tabla 7. CarácterísticasMorfométricas de la cuenca del río San Cristóbal

Característica Morfométrica Resultado

Obtenido

Área de la cuenca (Km2) 32.76

Perimetro de la Cuenca (Km) 30.13

Pemdiente S (%) 19.13

Z maximo (msnm) 3725

Z mínimo (msnm) 2590

Longitud del Cauce Principal (Km) 5.93

Fuente: Autor

Teniendo en cuenta que el objetivo de implementar un SUDS es tratar de simular las condiciones

naturales de una cuenca hidrográfica frente a un evento de precipitación, es importante

mencionar que en la cuenca del río san Cristóbal se destacan claramente dos áreas, una que se

encuentra en su condición natural con la cobertura de suelo sin intervención y no urbanizada y la

otra área que corresponde con una zona urbanizada donde la cobertura vegetal original del suelo

se ha perdido casí en su totalidad.

Por lo anteriormente expuesto el trabajo de diseño del SUDS se concentrara en la microcuenca

que conforma la zona urbana de la cuenca del río san cristóbal, donde las condiciones naturales

ya han sido modificadas, a continuación se presentan la condiciones morfométricas de la

microcuenca de la zona urbana del río san Cristóbal.

Page 57: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

47

Figura 12. Modelo de elevación digital de la cuenca del río san Cristóbal, se destaca la

delimitación de la microcuenca de la zona urbanizada de la misma Fuente: Autor

Figura 13. Modelo digital de elevación de la microcuenca de la zona urbana del río san

Cristóbal.

Fuente: Autor

Page 58: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

48

Fuente: Autor

Figura 15. Red de drenaje de la microcuenca de la zona urbana del río san cristóbal.

Fuente: Autor

Figura 14. Ortofoto de la microcuenca de la zona urbana del río san Cristóbal

Page 59: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

49

A continuación en la tabla 9, se presentan las características morfológicas de la microcuenca

conformada por la zona urbana del río san Cristóbal.

Tabla 8. CarácterísticasMorfométricas de la microcuenca de la zona urbana del río

San Cristóbal

Característica Morfométrica Resultado

Obtenido

Área de la cuenca (Km2) 3.66

Perimetro de la Cuenca (Km) 12.94

Pemdiente S (%) 9.63

Z maximo (msnm) 2960

Z mínimo (msnm) 2590

Longitud del Cauce Principal (Km) 3.84

Fuente: Autor

7.2 ANÁLISIS DE LOS DATOS DE LLUVIA EN LA CUENCA

A continuación se presenta el análisis temporal de la información de lluvias sobre la cuenca a

partir de los registros de pluviómetro de la estación El Deliro, localizada dentro de la zona de

estudio.

Como se muestra en la figura 25 el régimen de precipitación dentro de la cuenca es bimodal. En

la estación El Delirio, los valores altos se presentan en los meses de mayo, junio, julio y agosto,

en tanto que los valores mas bajos se encuentran entre los meses de diciembre a febrero. En la

figura 25 se muestra la distribución de la precipitación total promedio anual de la zona y el

promedio mesual de todas las precipitaciones es de 105 mm.

Page 60: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

50

Figura 16. Distribución promedio de la precipitación para la estación El Delirio

Fuente: Autor

Para la determinación de las curvas de Intensidad, Duración y Frecuencia –IDF de la estación El

Delirio, se adoptarón las constantes suministradas por la Empresa de Acueducto, Aseo y

Alcantarillado de Bogotá – EAB, como se presentó en la tabla 7, en la figura 26 se presentan las

curvas IDF para la estación El Delirio correspondiente a 44 años de resigtro, entre 1970 y 2014 y

en la tabla 10 se presentalos valores que se utilizarón para calcular las curvas IDF de la cuenca

del río San Cristóbal, para duraciones entre 5 minutos y 6 horas.

La ecuación de las curvas para cada período de retorno es del tipo:

I = C1 (D + X0)C

2

Donde:I = Es la intensidad para un período de retorno dado (Tr), en mm/h, D = La duración de la

lluvia, en minutos y C1,C2 y X0 Son los parámetros de ajuste.

54,05 74,98 96,54 109,11 126,28 137,78 161,08 121,41 74,51 117,83 114,72 73,41 0

20

40

60

80

100

120

140

160

180

ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC

Pre

cip

. (m

m)

Mes

Promedio Total Mensual (1970 - 2014) El Delirio

Page 61: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

51

Los resultados del calculo de los valores de las curvas IDF de la cuenca del río san Cristóbal se

presentan en el Apendice A.

7.3 SELECCIÓN DEL ESCENARIO DE DISEÑO.

Con los resultados obtenidos de los datos iniciales de precipitación y curvas de Intensidad –

Duración – Frecuencia – IDF, para la estación el delirio, se plantea el escenario de diseño como

se presenta a continuación:

La determinación de los cuadales con fines de diseño del sistema se hace utilizando el método

racional utilizando las curvas IDF,dado que se ha encontrado que al diseñar con período de

retorno corto no se genera mayor atenuación en los casos en donde se tiene una alta

precipitación. Igualmente cuando se diseña para casos de mayor período de retorno, no se

produce un almacenamiento efectivo del agua proveniente de eventos frecuentes. Por estas

razones el diseño contemplara 2 períodos de retorno uno a 3 años y el otro a 25 años, esto

permitirá obtener los hidrogramas de tormenta comparativos entre las condiciones naturales y las

condiciones modificadas de la zona de estudio, que a su vez se convertirán en loshidrogramas de

entrada y salida del sistema, la duración de la tormenta de diseño se tomó igual a 3 horas. Este

valor es tomado del estudio de hidrología de carácter regional para el POZ Norte, elaborado por

la EAB, en donde se cita que dicha duración puede tomarse como típica para proyectos ubicados

en la Sabana de Bogotá.

Para la determinación de los hidrográmas se utilizara el método del hidrograma sintéticos

triangular definido por el SoilConservationService – SCS.

Finalmente se determinara el volumen que debe almacenar el sistema de drenaje de acuerdo con

el método del nivel de piscina que establece que la diferencia entre la entrada y la salida es igual

a la velocidad a la que el volumen de agua es almacenado.

Page 62: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

52

7.4 CAUDALES DE DISEÑO.

La determinación de los caudales de diseño se realizó empleando el método racional, el cual, de

acuerdo con lo establecido por el Reglamento Técnico del Sector de Agua Potable y

Saneamiento Básico RAS 2000, es adecuado para áreas de drenaje pequeñas hasta 700 (ha) 7.0

Km2. El método racional emplea la siguiente ecuación para el calculo de caudales.

Q = 2,78*C*i*A

Donde: Q = Caudal (m3/seg), C = Coeficiente de escorrentía, determinado de acuerdo con el

método del SCS, para este caso se determinaran dos coeficientes de escorrentía, unasimulando

que la microcuenca urbana del río san Cristóbal se encuentra en su condición natural y otra

asumiendo la microcuenca en su condición modificada, I = Intensidad de la precipitación (mm),

A = Área de drenaje (Km2).

Para la selección de los coeficientes C de escorrentía de la microcuenca urbana del río san

Cristóbal de acuerdo con las normas para alcantarillado de la EAB, se tiene la siguiente

información:

7.4.1 Estimación del coeficiente de escorrentía, C.

En la tabla 11 se dan algunas guias para la selección del coeficiente de escorrentía, según

las normas para alcantarillados de la EAB.

Page 63: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

53

Tabla 9. Selección del coeficiente de escorrentía

Tipo de superficie Coeficiente

Zonas comerciales 0,90

Desarrollos residenciales con casas contiguas y predominio de zonas duras 0,75

Desarrollos residenciales mutifamiliares con bloques contiguos y zonas

duras entre ellos 0,75

Desarrollo residencial unifamiliar con casas contiguas y predomino de

jardines 0,55

Desarrollos residenciales con casas rodeadas de jardines o multifamiliares

apreciablemenete separados 0,45

Áreas residenciales con predomino de zonas verdes y cementerios tipo

jardines 0,30

Laderas desprovistas de vegetación 0,60

Laderas protegidas con vegetación 0,30

Fuente: Elementos de Diseño para Acueductos y Alcantarillados -López Cualla Ricardo Alfredo -Editorial Escuela Colombiana

de Ingeniería – Bogotá - Colombia.

