El Rectificador Controlado de Silicio

24
El rectificador controlado de silicio (en inglés SCR: Silicon Controlled Rectifier) es un tipo de tiristor formado por cuatro capas de material semiconductor con estructura PNPN o bien NPNP. El nombre proviene de la unión de Tiratrón (tyratron) y Transistor . Tiristor. Un SCR posee tres conexiones: ánodo , cátodo y gate (puerta) . La puerta es la encargada de controlar el paso de corriente entre el ánodo y el cátodo. Funciona básicamente como un diodo rectificador controlado, permitiendo circular la corriente en un solo sentido. Mientras no se aplique ninguna tensión en la puerta del SCR no se inicia la conducción y en el instante en que se aplique dicha tensión, el tiristor comienza a conducir. Trabajando en corriente alterna el SCR se desexcita en cada alternancia o semiciclo. Trabajando en corriente continua, se necesita un circuito de bloqueo forzado, o bien interrumpir el circuito. El pulso de disparo ha de ser de una duración considerable, o bien, repetitivo si se está trabajando en corriente alterna . En este último caso, según se atrase o adelante el pulso de disparo, se controla el punto (o la fase ) en el que la corriente pasa a la carga. Una vez arrancado, podemos anular la tensión de puerta y el tiristor continuará conduciendo hasta que la corriente de carga disminuya por debajo de la corriente de mantenimiento (en la práctica, cuando la onda senoidal cruza por cero) Cuando se produce una variación brusca de tensión entre ánodo y cátodo de un tiristor, éste puede dispararse y entrar en conducción aún sin corriente de puerta. Por ello se da como característica la tasa máxima de subida de tensión que permite mantener bloqueado el SCR. Este efecto se produce debido al condensador parásito existente entre la puerta y el ánodo.

Transcript of El Rectificador Controlado de Silicio

Page 1: El Rectificador Controlado de Silicio

El rectificador controlado de silicio (en inglés SCR: Silicon Controlled Rectifier) es un tipo de tiristor formado por cuatro capas de material semiconductor con estructura PNPN o bien NPNP. El nombre proviene de la unión de Tiratrón (tyratron) y Transistor.

Tiristor.

Un SCR posee tres conexiones: ánodo, cátodo y gate (puerta). La puerta es la encargada de controlar el paso de corriente entre el ánodo y el cátodo. Funciona básicamente como un diodo rectificador controlado, permitiendo circular la corriente en un solo sentido. Mientras no se aplique ninguna tensión en la puerta del SCR no se inicia la conducción y en el instante en que se aplique dicha tensión, el tiristor comienza a conducir. Trabajando en corriente alterna el SCR se desexcita en cada alternancia o semiciclo. Trabajando en corriente continua, se necesita un circuito de bloqueo forzado, o bien interrumpir el circuito.

El pulso de disparo ha de ser de una duración considerable, o bien, repetitivo si se está trabajando en corriente alterna. En este último caso, según se atrase o adelante el pulso de disparo, se controla el punto (o la fase) en el que la corriente pasa a la carga. Una vez arrancado, podemos anular la tensión de puerta y el tiristor continuará conduciendo hasta que la corriente de carga disminuya por debajo de la corriente de mantenimiento (en la práctica, cuando la onda senoidal cruza por cero)

Cuando se produce una variación brusca de tensión entre ánodo y cátodo de un tiristor, éste puede dispararse y entrar en conducción aún sin corriente de puerta. Por ello se da como característica la tasa máxima de subida de tensión que permite mantener bloqueado el SCR. Este efecto se produce debido al condensador parásito existente entre la puerta y el ánodo.

Los SCR se utilizan en aplicaciones de electrónica de potencia, en el campo del control, especialmente control de motores, debido a que puede ser usado como interruptor de tipo electrónico.

Contenido

 [ocultar] 

1 Tiristor tetrodo 2 Parametros del SCR 3 Véase también 4 Referencias

[editar] Tiristor tetrodo

Page 2: El Rectificador Controlado de Silicio

SCR. El cable blanco es la puerta. El rojo fino sirve de referencia de la tensión de cátodo.

