Instructor Guide4kia

61
VEHÍCULOS DE PASAJEROS COMMON RAIL - Bosch Manual de Entrenamiento de Servicio 1a edición Guía para el Instructor

Transcript of Instructor Guide4kia

Page 1: Instructor Guide4kia

VEHÍCULOS DE PASAJEROS

COMMON RAIL - BoschManual de Entrenamiento de Servicio1a edición

Guía para el Instructor

Page 2: Instructor Guide4kia

PRÓLOGO

Se ha preparado este manual de entrenamiento técnico para que los técnicos de servicio de los Servicios autorizados Kia se familiaricen con los motores diesel Common Rail de Kia. Nuestra intención es aumentar el nivel de destreza y conocimiento del personal de servicio para permitir un diagnóstico efectivo y eficiente en la reparación de problemas técnicos.

El objetivo del Centro de Entrenamiento es entregar un entrenamiento de servicio técnico al nivel que se requiere para lograr un estándar de calidad de servicio que vaya un paso más adelante que la competencia. Como resultado, el aumento en la capacidad de servicio y soporte de post venta producirá finalmente una satisfacción máxima del cliente.

Para mayores detalles sobre los procedimientos de reparación y ensamblado remítase a los manuales de servicio pertinentes.

ⓒ Copyright by Kia Motors Corp., Todos los derechos reservados.Centro de Entrenamiento de Servicio Técnico KiaTraducido y Adaptado por el Departamento de Asistencia Técnica de DIASA Ltda., Chile

Page 3: Instructor Guide4kia

1

CommonCommon Rail Rail ((BoschBosch))

Centro de Entrenamiento KIA Motors

Page 4: Instructor Guide4kia

2

Generalidades del SistemaGeneralidades del Sistema

Page 5: Instructor Guide4kia

3

Bomba de alta presión

ECM Common Rail (Riel común)

Inyectores

Sensor de presión del riel

Generalidades del Sistema

El sistema ‘Common Rail’ es un sistema de control electrónico de la inyección de combustible del motor diesel.Una alta presión de combustible está disponible en forma constante para todo estado de funcionamiento del motor. La generación y control de la alta presión son independientes del control de inyección.La presión y el tiempo de inyección de combustible están diseñados para motores de inyección directa de alta velocidad.Los parámetros de inyección tales como distribución de inyección, cantidad de inyección y presión de combustible se controlan mediante el Módulo de Control Electrónico (ECM).

Page 6: Instructor Guide4kia

4

Comparación

ComparaciComparacióónn

Bomba InyecciBomba Inyeccióónn

VelocidadVelocidadde Motorde Motor IndependenciaIndependencia DependenciaDependencia

PosiblePosibleInyecciInyeccióónnpilotopiloto ImposibleImposible

ElElééctricactrica MecMecáániconicoInyecciInyeccióónn

CommonCommon RailRail

En los motores diesel tradicionales, la bomba es impulsada por el motor y su función es asegurar la cantidad y distribución de la inyección de combustible correcta a cada inyector y regular el tiempo de abertura.En el sistema ‘Common Rail’ la bomba sirve sólo para acumular el combustible a una muy alta presión en una línea de alimentación común desde la cual se bifurcan los inyectores.El tiempo de la abertura de los inyectores es controlada por un Módulo de Control Electrónico (ECM) y Sensores relativos. Además de mejorar su desempeño y reducir el ruido y los niveles de emisión de gases, el sistema ‘Common Rail’ permite que los motores diesel alcancen nuevas posibilidades en el exigente mundo de hoy.

Page 7: Instructor Guide4kia

5

Sistema ‘Common Rail’

Inyector

ECM

Cilindro

El control electrónico de la entrega de combustible y avance de inyección permite que el combustible sea bombeado a una presión óptima en forma independiente de la velocidad de funcionamiento del motor. Es posible, por lo tanto, mantener una alta presiónconstante en el sistema aún cuando el motor esté funcionando a velocidades bajas.