De acuerdo con lo anterior se tiene que los coeficientes C de escorrentía seleccionados son:

- Para la simulación de condición natural de la microcuenca urbana del río san Cristóbal.

Se selecciono una condición de laderas protegidas con vegetación, lo anterior en

concordancia con las condiciones presentes en la zona rural de la cuenca del río san

Cristóbal, con lo que se tiene un C = 0,30.

- Para la condición modificada de la microcuenca urbana del río san Cristóbal

Se selecciono una condición desarrollos residenciales con casas contiguas y predominio

de zonas duras, con lo que se tiene un C = 0,75.

Page 64: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

54

7.4.2 Calculo de caudales.

Tabla 10. Calculo de caudales para las condiciones naturales y modificadas de la

microcuenca de la zona urbana del río san cristóbal

TR (Años) I(mm/h) C = 0,30 C = 0,75

Q (m3/seg) Q (m

3/seg)

3 77,91 660,6 1651,5

25 22,25 18,86 47,16

Fuente: Autor.

7.4.3 Estimación del número de curva de escorrentía, CN

Para hoyas hidrográficas sin mediciones de caudal, cuadros del número de curva de

escorrentía CN para varios complejos de cubierta hidrológica del suelo se encuentran

ampliamente disponibles.

Los complejos de cubierta hidrológica del suelo describen una combinación específica de

los grupos de suelos hidrológicos, el uso y el tratamientode la tierra, la condición

hidrológica superficial y las condiciones de humedad antecedente. Todos estos factores

tienen un comportamiento directo sobre la cantidad de escorrentía producida por una

hoya hidrográfica. El grupo hidrológico de suelos describe el tipo de suelo. El uso y

tratamiento del suelo describe el tipo y la condición de la cubierta vegetal. La condición

hidrológica se refiere a la capacidad de la superficie de la hoya hidrográfica para

aumentar o impedir la escorrentía directa.

7.4.4 Clasificación hidrológica de los suelos.

Los grupos hidrológicos en que se pueden dividir los suelos son utilizados en el

planteamiento de cuencas para la estimación de la escorrentía a partir de la precipitación.

Las propiedades de los suelos “desnudos”, luego de un humedicimiento prolongado, que

Page 65: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

55

son consideradas para estimar la tasa mínima de infiltración son: profundidad del nivel

freático en época de invierno, infiltración y permeabilidad del suelo luego de un

humedecimiento prolongado, y la profundidad hasta el estrato de permeabilidad muy

lenta. La influencia de la cobertura vegetal es tratada independientemente.

Los suelos han sido clasificados en cuatro grupos, A, B, C y D, de acuerdo con el

potencial de escurrimiento, como se muestra en los anexos.

7.4.5 Determinación del número de curva de escorrentía.

Actualmente están en uso cuadros de número de curva de escorrentía CN para varias

coberturas hidrológicas del suelo. La tabla 11 muestra números de curvas seleccionadas

para áreas urbanas.

Tabla 11. Numero de curva de escorrentía para áreas urbanas.

Tipo de cobertura y condición hidrológica

% promedio

áreas

impermeables

Númeró de curvas

para grupos de suelos

hidrológicos

A B C D

Áreas urbanas totalmente desarrolladas

(vegtación ya establecida)

Condición buena (mas del 75% cubierto de

pasto) 39 61 74 80

Áreas residenciales por promedio de tamañano

de lote

2 acre 12 46 65 77 82

Fuente: Hidrología en la Ingeniería –Monsalve Sáenz Germán -Editorial Escuela Colombiana de Ingeniería – Bogotá -

Colombia.

De acuerdo con lo anterior se seleccionaron los coeficientes CN, como se detallan a

continuación:

- Para la simulación de condición natural de la microcuenca urbana del río san Cristóbal.

Page 66: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

56

Se selecciono un CN de grupo de suelo hidrológico B para una condición buena (mas del

75% cubierto de pasto), con lo que se tiene un CN = 61.

- Para la condición modificada de la microcuenca urbana del río san Cristóbal

Se selecciono una condición de áreas residenciales por promedio de tamaño de lote de 2

acres con un grupo de suelo hidrológico D, con lo que se tiene un CN = 82.

7.4.6 Calculo del tiempo de concentración

El tiempo de concentración se estimo mediante las expresiones de Kirpich, California

CulvertsPractice– CCP y SCS, donde se obtuvieron los resultados mostrados en la tabla

14.

Tabla 12. Calculo de tiempo de concentración

MÉTODO FORMULA tc

Minutos

Kirpich tc = 0,0078L0,77

S-0,385

29,43

CCP tc= 60(11,9L3/H)

0,385 29,57

SCS (CN=61) 𝑡𝑐 =100𝐿0,8[(1000/𝐶𝑁) − 9]0,7

1900𝑆0,5 131,76

SCS (CN=82) 𝑡𝑐 =100𝐿0,8[(1000/𝐶𝑁) − 9]0,7

1900𝑆0,5 73,24

Fuente: Autor.

Se asumen los tiempos de concentración calculado por el método SCS, que son los que se

ajustan a las condiciones de la microcuenca urbana del río san Cristóbal.

7.4.7 Hidrograma unitario sintetico método SCS.

Para determinar los hidrogramas unitarios tanto de las condiciones simuladas naturales

así como de las condiciones modificadas de la micro cuenca urbana del río san Cristóbal

se utilizara el método SCS, para el cual se desarrollaron las formulas relacionadas en la

tabla 15, como se muestra a continuación:

Page 67: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

57

Tabla 13. Calculos de los parámterostc y qp para las condiciones naturales y

modificadas de la microcuenca urbana del río san Cristóbal.

Condiciones Naturales Condiciones Modificadas

tc = 131, 76 minutos ó 2,196 Horas tc= 73, 24 minutos ó 1,22 Horas

tp=2/3tc qp= (0,208X Ac)/ tp tb=2,67tp tp=2/3tc qp= (0,208X Ac)/ tp tb=2,67tp

1,46 Horas 0,52 m3/seg 3,9 Horas 0,81 Horas 0,94 m

3/seg 2,16 Horas

Fuente: Autor.

En el apéndice B, se presentan los diagramas triangulares de las condiciones naturales y

condiciones modificadas de la microcuenca urbana del río san Cristóbal.

Calculados los parámetros tb, tc y qp, se procede a calcular las abcisas y las ordenadas de los

hidrogramas unitarios, como se muestra en la tabla del Apendice C.

A continuación en el apéndice D, se presentan los hidrogramas unitarios para las diferentes

condiciones de suelo en la microcuenca urbana del río san Cristóbal.

7.5 DISEÑO DEL SISTEMA DE ALMACENAMIENTO.

Para la selección del volumen en el sistema de almacenamiento se utilizara el método de el nivel

de piscina descrito a continuación:

Calculando la relación entre el flujo de entrada y el flujo de salida a medida que el mismo pasa a

través del almacenamiento llamado “enrutamiento”, como el mostrado en la figura 29. Es un

método estándar de calculo con un amplio rango de aplicaciones.

Page 68: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

58

Figura 17. Almacenamiento: Hidrogramas de entrada y salida de Flujo

Fuente: UrbanDrainage – Butler David and Davies John W. – SponPress – Londres, Inglaterra

La diferencia entre el flujo de entrada y el de salida es igual a la relación con la cual el volumen

de agua almacenada cambia con el tiempo, o:

𝐼 − 𝑂 =𝑑𝑠

𝑑𝑡

Donde:I = Relación de entrada de Flujo (m3/seg), O = Relación de salida de Flujo (m

3/seg), S =

Volúmen almacenado (m3), t = Tiempo (seg)

Acorde con lo anterior, acontinuación se calcularan los volúmenes de almacenamiento del

sistema de drenaje pluvial sostenible para las condiciones modificadas de la microcuenca de la

zona urbana del río san Cristóbal, teniendo en cuenta los caudales calculado en los períodos de

retorno de 3 y 25 años para una tormenta de diseño de 3 horas o 180 minutos como se describió

anteriormente en el numeral 9.3, los resultados de los cálculos se muestran en los Apendices F y

G.