Son tiristores con dos electrodos de disparo: puerta de ánodo (anode gate) y puerta de cátodo (cathode gate). El BRY39 es un tiristor tetrodo.

[editar] Parametros del SCR

- VRDM: Máximo voltaje inverso de cebado (VG = 0) - VFOM: Máximo voltaje directo sin cebado (VG = 0) - IF: Máxima corriente directa permitida. - PG: Máxima disipación de potencia entre compuerta y cátodo. - VGT-IGT: Máximo voltaje o corriente requerida en la compuerta (G) para el

cebado - IH: Mínima corriente de ánodo requerida para mantener cebado el SCR - dv/dt: Máxima variación de voltaje sin producir cebado. - di/dt: Máxima variación de corriente aceptada antes de destruir el SCR TEORIA Y OPERACIÓN DE LOS SCR

Un rectificador controlado de silicio (SCR, rectificador controlado de silicio) es un dispositivo de tres terminales usado para controlar corrientes mas bien altas para una carga. El símbolo esquemático del SCR se presenta en la figura 1.

Figura1. Símbolo esquemático y nombres de las terminales de un SCR.

Un SCR actúa a semejanza de un interruptor. Cuando esta encendido (ON), hay una trayectoria de flujo de corriente de baja resistencia del ánodo al cátodo. Actúa entonces como un interruptor cerrado. Cuando esta apagado (OFF), no puede haber flujo de corriente del ánodo al cátodo. Por tanto, actúa como un interruptor abierto. Dado que es un dispositivo de estado só1ido, la acción de conmutación de un SCR es muy rápida.

El flujo de corriente promedio para una carga puede ser controlado colocando un SCR en serie con la carga. Este arreglo es presentado en la figura 2. La alimentaci6n de voltaje es comúnmente una fuente de 60-Hz de ca, pero puede ser de cd en circuitos especiales.

Si la alimentación de voltaje es de ca, el SCR pasa una cierta parte del tiempo del ciclo de ca en el estado ON, y el resto del tiempo en el estado OFF. Para una fuente de 60-Hz de ca, el tiempo del ciclo es de 16.67 ms. Son estos 16.67 ms

Page 3: El Rectificador Controlado de Silicio

los que se dividen entre el tiempo que esta en ON y el tiempo que esta en OFF. La cantidad de tiempo que esta en cada estado es controlado por el disparador.

Si una porción pequeña del tiempo esta en el estado ON, la corriente promedio que pasa a la carga es pequeña. Esto es porque la corriente puede fluir de la fuente, a través del SCR, y a la carga, só1o por una porción relativamente pequeña del tiempo. Si la señal de la compuerta es cambiada para hacer que el SCR este en ON por un periodo mas largo del tiempo, entonces la corriente de carga promedio será mayor. Esto es porque la corriente ahora puede fluir de la fuente, a través del SCR, y a la carga, por un tiempo relativamente mayor. De esta manera, la corriente para la carga puede variarse ajustando la porci6n del tiempo del ciclo que el SCR permanece encendido.

Figura2. Relación de circuito entre la fuente de voltaje ,un SCR y la carga

Como lo sugiere su nombre, el SCR es un rectificador, por lo que pasa corriente sólo durante los semiciclos positivos de la fuente de ca. El semiciclo positivo es el semiciclo en que el ánodo del SCR es mas positivo que el cátodo. Esto significa que el SCR de la figura 2 no puede estar encendido más de la mitad del tiempo. Durante la otra mitad del ciclo, la polaridad de la fuente es negativa, y esta polaridad negativa hace que el SCR tenga polarizaci6n inversa, evitando el paso de cualquier corriente a la carga.