Los principales problemas que había que superar para mejorar el desempeño y el consumo eran: La regulación de la cantidad de combustible que se iba a atomizar para cada fase de combustión y el momento preciso de la inyección de combustible en la cámara de combustión.

Page 8: Instructor Guide4kia

6

Ventajas

■ Excelente Desempeño y Eficiencia de Combustible- El Sistema de Inyección de Combustible ‘Common Rail’ es

controlado electrónicamente para cumplir con una combustión óptima

■ Bajo Nivel de Emisiones y de Ruidos- Amigable con el medioambiente para responder a todos los

reglamentos mundiales sobre emisiones - Inyectores ubicados en forma vertical central- Inyección Piloto del Sistema de Inyección de Combustible

‘Common Rail’

Page 9: Instructor Guide4kia

7

Circuito de Baja Presión

1 Tanque de combustible1 Tanque de combustible

2 2 PrePre FiltroFiltro

3 Bomba de suministro previo3 Bomba de suministro previo

4 Filtro de combustible4 Filtro de combustible

5 L5 Lííneas de combustible de baja presineas de combustible de baja presióónn

6 Bomba de alta presi6 Bomba de alta presióónn

7 L7 Lííneas de combustible de alta presineas de combustible de alta presióónn

8 Riel8 Riel

9 Inyector9 Inyector

10 L10 Líínea de retorno de combustiblenea de retorno de combustible

11 ECU11 ECU

Sistema de combustible para un sistema de inyecciSistema de combustible para un sistema de inyeccióón de combustible n de combustible ‘‘Common RailCommon Rail’’

Circuito de Baja Presión

En el circuito de baja presión se aspira el combustible del tanque por medio de una bomba de suministro previo, forzando al combustible a pasar por las líneas al circuito de alta presión.

Un pre filtro separa los contaminantes del combustible evitando así el desgaste prematuro de los componentes de alta precisión.

Page 10: Instructor Guide4kia

8

Circuito de Alta Presión

Genera y almacena alta presión

El combustible pasa a través del filtro de combustible a la bomba de alta presión que lo fuerza dentro del acumulador (riel) de alta presión, generando una presión máxima de 1,350 bar.

Para todo proceso de inyección el combustible se toma desde el acumulador de alta presión. La presión del riel permanece constante. Se emplea una válvula de control de presión para asegurar que la presión del riel no exceda el valor deseado o caiga bajo él.

Page 11: Instructor Guide4kia

9

Circuito de Alta Presión

■ Genera y almacena alta presión

■ Control de circuito cerrado de la presión del riel

■ Inyección de combustible

Control de circuito cerrado de la presión del rielLa válvula de control de presión es activada por el ECM. Una vez abierta, permite que el combustible regrese al tanque vía líneas de retorno y la presión del riel cae. Para que el ECM pueda activar la válvula de control de presión en forma correcta, se mide la presión del riel por medio de un sensorde presión del riel.

Inyección de combustible

Cada vez que se inyecta combustible, se extrae del riel a alta presión y se inyecta directamente al cilindro. Cada cilindro tiene su propio inyector. Cada inyector contiene una válvula de solenoide que recibe el comando de abertura desde la ECM. Mientras permanece abierto, se inyecta combustible en la cámara de combustión de los cilindros.