Finlamente como resultados de los cálculos se obutvo que para una tormenta de duración de 180

minutos en el período de retorno de 3 años se requiere un volumen de almacenamiento de

Page 69: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

59

151348,5 m3 y para el período de retorno de 25 años se requiere un volumen de almacenamiento

de 244296,8 m3

7.5.1 Sistema Modular de Tanques Subterraneos.

Para el almacenamiento de los volúmenes ya calculados se recomienda un sistema de

tanques modulares enterrados, a través de los cuales es posible la captación y almacenaje

de los volúmenes de agua lluvia durante las épocas de invierno y su posterior disposición.

Estas estructuras son modulares, tridimensionales, rectangulares, huecas, perforadas

vertical y horizontalmente y además fabricadas en polipropileno. En algunos casos las

unidades están constituidas de 4 piezas laterales y 4 piezas transversales. El sistema es

versátil en cuanto a la instalación y la modulación, se pueden tener depósitos con

diferentes formas según la necesidad. Para lograr el almacenaje se recubre el conjunto de

módulos con una membrana impermeable de PVC (dejando sin recubrir la parte superior,

a través de la cual ingresa el agua luego de ser filtrada), así mismo, para evitar la

colmatación y el ingreso de finos al interior de la estructuras se recubren en todo su

perímetro con geotextil no tejido, en la figura 30 se muestra un modulo sencillo de

almacenamiento y sus especificaciones técnicas.

Figura 18. Modulo del sistema de tanques subterraneo.

Page 70: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

60

8 CONCLUSIONES Y RECOMENDACIONES

8.1 CONCLUSIONES.

Los Sistemas Urbanos de Drenaje Sostenible se convierten en una de las medidas más

efectivas de mitigación del riesgo por inundación dado su bajo costo y su facilidad en la

implementación, adicionalmente el impacto positivo de los SUDS es visible en el corto

plazo.

Es importante mencionar que de acuerdo con las recomendaciones de los diferentes

autores consultados en cuanto a que para el diseñode los sistemas urbanos de drenaje

sostenible se deben seleccionar períodos de retorno cortos (máximo hasta 3 años), esto se

considera como un criterio aceptable.Teniendo en cuenta que al analizar el

comportamiento de las curvas IDF de la estación El Delirio,las mismaspara períodos de

tiempo corto presentan valores de intensidad mas altos en los que generan valores de

caudal mayores, en comparación con los caudales estimados en tiempos de retorno mas

largos.Sin embargo al verificar el diseño del sistema de almacenamiento, este criterio

adquiere una relación diferente, dado que al presentarse mayor intensidad se requerirá

mayor volumen. En tanto que en la consideración de parámetros de diseñopara el sistema

de almacenamiento, se observó que los valores de intensidad son bajos y muy cercanos

entre si para los diferentes períodos de retornoen comparación con los usados en el

calculo de caudales, por lo que se puede concluir que los mismos tienen una sensibilidad

muy alta y varían considerablemente el volumen de almacenamiento que debe tener el

sistema.

Se destaca del análisis comparativo que permitió obtener los hidrogramas unitarios de la

microcuenca urbana del río san Cristóbal mediante el uso de la metodología del

SoilConservationService – SCS, que es apreciable la diferencia en el comportamiento de

la escorrentía superficial entre las condiciones naturales y las condiciones modificadas de

la cuenca.No obstante lo anterior es importante precisar que estas condiciones simuladas

pueden tener una variación importante respecto a las condiciones reales de la cuenca, lo

anterior dado que los parámetros y las ecuaciones de cálculo se encuentran calibradas

para cuencas hidrográficas de condiciones naturales muy diferentes a las condiciones

locales de la zona de estudio.Por lo anterior se hizo necesario utilizar consideraciones

diferentes a la hora de estimar los caudales de la cuenca, en este ultimo caso y gracias al

aporte de información hecho por la Empresa de Acueducto, Alcantarillado y Aseo de

Bogotá EAB-ESP, se pudieron obtener resultados mas ajustados a las condiciones

naturales de la zona.

Es relevante considerar que en el desarrollo del presente trabajo se tuvo la mayor

dificultad en acceder a la información topográfica de la zona de estudio, una vez

consultadas las diversas fuentes de información no fue posible obtener un resultado

ajustado a las condiciones reales de la zona.Esta dificultad es debido en gran parte a la

Page 71: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

61

división territorial entre suelo urbano y suelo rural existente en la zona de estudio, por lo

anterior se utilizó la información generada mediante el uso del programa Global Mapper,

la cual es una información con un grado de precisión alto en comparación con la

encontrada de manera parcial.Dado el carácter pedagógico del presente documento la

información obtenida como resultado de la modelación del programa se convirtió en el

insumo principal para dar continuidad y culminación al proyecto desarrollada.

Finalmente es pertinente aclarar que en el desarrollo del trabajo no se tuvo en cuenta las

variaciones o efectos producidos o asociados a los fenómenos de cambio climático, lo

anterior en razón a que el país en la actualidad con cuenta con suficiente información que

permita generar modelos o parámetros que permitan modelar a nivel local los efectos de

los mencionados fenómenos.

8.2 RECOMENDACIONES.

Los sistemas de Drenaje Urbano sostenible no son una solución única, la variedad de

soluciones posibles dependerá del tipo de sistema que se quiera implementar y los

objetivos que se pretendan mitigar como por ejemplo: inundaciones, caudales picos,

descargas puntuales, de ahí que a nivel internacional cada país y cada ciudad ha

identificado una necesidad diferente que pretende solucionar utilizando alguno de los

modelos existentes de SUDS.

La implementación de un sistema urbano de drenaje sostenible requiere un cambio en la

conceptualización y la filosofía de dichos sistemas que han evolucionado desde sus

orígenes aproximadamente en los años 50 donde su función principal era la eliminación

de excretas, pasando por una transformación fundamental en los años 90, momento que

se caracterizó por la necesidad de aumentar la capacidad de las estructuras de drenaje de

aguas pluviales y residuales y cuya finalidad principal era evacuar el agua lo más pronto

posible aunado lo anterior con el considerable aporte de agua para el abastecimiento de la

población habitante de la ciudad de Bogotá y proveniente principalmente del trasvase de

cuencas que a su vez provoca un aumento considerable de los caudales de aguas

residuales que genera la ciudad y que serán vertidos directamente al río Bogotá.En

consideración de lo anterior cada día es más relevante la filosofía de los sistemas urbanos

de drenaje sostenible de propender por retener en un espacio de tiempo más prolongado

el agua y entregarla de manera lenta, reproduciendo el ciclo hidrológico natural de la

cuenca, de tal manera que dentro de sus beneficios más importantes está garantizar el

caudal ecológico en los cuerpos de agua de la ciudad.

Se requiere la creación de una política pública de sistemas urbanos de drenaje sostenible

que defina los lineamientos para su diseño y construcción, adicionalmente que incentive

su implementación o que penalice la no utilización de sistemas ambientalmente

sostenibles, es importante que en la planificación de la normatividad relativa a los SUDS

se debe tener en cuenta que estas iniciativas deben pertenecer o estar asociadas a una

Page 72: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

62

política general de eco urbanismo o construcción sostenible que promueva la utilización

de materiales alternativos y el ahorro o reutilización de aguas servidas.

Page 73: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

BIBLIOGRAFÍA

ALCALDÍA MAYOR DE BOGOTÁ D.C., Plan de Desarrollo 2012 – 2016 Bogotá Humana,

2012.

ALCALDÍA MAYOR DE BOGOTÁ, Plan Local de Prevención y Atención de Emergencias

Localidad San Cristóbal 2008.

BUTLER David and DAVIES John W ,UrbanDrainage, 2da Edición, Londres,SponPress,2004.

CIRIA. C697, TheSuDS Manual, Londres, Inglaterra, 2007

INSTITUTO DISTRITAL DE GESTIÓN DE RIESGOS Y CAMBIO CLIMÁTICO – IDIGER ,

Seminario de experiencias locales en SUDS, 21 de Noviembre de 2014,.