FORMAS DE ONDA DE LOS SCR Los términos populares para describir la operación de un SCR son ángulo de conducción y ángulo de retardo de disparo. El ángulo de conducción es el numero de grados de un ciclo de ca durante los cuales el SCR esta encendido. El ángulo de retardo de disparo es el numero de grados de un ciclo de ca que transcurren antes de que el SCR sea encendido. Por supuesto, estos términos están basados en la noción de que el tiempo total del ciclo es igual a 360 grados.

En la figura 3 se muestran las formas de onda de un circuito de control con SCR para un ángulo de retardo de disparo. Al momento que el ciclo de ca inicia su parte positiva, el SCR esta apagado. Por tanto tiene un voltaje instantáneo a través de sus terminales de ánodo y cátodo igual al voltaje de la fuente. Esto es exactamente lo que se vería si se colocara un interruptor abierto en un circuito en lugar del SCR. Dado que el SCR interrumpe en su totalidad el suministro de voltaje, el voltaje a través de la carga (VLD) es cero durante este lapso. La extrema derecha de las ondas ilustran estos hechos. Mas a la derecha en los ejes horizontales, se muestra el voltaje de ánodo a cátodo (VAK) cayendo a cero después de aproximadamente un tercio del semiciclo positivo. Esto es el punto de 60°. Cuando VAK cae a cero, el SCR se ha "disparado", o encendido. Por tanto, el ángulo de retardo de disparo es de 60°. Durante los siguientes 120° el SCR se comporta como un interruptor cerrado sin voltaje aplicado a sus terminales. El

Page 4: El Rectificador Controlado de Silicio

ángulo de conducci6n es de 120°. El ángulo de retardo de disparo y el ángulo de conducci6n siempre suman 180°.

Figura3. Formas de ondas ideales del voltaje de la terminal principal (VAK) y el voltaje de carga

de un SCR. Para un ángulo de retardo de disparo de unos 60o, un ángulo de conducción de 120o. En la figura 3, la forma de onda del voltaje de carga muestra que, al dispararse el

SCR, el voltaje de la fuente es aplicado a la carga. El voltaje de carga entonces sigue al voltaje de la fuente por el resto del semiciclo positivo, hasta que el SCR nuevamente se apaga. El estado OFF ocurre cuando el voltaje de la fuente pasa por cero.

En general, estas formas de onda muestran que antes de que el SCR se dispare, el voltaje es retirado de entre las terminales del SCR, y la carga ve un voltaje cero. Después de haberse disparado el SCR, la totalidad del suministro de voltaje es retirado a través de la carga, y el SCR presenta voltaje cero. El SCR se comporta como un interruptor de acción rápida.  

~ Características DE LA COMPUERTA DE LOS SCR Un SCR es disparado por un pulso corto de corriente aplicado a la compuerta. Esta corriente de compuerta (IG) fluye por la unión entre la compuerta y el cátodo, y sale del SCR por la terminal del cátodo. La cantidad de corriente de compuerta necesaria para disparar un SCR en particular se simboliza por IGT. Para dispararse, la mayoría de los SCR requieren una corriente de compuerta entre 0.1 y 50 mA (IGT = 0.1 - 50 mA). Dado que hay una unión pn estándar entre la compuerta y el cátodo, el voltaje entre estas terminales (VGK) debe ser ligeramente mayor a 0.6 V. En la figura 4 se muestran las condiciones que deben existir en la compuerta para que un SCR se dispare.

Page 5: El Rectificador Controlado de Silicio

Figura4.Voltaje de compuerta a cátodo (VGK) y corriente de compuerta (IG) necesarios para

disparar un SCR. Una vez que un SCR ha sido disparado, no es necesario continuar el flujo de

corriente de compuerta. Mientras la corriente continué fluyendo a través de las terminales principales, de ánodo a cátodo, el SCR perrnanecerá en ON. Cuando la corriente de ánodo a cátodo (IAK) caiga por debajo de un valor mínimo, llamado corriente de retención, simbolizada IHO el SCR se apagara. Esto normalmente ocurre cuando la fuente de voltaje de ca pasa por cero a su región negativa. Para la mayoría de los SCR de tamaño mediano, la IHO es alrededor de 10 mA.