Page 12: Instructor Guide4kia

10

Bomba de Alta Presión

CP1 CP3

MPROP: (Válvula Proporcionadora Magnética)

KUV: (Kraftstoff uber druck ventil......Válvula de seguridad de sobre presión)

AlzavAlzaváávulasvulas del del cubocubo

Eje excEje excééntricontrico Conectores deConectores decontraflujocontraflujo

Anillo del polAnillo del políígonogono

ÉÉmbolombolo

VVáálvula HPlvula HP

Bomba de Bomba de engranajesengranajes

VVáálvula delvula deentradaentrada

Resorte HPResorte HP

Bomba de Alta PresiónEl principal defecto de la bomba de pistón giratorio convencional es la presión máxima que se puede alcanzar. Dicha presión está fija entre 200 y 400 bar lo que, considerando que sólo la alta presión garantiza la transferencia rápida, es insuficiente para asegurar la inyección rápida de la cantidad necesaria de combustible para la combustión.Con el Common Rail es posible aumentar la presión del combustible a 1350 barios aumentando con eso la velocidad a la cual se puede transferir. Esta alta presión nosólo asegura la inyección rápida sino que también hace posible preceder lainyección con una fase de inyección previa anticipando con esto el proceso de combustión con las consiguientes ventajas para la combustión subsiguiente.Mientras más alta la presión de inyección, más alta la eficiencia termodinámica. Esto hace al motor diesel de inyección directa el más eficiente desde el punto de vista termodinámico de todas las alternativas de combustión interna.

Page 13: Instructor Guide4kia

11

Operación de la Bomba de Alta Presión

FuelFeed

Válvula de Control de Presión

Alimentación deCombustible

Bomba de Alta PresiónLa bomba de alta presión es responsable de generar la alta presión necesaria para la inyección de combustible, y para asegurar que haya suficiente combustible (de alta presión) disponible para todas las condiciones de funcionamiento.El eje de la bomba de alta presión es impulsado por el motor a la mitad de revoluciones del motor a través de una correa dentada. Se lubrica y enfría por medio del combustible que bombea. El combustible es forzado por la bomba de suministro previo dentro de la cámara interior de la bomba de alta presión por medio de una válvula de seguridad.Cuando el émbolo de la bomba se mueve hacia abajo, se abre la válvula de admisión y se succiona combustible dentro de la cámara (tiempo de succión). Al final del punto muerto interior (BDC), se cierra la válvula de admisión y el combustible en la cámara puede ser comprimido por el émbolo que se mueve hacia arriba.

Page 14: Instructor Guide4kia

12

Common Rail

Acumulador de alta presión (Common rail)Las tareas del acumulador de alta presión (Common rail) son:

-Almacenar combustible

-Evitar fluctuaciones de presión (a través de mantener un volumen adecuado)

El acumulador de alta presión es un tubo de acero forjado. Dependiendo del motor en cuestión su diámetro interno es aproximadamente 10mm y tiene entre 280 y 600mm de largo. Para evitar fluctuaciones de presión, se debe escoger un volumen lo más grande posible, en otras palabras máximos posibles en longitud y diámetro. Se prefiere un volumen pequeño para una partida rápida, lo que significa que el volumen óptimo debe ser: lo más pequeño posible; pero tan grande como sea necesario.

Page 15: Instructor Guide4kia

13

Funcionamiento del Inyector

1 = Descarga de Condensador 2 = Corriente de tracción para inyector

3 = Carga de Condensador 4 = Corriente de sujeción del inyector

5 = Carga de condensador (PST apagado)

6 = Corriente de sujeción regulada (rueda libre)

7 = Corriente de sujeción regulada (etapa con energía encendida)

La tarea de los inyectores es inyectar en la cámara de combustión exactamente la cantidad correcta de combustible en el momento preciso. Para cumplir con esto, el inyector es activado por señales del ECM.

El inyector tiene una servo-válvula electromagnética. Es un componente de alta precisión que ha sido fabricado para tolerancias extremadamente pequeñas. La válvula, la boquilla y el electro imán están ubicados en el cuerpo del inyector. Desde la conexión de alta presión fluye combustible a través de una mariposa de entrada a la cámara de control de la válvula. Existe la misma presión dentro del inyector que en el riel, y se inyecta el combustible a través de la boquilla a la cámara de combustión. El combustible que no se utiliza fluye de vuelta al tanque por la línea de retorno. Por medio de los inyectores que son controlados por la ECM se logran las RPM máximas y el corte de combustible al sobre revolucionar al motor.