INSTITUTO DISTRITAL DE GESTIÓN DE RIESGOS Y CAMBIO CLIMÁTICOS – IDIGER

ANTES FOPAE, Diagnóstico Técnico DI-6103, 2011.

INSTITUTO DISTRITAL DE GESTIÓN DE RIESGOS Y CAMBIO CLIMÁTICOS – IDIGER

ANTES FOPAE. Diagnóstico Técnico DI-7027, 2013.

INSTITUTO DISTRITAL DE GESTIÓN DE RIESGOS Y CAMBIO CLIMÁTICOS – IDIGER

ANTES FOPAE. Presentación Proyecto de Acuerdo 279, Transformar el Sistema Distrital de

Prevención y Atención de Emergencias – SDPAE en el Sistema Distrital de Gestión de Riesgos y

Cambio Climático SDGR-CC, 2013.

LÓPEZ CUALLA Ricardo Alfredo,Elementos de Diseño para Acueductos y Alcantarillados,2da

Edición, Bogotá, Editorial Escuela Colombiana de Ingeniería, 2003.

Page 74: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

MONSALVE SÁENZ Germán,Hidrología en la Ingeniería,2da Edición,Bogotá, Editorial

Escuela Colombiana de Ingeniería, 1999.

PERALES MOMPARLER Sara y DOMENECH Ignacio Andres, Los sistemas Urbanos de

Drenaje Sostenible: Una alternativa a la gestión de agua lluvia.

RODRÍGUEZ DIAZ Héctor Alfonso, Drenaje Urbano. Elementos de Diseño, 1ra Edición,

Bogotá, Editorial Escuela Colombiana de Ingeniería, 2013.

SECRETARÍA DISTRITAL DE AMBIENTE,Documento Técnico de Soporte Sistemas Urbanos

de Drenaje Sostenible, 2011, Bogotá.

SECRETARÍA DISTRITAL DE AMBIENTE, Presentación Política de Ordenamiento alrededor

del agua en Bogotá, Seminario Internacional Sistema de Drenaje Pluvial Sostenible: Estrategia

para la gestión de riesgos de inundaciones urbanas y adaptación al cambio climático, Bogotá

D.C. 9, 10 y 11 de Octubre de 2014, Instituto Distrital de Gestión de Riesgos y Cambio

Climático – IDIGER.

SECRETARÍA DISTRITAL DE AMBIENTE. Sistemas Urbanos de Drenaje Sostenible Para el

Plan de Ordenamiento Zonal Norte POZN, 2011.

SECRETARÍA DISTRITAL DE PLANEACIÓN. Decreto 364 de 26 de Agosto de 2013 Plan de

Ordenamiento Territorial POT, 2013.

SECRETARÍA DISTRITAL DE PLANEACIÓN. Modificación Excepcional de Normas

Urbanísticas del Plan de Ordenamiento Territorial 2013, Documento Técnico de Soporte, 2013.

Page 75: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

UNIVERSIDAD NACIONAL DE COLOMBIA – FONDO DE PREVENCIÓN Y ATENCIÓN

DE EMERGENCIAS – FOPAE, Análisis e investigación de procesos de avenidas torrenciales

como eventos generadores de riesgo de la cuenca alta del río San Cristóbal, 2006.

VIESSMAN, JrWarren and LEWISGary L., Introduction to Hidrology, 4taEdición, New

York,HarperCollinsCollegePublishers,1996.

http://www.idiger.gov.co

Page 76: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

APÉNDICES

APENDICE A. VALORES DE LAS CURVAS IDF DE LA CUENCA DEL RÍO SAN

CRISTÓBAL.

Tiempo (min)

Intensidad (mm/h)

Tr = 3

Años

Tr = 5

Años

Tr = 10

Años

Tr = 25

Años

Tr = 50

Años

Tr = 100

Años

5 77,91 88,99 102,85 120,31 133,09 150,01

10 68,39 78,15 90,35 105,76 117,12 131,46

15 60,98 69,71 80,64 94,45 104,69 117,15

20 55,05 62,95 72,87 85,40 94,72 105,76

25 50,18 57,41 66,50 77,99 86,55 96,48

30 46,12 52,79 61,19 71,81 79,73 88,75

40 39,73 45,52 52,83 62,07 68,97 76,62

50 34,92 40,04 46,53 54,74 60,85 67,52

60 31,16 35,76 41,62 49,00 54,50 60,43

90 23,61 27,16 31,71 37,44 41,67 46,16

120 19,05 21,95 25,70 30,41 33,87 37,51

150 15,99 18,45 21,65 25,67 28,60 31,68

180 13,78 15,93 18,73 22,25 24,79 27,48

210 12,12 14,03 16,53 19,66 21,91 24,30

240 10,83 12,54 14,80 17,63 19,65 21,80

270 9,79 11,35 13,41 15,99 17,83 19,79

300 8,93 10,36 12,27 14,64 16,33 18,13

360 7,61 8,84 10,49 12,55 13,99 15,56

Fuente: Autor

Page 77: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

APENDICE B. CURVA INTENSIDAD – DURACIÓN – FRECUENCIA (IDF), ESTACIÓN EL DELIRIO PARA EL

PERÍODO (1970 – 2014)

Fuente: Autor

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

0 50 100 150 200 250 300 350 400

Inte

nsi

dad

(m

m)

Tiempo (min)

Tr=3 Tr=5 Tr=10 Tr=25 Tr=50 Tr=100

Page 78: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

APENDICE C. DIAGRAMA TRIÁNGULAR PARA LAS CONDICIONES NATURALES Y CONDICIONES

MODIFICADAS DE LA MICROCUENCA URBANA DEL RÍO SAN CRISTÓBAL.

Fuente: Autor

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Cau

dal

(m

3/s

eg)

Tiempo (horas)

Diagrama Triángular

Condiciones Naturales

Condiciones Alteradas

Page 79: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

APENDICE D. CALCULOS DE LOS PARÁMTEROS PARA LOS

HIDROGRAMAS UNITARIOS SEGÚN EL MÉTODOS SCS PARA LAS

CONDICIONES NATURALES Y MODIFICADAS DE LA MICROCUENCA

URBANA DEL RÍO SAN CRISTÓBAL

Diagrama

SCS

Condiciones

Naturales Condiciones

Modificadas

tp qp T Q T Q

0 0 0 0 0 0

0.2 0.1 0.292 0.052 0.162 0.094

0.4 0.31 0.584 0.1612 0.324 0.2914

0.6 0.66 0.876 0.3432 0.486 0.6204

0.8 0.93 1.168 0.4836 0.648 0.8742

1 1 1.46 0.52 0.81 0.94

1.2 0.93 1.752 0.4836 0.972 0.8742

1.4 0.78 2.044 0.4056 1.134 0.7332

1.6 0.56 2.336 0.2912 1.296 0.5264

1.8 0.39 2.628 0.2028 1.458 0.3666

2 0.28 2.92 0.1456 1.62 0.2632

2.2 0.207 3.212 0.1076 1.782 0.1946

2.4 0.147 3.504 0.0764 1.944 0.1382

2.6 0.107 3.796 0.0556 2.106 0.1006

2.8 0.077 4.088 0.0400 2.268 0.0724

3 0.055 4.38 0.0286 2.43 0.0517

3.2 0.04 4.672 0.0208 2.592 0.0376

3.4 0.029 4.964 0.0151 2.754 0.0273

3.6 0.021 5.256 0.0109 2.916 0.0197

3.8 0.015 5.548 0.0078 3.078 0.0141

4 0.011 5.84 0.0057 3.24 0.0103

4.2 0.01 6.132 0.0052 3.402 0.0094

4.4 0.007 6.424 0.0036 3.564 0.0066

4.6 0.003 6.716 0.0016 3.726 0.0028

4.8 0.0015 7.008 0.0008 3.888 0.0014

5 0 7.3 0 4.05 0

Fuente: Autor

Page 80: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

APENDICE E. HIDROGRAMAS UNITARIOS SEGÚN EL MÉTODOS SCS PARA LAS CONDICIONES

NATURALES Y MODIFICADAS DE LA MICROCUENCA URBANA DEL RÍO SAN CRISTÓBAL.