El tiristor ([[Idioma ingles ç |gr.]]: puerta) es un componente electrónico constituido por elementos semiconductores que utiliza realimentación interna para producir una conmutación. Los materiales de los que se compone son de tipo semiconductor, es decir, dependiendo de la temperatura a la que se encuentren pueden funcionar como aislantes o como conductores. Son dispositivos unidireccionales porque solamente transmiten la corriente en un único sentido. Se emplea generalmente para el control de potencia eléctrica.

El dispositivo consta de un ánodo y un cátodo, donde las uniones son de tipo PNPN entre los mismos. Por tanto se puede modelar como 2 transistores típicos PNP y NPN, por eso se dice también que el tiristor funciona con tensión realimentada. Se crean así 3 uniones (denominadas J1, J2, J3 respectivamente), el terminal de puerta está conectado a la unión J2 (unión NP).

Algunas fuentes definen como sinónimos al tiristor y al rectificador controlado de silicio (SCR);[1] otras definen al SCR como un tipo de tiristor, a la par que los dispositivos DIAC y TRIAC.

Este elemento fue desarrollado por ingenieros de General Electric en los años 1960. Aunque un origen más remoto de este dispositivo lo encontramos en el SCR creado por

Page 6: El Rectificador Controlado de Silicio

William Shockley (premio Nobel de física en 1956) en 1950, el cual fue defendido y desarrollado en los laboratorios Bell en 1956. Gordon Hall lideró el desarrollo en Morgan Stanley para su posterior comercialización por parte de Frank W. "Bill" Gutzwiller, de General Electric.

Contenido

 [ocultar] 

1 Funcionamiento básico 2 Formas de activar un tiristor 3 Aplicaciones 4 Principales variantes de tiristores 5 Fabricación 6 Referencias 7 Enlaces externos

[editar] Funcionamiento básico

El tiristor es un conmutador biestable, es decir, es el equivalente electrónico de los interruptores mecánicos; por tanto, es capaz de dejar pasar plenamente o bloquear por completo el paso de la corriente sin tener nivel intermedio alguno, aunque no son capaces de soportar grandes sobrecargas de corriente. Este principio básico puede observarse también en el diodo Shockley.

El diseño del tiristor permite que éste pase rápidamente a encendido al recibir un pulso momentáneo de corriente en su terminal de control, denominada puerta (o en inglés, gate) cuando hay una tensión positiva entre ánodo y cátodo, es decir la tensión en el ánodo es mayor que en el cátodo. Solo puede ser apagado con la interrupción de la fuente de voltaje, abriendo el circuito, o bien, haciendo pasar una corriente en sentido inverso por el dispositivo. Si se polariza inversamente en el tiristor existirá una débil corriente inversa de fugas hasta que se alcance el punto de tensión inversa máxima, provocándose la destrucción del elemento (por avalancha en la unión).

Para que el dispositivo pase del estado de bloqueo al estado activo, debe generarse una corriente de enganche positiva en el ánodo, y además debe haber una pequeña corriente en la compuerta capaz de provocar una ruptura por avalancha en la unión J2 para hacer que el dispositivo conduzca. Para que el dispositivo siga en el estado activo se debe inducir desde el ánodo una corriente de sostenimiento, mucho menor que la de enganche, sin la cual el dispositivo dejaría de conducir.

A medida que aumenta la corriente de puerta se desplaza el punto de disparo. Se puede controlar así la tensión necesaria entre ánodo y cátodo para la transición OFF -> ON, usando la corriente de puerta adecuada (la tensión entre ánodo y cátodo dependen directamente de la tensión de puerta pero solamente para OFF -> ON). Cuanto mayor sea la corriente suministrada al circuito de puerta IG (intensidad de puerta), tanto menor será la tensión ánodo-cátodo necesaria para que el tiristor conduzca.