Page 16: Instructor Guide4kia

14

Inyección Piloto Antes OT Después

1 = Pre-inyección 1a = Presión de combustión con pre-inyección

2 = Inyección principal 2a = Presión de combustión sin pre-inyección

Objetivo de la pre-inyección:Reducción en :

- Ruido de combustión-Emisiones de HC-Consumo de combustible (partida tardía de la inyección)

Consecuencias de la pre-inyecciónPre acondicionamiento del espacio de combustión para el proceso de inyección principal tanto en términos de presión como de temperatura.

-Atraso de encendido porque se acorta la inyección principal-Ventajas respecto al ruido (reducida presión de combustión máxima)- Combustión óptima

Posibilidades de activaciónPre-inyección: desde 90° antes de PMS hasta 10° después de PMSInyección principal: desde 20° antes de PMS hasta 10° después de PMS

Page 17: Instructor Guide4kia

15

SENSORESSENSORES

Page 18: Instructor Guide4kia

16

Control Electrónico de la Inyección de Combustible

ECM y sensores del sistema: Control del proceso de inyecciónEl ECM emite todos los comandos necesarios con el objeto de:

- Mantener constante la presión en el acumulador (riel) de alta presión

-Iniciar y terminar el proceso mismo de la inyección.

El ECM usa las señales de los sensores (por ej. Velocidad del motor, posición del pedal del acelerador, temperatura del aire) para calcular la cantidad correcta de inyección de combustible y el punto de partida de inyección óptima.

Los llamados mapas almacenados en el ECM contienen la información de inyección apropiada para cada valor medido. Esto significa que se puede realizar tanto la inyección piloto como la post inyección.

Page 19: Instructor Guide4kia

17

Sensores

PresiPresióón del rieln del riel

Eje de levasEje de levasPresiPresióónn del del turboalimturboalim..

Temp. delTemp. delrefrigeranterefrigerante

Masa de Masa de aireaire

Velocidad del cigVelocidad del cigüüeeññalal Temp. Del aireTemp. Del aire

El ECM del Common Rail evalúa las señales de los siguientes sensores:- Sensor de posición del cigüeñal- Sensor de temperatura del aire-Sensor de posición del eje de levas -Sensor de temperatura del refrigerante-Sensor del pedal del acelerador -Sensor de flujo del aire (MAF)- Sensor de presión del riel - Sensor de presión atmosférica (en el ECM)- Interruptor del pedal de freno- Interruptor del pedal del embrague- Sensor de temperatura del combustible- Sensor de presión del turboalimentador (VGT)

Page 20: Instructor Guide4kia

18

Sensor del Pedal del Acelerador (Módulo)Conjunto del Módulo

APM (Módulo, sensor del pedal, 1 unidad)

Sorento, Carens

En contraste con la distribución convencional y las bombas de inyección en línea, con EDC (control Electrónico diesel) la aceleración que imprime el conductor ya no se transmite directamente a la bomba de inyección a través de cable o varillaje mecánico, sino que es registrada por un sensor del pedal del acelerador y transmitida luego al ECM. (esto también se conoce como control eléctrico)

Se genera voltaje a través del potenciómetro en el sensor del pedal del acelerador en función de la posición del pedal del acelerador. Usando una curva característica programada, se calcula entonces la posición del pedal a partir de este voltaje.

Page 21: Instructor Guide4kia

19

Sensor del Pedal del Acelerador (Módulo)

1.6 ~ 2.5V3.6 ~ 4.6VWOT

0.25 ~ 0.6V0.6 ~ 0.9VRALENTÍ

Potenciómetro 2Potenciómetro 1

Referencia APS1Referencia APS1

SeSeññal APS1al APS1

Tierra APS1Tierra APS1

Referencia APS2Referencia APS2

SeSeññal APS 2al APS 2

Tierra APS 2Tierra APS 2

El sensor del pedal tiene dos Potenciómetros, una señal es la posición del pedal para el ECM, la otra es para la verificación de la señal de solicitud de carga.