Fuente: Autor

0

0,2

0,4

0,6

0,8

1

1,2

0 1 2 3 4 5 6 7 8

Cau

dal

(m

3/s

eg)

Tiempo (horas)

Condiciones Naturales Condiciones Alteradas Diagrama SCS

Page 81: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

APENDICE F. CALCULO DEL VOLUMEN PARA UN PERÍODO DE RETORNO DE 3

AÑOS DEL SISTEMA DE ALMACENAMIENTO PARA LAS CONDICIONES

MODIFICADAS DE LA MICROCUENCA URBANA DEL RÍO SAN CRISTÓBAL

Tr = 3 Años

Duración de

Tormenta

(horas)

i (mm/h) Vi=iAD

(m3)

Vo=QD

(m3) S=Vi-Vo(m3)

0.08 77.91 23763.24 0.04 23763.20

0.17 68.39 41719.48 0.08 41719.40

0.25 60.98 55798.25 0.11 55798.14

0.33 55.05 67155.58 0.15 67155.42

0.42 50.18 76527.06 0.19 76526.87

0.5 46.12 84403.56 0.23 84403.33

0.67 39.73 96936.15 0.31 96935.85

0.83 34.92 106496.13 0.38 106495.75

1 31.16 114056.52 0.46 114056.06

1.5 23.61 129642.40 0.69 129641.71

2 19.05 139440.90 0.92 139439.98

2.5 15.99 146266.82 1.15 146265.67

3 13.78 151349.93 1.38 151348.56

Page 82: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

APENDICE G. CALCULO DEL VOLUMEN PARA UN PERÍODO DE RETORNO DE 25

AÑOS DEL SISTEMA DE ALMACENAMIENTO PARA LAS CONDICIONES

MODIFICADAS DE LA MICROCUENCA URBANA DEL RÍO SAN CRISTÓBAL

Tr = 25 Años

Duración de

Tormenta (horas)

i (mm/h) Vi=iAD (m3) Vo=QD

(m3) S=Vi-Vo(m3)

0.08 120.31 36695.47 0.00 36695.47

0.17 105.76 64511.01 0.00 64511.01

0.25 94.45 86420.30 0.00 86420.30

0.33 85.40 104190.85 0.00 104190.84

0.42 77.99 118941.71 0.01 118941.70

0.5 71.81 131417.22 0.01 131417.21

0.67 62.07 151456.09 0.01 151456.08

0.83 54.74 166943.59 0.01 166943.58

1 49.00 179352.20 0.01 179352.19

1.5 37.44 205546.45 0.02 205546.43

2 30.41 222610.28 0.03 222610.25

2.5 25.67 234885.68 0.03 234885.64

3 22.25 244296.87 0.04 244296.83

Page 83: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

ANEXOS

ANEXO A. GLOSARIO.

Aguas de Infiltración: Agua proveniente del subsuelo, indeseable para el sistema separado y

que pentra en el alcantarillado.

Aguas Lluvias: Aguas provenientes de la precipitación pluvial.

Aguas residuales domésticas: Desechos líquidos provenientes de la catividad doméstica en

residencias, edificios e instituciones.

Aguas resiudales: Desechos líquidos provenientes de residencias, edificios, instituciones,

fabricas o industrias.

Alcantarillado de aguas combinadas: Sistema compuesto por todas las instalaciones destinadas

a la recolección y transporte, tanto de las aguas residuales como de las lluvias.

Alcantarillado de aguas lluvias: Sistema compuesto por todas las instalaciones destinadas a la

recolección y transporte de aguas lluvias.

Alcantarillado de aguas residuales: Sistema compuesto por todas las instalaciones destinadas a

la recolección y trasnporte de las aguas residuales domésticas y/o industriales.

Alcantarillado separado: Sistema constituido por un alcantarillado de aguas residuales y otro

de aguas lluvias que recolectan en forma independiente en un mismo sector.

Page 84: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

Alcantarillado: Conjunto de obras para la recolección, conducción y disposición final de las

aguas residuales o de las aguas lluvias.

Amenaza:Condición latente derivada de la posible ocurrencia de un fenómeno físico de origen

natural, socio-natural o antrópico no intencional, que puede causar daño a la población y sus

bienes, la infraestructura, el ambiente y la economía pública y privada. Es un factor de riesgo

externo.

Atención de Emergencias: Medidas y acciones de respuesta a la ocurrencia de un evento

tendientes a auxiliar a las victimas, reducir el daño derivado del mismo y facilitar la

recuperación, mediante la acción coordinada de distintas entidades públicas, el sector privado y

la comunidad.

Canal: Cauce artificaial, revestido o no, que se contruye para conducir las aguas lluvias hasta su

entrega final en un cauce natural.

Coeficiente de escorrentía: Relación que existe entre la escorrentía y la cantidad de agua lluvia

que cae en una determinada área.

Cuneta: Canal de sección triangular ubicado entre el sardinel y la calzada de una calle, destinado

a conducir las aguas lluvias hacia los sumideros.

Daño o Desastre: Es la materialización del riesgo en tiempo y en espacio. Llamamos desastre a

las situaciones de grandes pérdidas humanas, materiales o ambientales, causadas por fenómenso

naturales o antrópicos, los cuales no pueden ser afrontados utilizando exclusivamente los

recursos de la comunidad o de la sociedad afectada, y que por tanto requieren de asistencia o

apoyo externos.

Escorrentía:Volúmen que llega a la corriente poco después de comenzada la lluvia.

Page 85: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

Frecuencia: En hidrología, número de veces que en promedio se presneta un evento con una

determinada magnitud, durante un período definido.

Gestión del Riesgo: Es un proceso social complejo que tiene como objetivo la reducción o la

previsión y control permanente del riesgo en la sociedad, en consonancia con, e integrada al

logro de pautas de desarrollo humano, económico, ambiental y territorial sostenibles.

Hidrograma: Gráfica que representa la variación del caudal con el tiempo en un sitio

determinado, que describe ususalmente la respuesta hidrológica de un área de drenaje a un

evento de precipitación.

Intensidad de la Precipitación: Cantidad de agua lluvia caída sobre una superficie durante un

tiempo determinado.

Mitigación: Políticas y acciones tendienbtes a reducir el riesgo existente. Está asociada a la

gestión correctiva del riesgo.

Período de retorno: Número de alos que en promedio la magnitud de un evento extremo es

igualada o excedida.

Precipiación: Cantidad de Agua lluvia caída en una superficie durante un tiempo determinado.

Prevención: Políticas y acciones que buscan evitar la generación de nuevos riesgos. Esta

asociada a la gestión prospectiva del riesgo.

Recuperación: Proceso de recuperación de las áreas y/o funciones afectadas por una

emergencias, calamidad o desastre para el establecimiento de condiciones socialmente acpetables

y sostenibles de vida en la población, la reducción de las vulnerabilidades existentes antes de la

Page 86: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

emergencias y la intervención de procesos territoriales o sectoriales generadores de nuevos

riesgos.

Resiliencia: Capacidad de las personas, las organizaciones, la infraestructura y los ecosistemas

de asimilar un impacto negativo o de recuperar su funcionalidad a continuación de una

emergencia, desatre o calamidad.

Sumidero: Estructura diseñada y construida para cumplir con el propósito de captar las aguas de

escorrentía que corren por las cunetas de las clazadas de las vpias para entregarlas a las

estructuras de conexión o pozos de inspección de los alcantarillados combinados o de lluvias.

Tiempo de concentración: tiempo de recorrido de la escorrentía superficial desde el punto más

alejado de la cuenca de drenaje hasta el punto de salida considerado. En alcantarillado es la suma

del tiempo de entrada y de recorrido.

Vulnerabilidad: Característica propia de un elemento o grupo de elementos expuestos a una

amenaza, relacionada con su capacidad física, económica, política o social de anticipar, resistir y

recuperarse del daño sufrido cuando opera dicha amenaza. Es un factor de riesgo inbterno.

Page 87: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

ANEXO B. DATOS DE PRECIPITACIÓN MENSUAL MULTIANUAL, ESTACIÓN EL

DELIRIO.