Page 7: El Rectificador Controlado de Silicio

También se puede hacer que el tiristor empiece a conducir si no existe intensidad de puerta y la tensión ánodo-cátodo es mayor que la tensión de bloqueo.

[editar] Formas de activar un tiristor

Luz: Si un haz de luz incide en las uniones de un tiristor, hasta llegar al mismo silicio, el número de pares electrón-hueco aumentará pudiéndose activar el tiristor.

Corriente de Compuerta: Para un tiristor polarizado en directa, la inyección de una corriente de compuerta al aplicar un voltaje positivo entre compuerta y cátodo lo activará. Si aumenta esta corriente de compuerta, disminuirá el voltaje de bloqueo directo, revirtiendo en la activación del dispositivo.

Térmica: Una temperatura muy alta en el tiristor produce el aumento del número de pares electrón-hueco, por lo que aumentarán las corrientes de fuga, con lo cual al aumentar la diferencia entre ánodo y cátodo, y gracias a la acción regenerativa, esta corriente puede llegar a ser 1, y el tiristor puede activarse. Este tipo de activación podría comprender una fuga térmica, normalmente cuando en un diseño se establece este método como método de activación, esta fuga tiende a evitarse.

Alto Voltaje: Si el voltaje directo desde el ánodo hacia el cátodo es mayor que el voltaje de ruptura directo, se creará una corriente de fuga lo suficientemente grande para que se inicie la activación con retroalimentación. Normalmente este tipo de activación puede dañar el dispositivo, hasta el punto de destruirlo.

Elevación del voltaje ánodo-cátodo: Si la velocidad en la elevación de este voltaje es lo suficientemente alta, entonces la corriente de las uniones puede ser suficiente para activar el tiristor. Este método también puede dañar el dispositivo.

[editar] Aplicaciones

Normalmente son usados en diseños donde hay corrientes o voltajes muy grandes, también son comúnmente usados para controlar corriente alterna donde el cambio de polaridad de la corriente revierte en la conexión o desconexión del dispositivo. Se puede decir que el dispositivo opera de forma síncrona cuando, una vez que el dispositivo está abierto, comienza a conducir corriente en fase con el voltaje aplicado sobre la unión cátodo-ánodo sin la necesidad de replicación de la modulación de la puerta. En este momento el dispositivo tiende de forma completa al estado de encendido. No se debe confundir con la operación simétrica, ya que la salida es unidireccional y va solamente del cátodo al ánodo, por tanto en sí misma es asimétrica.

Los tiristores pueden ser usados también como elementos de control en controladores accionados por ángulos de fase, esto es una modulación por ancho de pulsos para limitar el voltaje en corriente alterna.

En circuitos digitales también se pueden encontrar tiristores como fuente de energía o potencial, de forma que pueden ser usados como interruptores automáticos magneto-térmicos, es decir, pueden interrumpir un circuito eléctrico, abriéndolo, cuando la intensidad que circula por él se excede de un determinado valor. De esta forma se

Page 8: El Rectificador Controlado de Silicio

interrumpe la corriente de entrada para evitar que los componentes en la dirección del flujo de corriente queden dañados. El tiristor también se puede usar en conjunto con un diodo Zener enganchado a su puerta, de forma que cuando el voltaje de energía de la fuente supera el voltaje zener, el tiristor conduce, acortando el voltaje de entrada proveniente de la fuente a tierra, fundiendo un fusible.

La primera aplicación a gran escala de los tiristores fue para controlar la tensión de entrada proveniente de una fuente de tensión, como un enchufe, por ejemplo. A comienzo de los ’70 se usaron los tiristores para estabilizar el flujo de tensión de entrada de los receptores de televisión en color.

Se suelen usar para controlar la rectificación en corriente alterna, es decir, para transformar esta corriente alterna en corriente continua (siendo en este punto los tiristores onduladores o inversores), para la realización de conmutaciones de baja potencia en circuitos electrónicos.