Si fallara el sensor del pedal, se establece el modo “a prueba de fallas”.

Una velocidad de ralentí levemente mayor.

No comprobar el sensor del Pedal con un Multímetro Análogo.

(Riesgo de daño al circuito interno)

Page 22: Instructor Guide4kia

20

[Ralentí]Señal de salida promedio en condición ralentí se convierte en 0.6~0.8V en APS 1.(Depende del vehículo)

[Carga]La señal de salida promedio en condición de carga se convierte en 3.9V en APS 1.(Depende del vehículo)

APS1

APS2

APS1

APS2

Sensor del Pedal del Acelerador (Módulo)

[Ralentí]La señal de salida promedio en condición ralentí se convierte en 0.6~0.8V in APS 1.(Depende del vehículo)

[Carga]La señal de salida promedio en condición de carga se convierte en 3.9V en APS 1.(Depende del vehículo)

Page 23: Instructor Guide4kia

21

Sensor de Presión del Riel

1 Conexiones eléctricas2 Circuito de evaluación3 Diafragma con elemento sensor4 Conexión de alta presión5 Rosca de montaje

Sensor de presiSensor de presióón den dell rielriel

El sensor de presión del riel debe medir instantáneamente la presión en el riel, con la precisión adecuada, y lo más rápido posible.

El combustible presurizado actúa sobre el diafragma del sensor, lo que convierte la presión en señal eléctrica, que después se ingresa a un circuito de evaluación que amplifica esta señal y la envía al ECM.

Cuando cambia la forma del diafragma (aprox. 1mm a 1500 barios) provoca una diferencia del voltaje a lo largo del puente de resistencia de 5v.

Page 24: Instructor Guide4kia

22

Sensor de Presión de Riel

Voltaje de Salida UVoltaje de Salida U

PresiPresióónn

Este cambio de voltaje se encuentra en el rango de 0.70mV (dependiendo de la presión) y es amplificado por el circuito de evaluación a 0.5, 4.5V.

La medición precisa de la presión en el riel es fundamental para el funcionamiento correcto del sistema. Si el sensor falla, la válvula de control de presión es llevada a una condición ‘ciega’, usando una función y valores de emergencia (limp home o modo a prueba de fallas).

Page 25: Instructor Guide4kia

23

Sensor de Presión del Riel

SENSOR DE SENSOR DE PRESIPRESIÓÓN DEL RIELN DEL RIEL

SeSeññalal

ReferenciaReferencia

TierraTierra

Page 26: Instructor Guide4kia

24

Sensor de Flujo de Aire (Tipo lámina Caliente)

1 Tap1 Tapóón n –– en el sensoren el sensor2 2 EnvolturaEnvoltura del cilindrodel cilindro3 Cubierta del h3 Cubierta del hííbridobrido4 Cubierta del 4 Cubierta del ductoducto de medicide medicióónn5 Caja5 Caja6 H6 Hííbridobrido7 Sensor7 Sensor8 Placa monta8 Placa montajjee9 O 9 O ringring10 Sensor de temperatura10 Sensor de temperatura

Sensor del Flujo de AireSensor del Flujo de Aire

Salida AFS (V)Salida AFS (V)

Referencia (V)Referencia (V)

Salida IAT (V)Salida IAT (V)

TierraTierra

Durante el funcionamiento dinámico es fundamental el establecimiento preciso de una correcta relación A/F [aire/combustible], para cumplir con las normas, referente a los límites de gases de escape.

Esto requiere el uso de sensores para registrar de manera precisa el flujo de masa de aire que realmente ingresa al motor en un momento determinado.