AÑO ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC ANUAL

1970 112.8 171.0 36.7 47.0 110.8 123.4 169.6 101.4 106.0 171.4 99.1i 16.7 1 265.9

1971 50.5 77.6 140.9 134.9 126.1 114.1 183.9 105.0 88.8 58.0 143.0 95.1 1 317.9

1972 233.5 140.6 80.1 126.2 125.9 127.4 156.8 87.9 53.6 124.1 92.4 23.6 1 372.1

1973 22.4 0.0 37.2 55.9 123.0 87.3 107.3 123.7 112.9 100.8 83.3 185.7 1 039.6

1974 64.5 118.9 210.8 85.1 84.9i 59.3 140.6 69.1 57.1 87.8i 98.4i 12.6 1 089.1

1975 4.2 44.7 59.0 52.6 91.0 129.6i 54.0i 145.8 74.1 137.9 134.9 201.7i 1 129.5

1976 35.8 9.4 103.5 122.5 138.3 159.7 282.5 133.1 109.1 135.8 68.9 63.2 1 361.8

1977 1.0 30.2 48.5 127.9 65.8 80.4 101.8 80.9 142.4 108.6 135.2 37.7 960.4

1978 0.0 21.3 79.8 117.7 129.2 144.3 75.8 165.2 76.6 55.0 53.3 55.8 974.0

1979 6.1 40.0 58.0i 39.4i 82.6 190.1 105.3 117.0 45.2 218.5 184.0 47.6i 1 133.8

1980 50.4 91.8 38.9 129.4 56.1 147.8 79.0 42.7i 85.4 96.4 75.8 94.8 988.5

1981 9.4 41.9 63.3 127.9 188.5 152.0 98.6 73.4 75.1 164.2 126.2 38.8 1 159.3

1982 132.7 54.5 107.2 157.2 115.9 120.9 190.6 141.3 62.9 85.8 57.2 78.3 1 304.5

1983 47.1 117.5 120.2 178.7 87.4 59.2 163.1 123.1 69.1 61.3 35.0 62.1 1 123.8

1984 103.4 85.1 42.1 65.0 102.3 186.8 109.0 133.7 101.3 41.1 157.9 20.8 1 148.5

1985 28.7 16.4 64.0 87.6 141.4 100.3 109.3 80.1

627.8

1986

163.6i 142.9 114.2 122.1 249.0 286.2 112.6 62.7 178.6 86.7 47.9 1 566.5

1987 28.9i 43.6 112.3 85.3 163.4 93.7 195.1 121.6 36.6i 123.9i 47.8 78.8 1 131.0

1988 1.8 30.5 50.1 23.3i 58.4 104.5i 149.8i 81.9i 101.9 165.1 117.4i 104.3 989.0

1989 18.2 125.1i 137.7i 43.3 141.6 121.2 162.8 78.4 81.4 81.6 128.8 91.5 1 211.6

1990 36.6 119.1 158.2 123.1 265.9 171.5 135.7 151.1 65.0 116.7 80.5 98.2 1 521.6

1991 36.0 26.8i 155.2i 102.6 88.9 117.4 193.7 257.1 58.9 42.4 104.1 81.0 1 264.1

1992 65.1 43.0 57.8 83.7 63.9 76.1 248.9 169.9 73.1 28.2 146.4 30.5 1 086.6

1993 22.9 73.8i 75.0 100.7 104.9 162.6 175.6 122.1 67.6 55.3 87.3 19.7 1 067.5

1994 136.0 37.0 113.7 59.0 177.3 157.3 325.8 181.8 68.7 118.8 62.2i 36.8 1 474.4

1995 35.5 116.2 113.3 120.9 116.9 127.9 89.3 76.1 72.1 52.5 64.6 87.8 1 073.1

1996 82.9 122.5 134.0 90.1 135.6 112.1 275.4 114.8 62.3 55.8 83.5 76.0 1 345.0

1997 219.7 61.0 93.6 64.7i 84.8 65.8i 410.9 128.0 41.3 39.1i 161.4i 26.3 1 396.6

1998 23.4 36.1 115.2i 55.6 198.6 211.9 192.1 93.2 41.5 105.9 84.7 96.7 1 254.9

1999 109.6 98.7 117.4 133.2 72.7 87.5 109.1i 83.2 101.1 218.4 125.4 69.8 1 326.1

2000 114.6 123.8 82.6 99.5 117.3 79.9 134.5 144.9 105.4 111.8 86.0 32.0 1 232.3

2001 23.8 117.1 89.4 53.8 109.0 156.3 105.5 190.2 74.0 83.8 136.6 79.3 1 218.8

2002 37.1r 17.4r 65.2r 131.2r 234.9r 332.5r 112.6r 192.3r 70.2r 105.8r 50.8r 34.4r 1 384.4

2003 5.7r 45.7r 81.8r 104.6r 84.2r 114.0r 242.0r 91.3r 94.0r 115.6r 91.6r 80.4r 1 150.9

2004 18.5r 151.2r 148.1r 139.9r 160.3r 290.7r 142.2r 198.8r 52.6r 102.4r 116.6r 50.8i 1 572.1

2005 24.2r 56.1r 38.8r 120.3r 228.6r 121.1r 96.6r 132.4r 119.5r 174.1r 148.5r 73.5r 1 333.7

Page 88: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

AÑO ENE FEB MAR ABR MAY JUN JUL AGO SEP OCT NOV DIC ANUAL

2006 83.2r 15.3r 128.7r 156.1r 112.3r 223.1r 160.3r 114.3r 57.0r 243.4r 164.2r 71.0r 1 528.9

2007 26.3r 74.5r 45.3r 127.1r 92.2r 222.4r 88.4r 126.9r 48.0r 146.4r 113.6r 135.2r 1 246.3

2008 16.8r 38.9r 130.6r 87.1r 159.4i 155.9i 152.6r 114.4i 81.2i 85.4r 247.7i 146.6i 1 416.6

2009 90.7i 42.8r 122.0r 196.3r 40.2i 121.6r 129.0r 101.6r 56.0r 111.6i 53.9i 8.0r 1 073.7

2010 8.4 32.5 42.3 183.5 200.9 131.7 141.4 68.1i 62.6 128.0 181.7 171.6 1 352.7

2011 35.6 158.8 201.0 266.9 229.4 85.3 138.3 92.8 60.9 264.8 216.2 85.7 1 835.7

2012 119.6 60.7 138.7 141.2 79.6 119.9 182.9 151.5 81.0 246.0 114.0 135.3 1 570.4

2013 14.3 224.7 68.0 158.1 152.2 66.6 183.4 127.2 47.6 118.5 286.0 73.1 1 519.7

2014 40.5 56.9 95.1 89.5 117.8

399.8

Fuente: Empresa de Acueducto, Alcantarillado y Aseo de Bogotá – EAB.

a=Acumulado, d=Dudoso, e=Estimado, g=Generado, i=Incompleto, o=Observado,

r=Registrado.

Page 89: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

ANEXO C.TIPOLOGÍAS DE SUDS CON MEDIDAS ESTRUCTURALES.

Se consideran medidas estructurales aquellas que gestionan la escorrentía contaminada mediante

actuaciones que contengan en mayor o menor grado algún elemento constructivo o supongan la

adopción de criterios urbanísticos ad hoc.

Las medidas estructurales más utilizadas son las siguientes:

• Tanques de almacenamiento de aguas lluvias.

Este tipo de SUDS es el más sencillo de todos. Consiste simplemente en la construcción de

tanques enterrados o no que permitan la captación y almacenamiento de agua lluvia con el fin de

utilizarla con fines no potables tales como el suministro de agua a sanitarios y orinales, lavado de

vehículos y riego de jardines y zonas verdes. Su implementación y mantenimiento correrá por

parte de quien decida implementar este tipo de medidas este tipo de medidas. Estos sistemas

deberán diseñarse evitando que se conviertan en hábitat propicio para la reproducción de

vectores. Estos sistemas pueden captar agua bien sea procedente de cubiertas o de superficies

duras de parqueaderos. En este último caso, debe proveerse de un sistema adecuado que permita

la remoción de grasas y de un sistema de filtrado adecuado que permita mejorar la calidad de las

aguas afluentes para su uso posterior.