Otras aplicaciones comerciales son en electrodomésticos (iluminación, calentadores, control de temperatura, activación de alarmas, velocidad de ventiladores), herramientas eléctricas (para acciones controladas tales como velocidad de motores, cargadores de baterías), equipos para exteriores (aspersores de agua, encendido de motores de gas, pantallas electrónicas...)

ELECTRONICA DE POTENCIA: TIRISTORES

Los tiristores son una familia de dispositivos semiconductores de cuatro capas (pnpn), que se utilizan para controlar grandes cantidades de corriente mediante circuitos electrónicos de bajo consumo de potencia.

Page 9: El Rectificador Controlado de Silicio

La palabra tiristor, procedente del griego, significa puerta. El nombre es fiel reflejo de la función que efectúa este componente: una puerta que permite o impide el paso de la corriente a través de ella. Así como los transistores pueden operar en cualquier punto entre corte y saturación, los tiristores en cambio sólo conmutan entre dos estados: corte y conducción.

Dentro de la familia de los tiristores, trataremos en este tutorial los tipos más significativos: Diodo Shockley, SCR (Silicon Controlled Rectifier), GCS (Gate Controlled Switch), SCS (Silicon Controlled Switch), Diac y Triac.

1 EL DIODO SHOCKLEY

El diodo Shockley es un tiristor con dos terminales: ánodo y cátodo. Está constituido por cuatro capas semiconductoras que forman una estructura pnpn. Actúa como un interruptor: está abierto hasta que la tensión directa aplicada alcanza un cierto valor, entonces se cierra y permite la conducción. La conducción continúa hasta que la corriente se reduce por debajo de un valor específico (IH).

Figura 1: Construcción básica y símbolo del diodo Shockley

1.1 CARACTERISTICA TENSION-INTENSIDAD

Para valores negativos del voltaje aplicado, como en un diodo, sólo habrá una corriente muy pequeña hasta que se alcance la tensión de ruptura (VRB).

Page 10: El Rectificador Controlado de Silicio

Figura 2: Característica I-V del diodo Shockley

En polarización positiva, se impide el paso de corriente hasta que se alcanza un valor de tensión VB0. Una vez alcanzado este punto, el diodo entra en conducción, su tensión disminuye hasta menos de un voltio y la corriente que pasa es limitada, en la práctica, por los componentes externos. La conducción continuará hasta que de algún modo la corriente se reduzca por debajo de la corriente de mantenimiento IH.

La corriente que puede atravesar el dispositivo en polarización directa tiene un límite impuesto por el propio componente (IMAX), que si se supera llevará a la destrucción del mismo. Por esta razón, será necesario diseñar el circuito en el que se instale este componente de tal modo que no se supere este valor de corriente. Otro parámetro que al superarse puede provocar la ruptura del dispositivo es VRB, ya que provocaría un fenómeno de avalancha similar al de un diodo convencional.

1.2 EJEMPLO DE APLICACION: DETECTOR DE SOBRETENSION

En esta aplicación, se ha seleccionado un diodo Shockley con una tensión de conducción de 10 V. Por tanto, si la tensión de la fuente es correcta, es decir, de 9 V, el diodo está abierto, no circula corriente por él y la lámpara estará apagada. Pero si la tensión de la fuente supera, por una falla en su funcionamiento una tensión de 10 V, el diodo entra en saturación y la lámpara se enciende. Permanecerá encendida (y el diodo cerrado) aunque la tensión vuelva a 9V, mostrando de esta manera que ha habido una falla. La única forma de apagar la lámpara sería desconectar la alimentación.

Page 11: El Rectificador Controlado de Silicio

Figura 3: Detector de sobretensión

2 SCR (SILICON CONTROLLED RECTIFIER)

El SCR es un dispositivo de cuatro capas muy similar al diodo Shockley, con la diferencia de poseer tres terminales: ánodo, cátodo y puerta (gate). Al igual que el diodo Shockley, presenta dos estados de operación: abierto y cerrado, como si se tratase de un interruptor.

Figura 4: Construcción básica y símbolo del SCR

2.1 CARACTERISTICA TENSION INTENSIDAD

Tal y como se aprecia en la Figura 5, la parte de polarización inversa de la curva es análoga a la del diodo Shockley.

Page 12: El Rectificador Controlado de Silicio

Figura 5: Característica del SCR

En cuanto a la parte de polarización positiva, el diodo no conduce hasta que se recibe un pulso de tensión en el terminal de puerta (gate). Una vez recibido, la tensión entre ánodo y cátodo cae hasta ser menor que un voltio y la corriente aumenta rápidamente, quedando limitada en la práctica por componentes externos.

Podemos ver en la curva cuatro valores importantes. Dos de ellos provocarán la destrucción del SCR si se superan: VRB e IMAX. VRB (Reverse Breakdown Voltage) es, al igual que en el diodo Shockley, la tensión a partir de la cual se produce el fenómeno de avalancha. IMAX es la corriente máxima que puede soportar el SCR sin sufrir daño. Los otros dos valores importantes son la tensión de cebado VBO (Forward Breakover Voltage) y la corriente de mantenimiento IH, magnitudes análogas a las explicadas para el diodo Shockley.

2.2 METODOS DE CONMUTACION

Para que el dispositivo interrumpa la conducción de la corriente que circula a través del mismo, ésta debe disminuir por debajo del valor IH (corriente de mantenimiento). Hay dos métodos básicos para provocar la apertura el dispositivo: interrupción de corriente anódica y conmutación forzada. Ambos métodos se presentan en las figuras Figura 6 y Figura 7.

Page 13: El Rectificador Controlado de Silicio

Figura 6: Apertura del SCR mediante interrupción de la corriente anódica

En la Figura 6 se observa cómo la corriente anódica puede ser cortada mediante un interruptor bien en serie (figura izquierda), o bien en paralelo (figura derecha). El interruptor en serie simplemente reduce la corriente a cero y hace que el SCR deje de conducir. El interruptor en paralelo desvía parte de la corriente del SCR, reduciéndola a un valor menor que IH.

En el método de conmutación forzada, que aparece en la Figura 7, se introduce una corriente opuesta a la conducción en el SCR. Esto se realiza cerrando un interruptor que conecta una batería en paralelo al circuito.

Figura 7: Desconexión del SCR mediante conmutación forzada

2.3 APLICACIONES DEL SCR

Una aplicación muy frecuente de los SCR es el control de potencia en alterna en reguladores (dimmer) de lámparas, calentadores eléctricos y motores eléctricos.

Page 14: El Rectificador Controlado de Silicio

En la Figura 8 se muestra un circuito de control de fase de media onda y resistencia variable. Entre los terminales A y B se aplican 120 V (AC). RL representa la resistencia de la carga (por ejemplo un elemento calefactor o el filamento de una lámpara). R1 es una resistencia limitadora de la corriente y R2 es un potenciómetro que ajusta el nivel de disparo para el SCR. Mediante el ajuste del mismo, el SCR se puede disparar en cualquier punto del ciclo positivo de la onda en alterna entre 0 y 180º, como se aprecia en la Figura 8.

Figura 8: (a) Conducción durante 180º (b) Conducción durante 90º

Cuando el SCR se dispara cerca del principio del ciclo (aproximadamente a 0º), como en la Figura 8 (a), conduce durante aproximadamente 180º y se transmite máxima potencia a la carga. Cuando se dispara cerca del pico positivo de la onda, como en la Figura 8 (b), el SCR conduce durante aproximadamente 90º y se transmite menos potencia a la carga. Mediante el ajuste de RX, el disparo puede retardarse, transmitiendo así una cantidad variable de potencia a la carga.

Cuando la entrada en AC es negativa, el SCR se apaga y no conduce otra vez hasta el siguiente disparo durante el ciclo positivo. Es necesario repetir el disparo en cada ciclo como se ilustra en la Figura 9. El diodo se coloca para evitar que voltaje negativo en AC sea aplicado a la gate del SCR.