Page 90: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

Fuente: Documento Técnico de Soporte Sistema Urbanos de Drenaje Sostenible, Secretaría Distrital de Ambiente,

2011, Bogotá, Colombia.

• Sistema de techos verdes o cubiertas vegetalizadas.

Los techos verdes deberán mitigar el pico de crecientes asociados con eventos de precipitación

con períodos de retorno de 2 años.

La vegetación a utilizar deberá estar en condiciones de soportar períodos alternados de

humedecimiento y secado al igual que con períodos de calor y frío. La vegetación deberá ser

perene, resistente a la sequía, con poco requerimiento de agua después de que ya se encuentra

establecida, con preferencia de suelos bien drenados, autosustentable (es decir, que no requiera

de fertilizantes o herbicidas), capaces de resistir calor, frío y vientos extremos, con capacidad

para sobrevivir en suelos pobres con tendencia a la acidez y resistente al fuego. La variedad de

plantas a utilizar deberá ser lo más amplia posible para favorecer la biodiversidad y la estética

del techo terminado.

Igualmente deberá proveerse de drenaje adecuado y suficiente en los techos verdes vegetados

buscando evitar la generación de empozamientos. Por otra parte, deberá tenerse presente que la

Page 91: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

vegetación instalada en pendientes mayores al 2% deberá anclarse debidamente con el fin de

evitar su arrastre hacia las canales de drenaje ante eventos de precipitación extremos. No sobra

decir que las cargas muertas superimpuestas por los diferentes elementos que conforman las

cubiertas verdes deben ser consideradas durante el diseño estructural del edificio que los

contendrán.

Con respecto a la impermeabilización de las cubiertas, debe asegurarse que los materiales

utilizados para tal fin sean resistentes a la penetración de raíces. Especial cuidado deberá tenerse

al proveer drenaje al techo verde, por cuanto las tuberías de drenaje de los techos deberán

construirse separadas del medio de soporte de la vegetación. De establecerse equipos mecánicos

en las vecindades de las cubiertas vegetalizadas, estos equipos deberán estar aislados de la zona

vegetalizadas y deberán contar con drenaje separado con el fin de mitigar posibles escapes de

combustibles o lubricantes.

Fuente: Documento Técnico de Soporte Sistema Urbanos de Drenaje Sostenible, Secretaría Distrital de Ambiente,

2011, Bogotá, Colombia.

• Drenes Filtrantes.

Los drenes filtrantes son SUDS conformados por excavaciones poco profundas (entre 1 y 2 m)

rellenas con materiales pétreos gruesos que crean almacenamiento temporal subsuperficial. Estos

sistemas poseen la desventaja de que puedan llegar a colmatarse con facilidad, por lo que

deberán diseñarse cuidadosamente sus capas granulares interiores con el fin de maximizar su

Page 92: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

tiempo de vida útil. Estos elementos pueden captar lateralmente la escorrentía proveniente de

vías, o de un colector que previamente haya recolectado aguas pluviales no circuladas con

anterioridad a través de otro sistema SUDS. Estos sistemas deberán tener superficies cóncavas

que permitan la concentración de la escorrentía hacia el centro del elemento.

Materiales plásticos geocelulares pueden ser utilizados como elementos alternativos a los

materiales pétreos si permiten una adecuada retención y almacenamiento de la escorrentía. Los

drenes filtrantes serán vegetados o no, en cuyo caso debe disponerse de un geotextil filtrante en

las capas superiores del material de relleno que separe la franja de suelo que soporta la

vegetación del resto del material granular, mientras que simultáneamente se garantice la

percolación adecuada del agua en superficie. Deberá tenerse en cuenta que dadas las condiciones

de suelos de la Sabana de Bogotá, estos sistemas incorporarán tuberías de drenaje subsuperficial

que garantice el drenaje completo de estos sistemas hacia el sistema de alcantarillado.

Los drenes filtrantes son elementos que requieren de mantenimiento y que de colmatarse

implican el retiro y recolocación del material de relleno, por lo que su uso debe limitarse a

aquellas zonas en donde no se esperen grandes flujos de sedimentos o en donde se provean

sistemas de remoción de sólidos antes de que el agua sea descargada al interior del dren.

Por otro lado, los drenes filtrantes se diseñan para vaciarse y re-airearse repetidamente de manera

que no deben utilizarse en aquellos sitios en donde la tabla de agua subterránea sea

excesivamente (de preferencia, la tabla de agua máxima debe estar por lo menos un metro por

debajo de la cota de fondo de la trinchera que contiene el medio granular). Estos sistemas

deberán estar aislados del terreno circundante por medio de medidas que garanticen la

estabilidad del terreno e infraestructura vecina.

Estos sistemas podrán diseñarse como sistemas de filtro utilizando para su conformación

materiales granulares que permitan evacuar la totalidad de agua almacenada dentro del sistema

en un lapso de tiempo no mayor a 24 horas. Sobre los drenes filtrantes podrá existir un

Page 93: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

almacenamiento temporal de agua lluvia mientras el agua es filtrada, garantizando en todo caso a

través del diseño del sistema la evacuación completa del sistema no se haga en un lapso no

mayor al antes establecido, ni que se generen láminas que generen encharcamientos en vías o el

urbanismo circundante.

Fuente: Documento Técnico de Soporte Sistema Urbanos de Drenaje Sostenible, Secretaría Distrital de Ambiente,

2011, Bogotá, Colombia.

• Cunetas verdes (Swales)

Estos elementos consisten en canales vegetalizados por donde se transporta la escorrentía

proveniente de las zonas impermeables. Estos elementos se conciben fundamentalmente como

herramientas para la retención de basuras gruesas y sólidos suspendidos en donde además se

favorece la remoción de contaminantes.

Esos elementos se podrán diseñar como canales abiertos en flujo permanente con números de

manning correspondientes a canales vegetados. Estos canales podrán reemplazar elementos

típicos de drenajes tales como cunetas en concreto si se garantiza un dimensionamiento adecuado

que permita evacuar los caudales de diseño. Las cunetas verdes deberán diseñarse con

velocidades menores a 1m/s con fin de prevenir la posible erosión del terreno y se deberá

Page 94: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

propender por mantener la velocidad de flujo alrededor de 0.30 m/s con el fin de promover la

remoción de contaminantes, la sedimentación del material particulado y evitar su resuspension.

Las pendientes laterales deberán ser no mayores a 1:3 y el ancho de fondo no menor a 0.50 con

el fin de evitar daños a vehículos que accidentalmente accedan a las cunetas verdes. Deberá

preverse en su diseño que las láminas de agua que se presenten dentro de los canales vegetados

no generen efectos adversos sobre la vegetación ni que generen inundación en las vías o

urbanismo circundante. Las cunetas verdes no deberán ubicarse en terrenos con pendientes

menores al 4%.

Fuente: Documento Técnico de Soporte Sistema Urbanos de Drenaje Sostenible, Secretaría Distrital de Ambiente,

2011, Bogotá, Colombia.

• Zonas de bioretención.

Las zonas de bioretención, también llamadas filtros de bioretención, son zonas deprimidas poco

profundas en las que normalmente se dispone de un sistema tricapa con dren inferior y cuyo

funcionamiento dependen de la composición relativa de los suelos del sistema tricapa, con

mezclas especialmente diseñadas para permitir la remoción de contaminantes y disminuir los

picos de caudal. Una vez la escorrentía ha sido tratada a través de esta tipología de SUDS, el

agua es conducida hacia las redes de alcantarillado pluvial.

Page 95: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

Las áreas de drenaje de los sistemas de bioretención se limitaran a un máximo de 2 hectáreas.

Áreas más grandes podrán ser drenadas a través de esta tipología de sistemas siempre y cuando

la profundidad de los sistemas diseñados no implique la inundación del SUDS por la presencia

de niveles freáticos altos o que se castigue adversamente el desempeño del elemento.

Estos elementos deberán acomodar el volumen a tratar con fines de calidad de agua de manera

que la cota de lámina de agua en el elemento esté por lo menos 0,15 m por debajo de la

superficie de terreno circundante. El caudal asociado deberá además de evacuarse en un período

de menos de 24 horas con el fin de proveer al sistema la capacidad de transitar eventos de

precipitación separados en promedio un día. Estos SUDS deberán contar obligatoriamente con

tuberías de excesos que permitan evacuar sin riesgo de inundación del terreno vecino las

crecientes mayores a las asociadas con el volumen a tratar con fines de calidad de agua.

Las áreas de bioretención estarán compuestas por tres capas de material. La primera consistirá en

una capa orgánica para infiltración y que permita el establecimiento de un ambiente propicio

para el crecimiento de microorganismos que permitan la degradación de hidrocarburos y materia

orgánica, y con una permeabilidad tal que permita el flujo del agua hacia las capas más

profundas. La segunda consistirá en un medio de plantado de la vegetación que permita

adsorción de hidrocarburos degradados, metales pesados y nutrientes. La capa final y más

profunda consistirá en una franja de arena que proporciona un medio aeróbico bien drenado a la

capa superior de plantado. Esta capa de arena será de por lo menos 0.30 m y poseer un tamaño de

grano entre 0.5 y 1 mm. La tubería de drenaje deberá estar alojada en una capa de grava de

tamaño de grano ente 5 y 20 mm.

Page 96: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

Fuente: Documento Técnico de Soporte Sistema Urbanos de Drenaje Sostenible, Secretaría Distrital de Ambiente,

2011, Bogotá, Colombia.

• Sumidero tipo alcorque inundable.

Estos elementos son fundamentalmente zonas de bioretención que se usarán como un sistema de

apoyo al sistema de captación de aguas lluvias en vías a través de sumideros laterales

convencionales.

Fuente: Documento Técnico de Soporte Sistema Urbanos de Drenaje Sostenible, Secretaría Distrital de Ambiente,

2011, Bogotá, Colombia.

Page 97: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

• Superficies permeables.

Las superficies permeables proporcionan un medio propicio para el tráfico peatonal o vehicular

permitiendo simultáneamente la percolación de las aguas lluvias a las capas inferiores de la

estructura de pavimento. El objetivo de este SUDS consistirá fundamentalmente en almacenar

el agua lluvia percolada temporalmente disminuyendo así la cantidad de escorrentía que de otra

manera quedaría en superficie.

En donde se plantee su uso, la estructura de cimentación o de soporte deberá disponer de

subdrenajes que conduzcan el agua percolada a través del sistema granular hacia las redes locales

de alcantarillado pluvial. La estructura de soporte estará además envuelta en una membrana

flexible impermeable que impida la saturación del suelo circundante. De preferencia, estas

superficies deberán estar conformadas por superficies de grava, por concreto o asfalto poroso, o

por pavimentos articulados con gran separación entre unidades individuales con el fin de facilitar

el paso del agua hacia las capas inferiores.

Para este tipo de superficies es importante conocer sus respectivos coeficientes de escorrentía.

Por medio de monitoreo, deberá establecerse claramente la tasa de infiltración de las aguas

lluvias a través de las superficies permeables, y verificarse que esta sea mayor que las

intensidades de lluvia que se espera caigan sobre ellas con el fin de evitar formación de

encharcamientos en superficie.

En la Figura 13 se presentan las posibles categorías de superficies permeables.

Page 98: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

Fuente: Documento Técnico de Soporte Sistema Urbanos de Drenaje Sostenible, Secretaría Distrital de Ambiente,

2011, Bogotá, Colombia.

Page 99: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

• Pondaje húmedo vegetado

En esta tipología de SUDS, se busca conformar un hábitat artificialmente en donde se posee una

lámina permanente de agua que es mantenida por medio del uso de una tubería de excesos

elevada. El agua del cuenco permanentemente se mezcla con el agua de eventos anteriores de

precipitación. Ante lluvia, el cuenco se llena y el agua es lentamente liberada por un período de 2

a 5 días. Debido a que las aguas de primer lavado se mezclan con las ya presentes al interior de

la piscina permanente del SUDS, la concentración de contaminantes en el agua de salida es

menor.

La existencia de una lámina de agua permanente permite la sedimentación del material

particulado, así como la remoción de contaminantes vía actividad biológica de plantas, algas y

bacterias presentes en la biota que se forma dentro de estos elementos. Esta tipología de SUDS

puede emplearse siempre y cuando se garantice la presencia continua de agua que permita el

soporte de la vegetación acuática en períodos secos.

Podrán implementarse diferentes tipologías de cuencos húmedos de detención en función del

volumen de agua que puede ser detenido en él. No obstante, de manera general dichos sistemas

contarán con dos cuencos separados. El primero de ellos se diseñará como un pondaje en donde

se favorecerá la sedimentación y la retención de partículas suspendidas, mientras que se

alimentará del caudal regulado proveniente del primer cuenco. La segunda cámara puede

eventualmente consistir en un espacio excavado hasta la superficie del nivel freático con el fin de

suplir las necesidades del agua de la vegetación que se busca soportar en su superficie.

Esta tipología de SUDS debe diseñarse buscando que la velocidad del flujo interior no posea la

capacidad de resuspender sedimentos. En general los requerimientos de área de este tipo de

elementos son mayores que para otras clases de SUDS, por lo que deberán usarse en lugares

donde las necesidades de espacio no sean apremiantes (por ejemplo, en parques). El diseño de la

profundidad de estos sistemas es crítico dado que cuencos muy poco profundos generarán

Page 100: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

corrientes superficiales que puedan generar resuspension de sedimentos, mientras que por otro

lado, profundidades muy grandes puedan generar estratificación térmica del agua o condiciones

anóxicas que liberen contaminantes indeseables en el agua.

Los diseños de ingeniería de los cuencos húmedos de detención deberán incluir una franja

vegetada a lo largo de todo el perímetro. Esta franja deberá estar parcialmente sumergida con el

fin de establecer un medio propicio para el desarrollo de vegetación que promueva la retención

de sólidos transportados por la escorrentía y la remoción biológica de contaminantes solubles.

Estos SUDS deberán estar cercados, o contar con las medidas alternativas de protección

necesarias, con el fin de prevenir el ingreso de niños dentro de la piscina permanente.

Fuente: Documento Técnico de Soporte Sistema Urbanos de Drenaje Sostenible, Secretaría Distrital de Ambiente, 2011, Bogotá,

Colombia.

Page 101: DISEÑO DE LA ALTERNATIVA TÉCNICA MÁS ......Decreto 364 de 26 de Agosto de 2013 Plan de Ordenamiento Territorial POT, 2013. P. 111 3 Para mitigar los posibles efectos derivados de

ANEXO D. CLASIFICACION HIDROLÓGICA DE LOS SUELOS

A. (Bajo potencial de escorrentía). Suelos que tienen alta tasa de infiltración aún cuando

estén muy húmedos. Consisten de arenas o gravas profundas bien a excesivamente

drenados. Estos suelos tienen una alta tasa de transmisión de agua.

B. (Moderadamente bajo potencial de escorrentía). Suelos con tasa de infiltación

moderada cuando están muy húmedos. Suelos moderadamente profundos a

profundos, moderadamente bien derenados a bien drenados, suelos con texturas

moderadamente finas a moderadamente gruesas y permeabilidad moderadamente

lenta a moderadamente rápida. Son suelos con tasas de transmisión de agua

moderadas.

C. (Moderadamente alto potencial de escorrentía). suelos con infiltración lenta cuando

están muy húmedos. Consisten de suelos con un estrato que impide el movimiento de

agua hacia abajo; suelos de textura moderadamente fina a finas; suelos con

infiltración lenta debido a sales o alkali, o suelos con niveles freáticos moderados.

Estos suelos pueden ser pobremente drenados o bien a moderadamente bien drenados,

con estratos de permeabilidad lenta a muy lenta a poca profundidad (50 – 100 cm)

D. (Alto potencial de escorrentía). Suelos con infiltración muy lenta cuando están muy

húmedos. Consisten de suelos arcillosos con alto potencial de expansión; suelos con

nivel freático alto permanentemente; suelos con estrato arcilloso superficial; suelos

con infiltración muy lenta debido a sales o alkali, y suelos poco profundos sobre

material impermeable. Estos suelos tienen tasas de transmisión de agua muy lenta.