Figura 9: Disparos cíclicos para control de potencia

3 GCS (GATE CONTROLLED SWITCH)

Este dispositivo es similar al SCR, con la diferencia de que el GCS puede interrumpir el paso de corriente con una señal en el terminal de gate.

Igual que el SCR, no permitirá el paso de corriente hasta que un pulso positivo se reciba en el terminal de puerta. La diferencia se encuentra en que el GCS puede pasar al estado de corte mediante un pulso negativo 10 ó 20 veces mayor que el pulso positivo aplicado para entrar en conducción.

Page 15: El Rectificador Controlado de Silicio

Figura 10: Símbolo del GCS

Los GCS están diseñados para cargas relativamente pequeñas y pueden soportar sólo unas pocas decenas de amperios.

4 SCS (SILICON CONTROLLED SWITCH)

Es similar en cuanto a construcción al SCR. La diferencia está en que posee dos terminales de puerta, uno para entrar en conducción y otro para corte. El SCS se suele utilizar en rangos de potencia menores que el SCR.

Figura 11: Símbolo del SCS

El SCS tiene aplicaciones muy similares a las de SCR. Este último tiene la ventaja de poder abrirse más rápido mediante pulsos en cada uno de los terminales de gate, pero el inconveniente que presenta respecto al SCR es que se encuentra más limitado en cuanto a valores de tensión y corriente. También se utiliza en aplicaciones digitales como contadores y circuitos temporizadores.

5 EL DIAC

Es un tipo de tiristor que puede conducir en los dos sentidos. Es un dispositivo de dos terminales que funciona básicamente como dos diodos Shockley que conducen en sentidos opuestos.

Page 16: El Rectificador Controlado de Silicio

Figura 12: Construcción básica y símbolo del diac

La curva de funcionamiento refleja claramente el comportamiento del diac, que funciona como un diodo Shockley tanto en polarización directa como en inversa.

Cualquiera que sea la polarización del dispositivo, para que cese la conducción hay que hacer disminuir la corriente por debajo de la corriente de mantenimiento IH. Las partes izquierda y derecha de la curva, a pesar de tener una forma análoga, no tienen por qué ser simétricas.

Figura 13: Característica V-I del diac

6 EL TRIAC

Este dispositivo es simular al diac pero con un único terminal de puerta (gate). Se puede disparar mediante un pulso de corriente de gate y no requiere alcanzar el voltaje VBO como el diac.

Page 17: El Rectificador Controlado de Silicio

Figura 14: Construcción básica y símbolo del TRIAC.

En la curva característica se indica que para diferentes disparos, es decir, para distintas corrientes aplicadas en gate, el valor de VBO es distinto. En la parte de polarización positiva, la curva de más a la izquierda es la que presenta un valor de VBO más bajo, y es la que mayor corriente de gate precisa en el disparo. Para que este dispositivo deje de conducir, como en el resto de los casos, hay que hacer bajar la corriente por debajo del valor IH.

Figura 15: Característica V-I del triac

Al igual que el SCR, se emplean para controlar la potencia suministrada a una carga. El triac puede dispararse de tal modo que la potencia en alterna sea suministrada a la carga durante un tiempo determinado de cada ciclo. La diferencia con el SCR es que se puede disparar tanto en la parte positiva que en la negativa del ciclo, de tal manera que la corriente en la carga puede circular en los dos sentidos.

Page 18: El Rectificador Controlado de Silicio

Figura 16 Control básico de potencia con un Triac

7 RESUMEN

Como resumen final del tema se reflejan en una tabla las características más importantes de los tiristores que se han presentado.

TIRISTORUNIDIRECCION

ALBIDIRECCION

AL

1 GAT

E

2 GAT

E

0 GAT

E

ON/OFF

SHOCKLEY

X X

SCR X X

GCS X X X

SCS X X X

DIAC X X