Estos sensores que miden con precisión deben ser independientes de la pulsación, flujo inverso, EGR, control variable del eje de levas y cambios en el control de temperatura del aire.

Page 27: Instructor Guide4kia

25

Sensor de Flujo de Aire (Tipo Lámina Caliente)

CCóódigodigo SSííntomasntomas

Descripción detalladaCondición

de verificación

Señal bajo el límite inferior (Masa de aire <20kf/h

Combustib.= 0

Límite de Combustib.

MotorFuncionandoSeñal sobre el límite superior (Masa de aire >800kf/h)

Error General (Volt de referencia>4.7-5.1)

Se elige un medidor de masa de aire tipo “lámina caliente” como el más conveniente. El principio de la “lámina caliente” se basa en la transferencia de calor desde un elemento sensor que está caliente al flujo de masa de aire.

Se utiliza un sistema de medición micro mecánico que permite el registro del flujo de masa de aire y la detección de la dirección del flujo. Los flujos inversos también se detectan en caso que se produzcan flujos de aire con fuerte pulsación. El elemento sensor micro mecánico se ubica en el paso del flujo del sensor.

Page 28: Instructor Guide4kia

26

Sensor de posición del eje de levas

Sensor CMPSensor CMP

Sensor de posiciSensor de posicióón del eje de levasn del eje de levas

TierraTierra

SeSeññal del al del sensorsensor

SENSOR DE SENSOR DE POSICIPOSICIÓÓN DEL EJE N DEL EJE

DE LEVASDE LEVAS

El eje de levas controla las válvulas de admisión y escape del motor. Gira a la mitad de velocidad del cigüeñal. Cuando un pistón se mueve en dirección del PMS, la posición del eje de levas determina si está en la fase de compresión con la de encendido subsiguiente o en la fase de escape. Esta información no se puede generar únicamente con el dato de posición del cigüeñal durante la fase de partida. Por otra parte, durante el funcionamiento normal del motor, la información generada por el sensor del cigüeñal basta para determinar el estado del motor. En otras palabras, esto significa que si el sensor del eje de levas fallara mientras se conduce el vehículo, el ECM aún recibe la información sobre el estado del motor desde el sensor del cigüeñal.

Page 29: Instructor Guide4kia

27

Sensor de posición del eje de levas

Código

Descripción detalladaSíntomas Condición

de verificación

Señal CMP debajo del límite inferior (Sin señal)

Señal CMP sobre el límite superior

Error general CKP y CMP (Verificación de racionalidad)

Error de admisibilidad CKP

Combustib.= 0

Límite de Combustib.

Motorfuncionando

El sensor del eje de levas utiliza el efecto electromagnético (Hall) al establecer la posición del eje de levas. Un diente de material ferromagnético está unido al eje de levas y gira con él. Cuando este diente pasa frente a los discos (wafers) semiconductores del sensor del eje de levas, su campo magnético desvía los electrones en los discos semiconductores en ángulos rectos a la dirección de la corriente que fluye a través de los discos. Esto da como resultado una señal breve de voltaje (voltaje Hall) que informa al ECM que el cilindro nº 1 ha ingresado recién a la fase de compresión.

Page 30: Instructor Guide4kia

28

Sensor de posición del cigüeñal

Sensor de velocidad del cigüeñal1 Imán permanente, 2 Caja,3 Caja del cigüeñal del motor, 4 alma de hierro dulce, 5 Bobinado, 6 Rueda dentada.

Tierra blindada

Señal (+)

Señal (-)

La posición del pistón en la cámara de combustión es fundamental para definir el comienzo de la inyección. Todos los pistones del motor están conectados al cigüeñal mediante las bielas. Un sensor en las rotaciones del cigüeñal por minuto.Esta variable importante de entrada se calcula en el ECM, mediante la señal del sensor de velocidad del cigüeñal.

Page 31: Instructor Guide4kia

29

Funcionamiento del sensor de posición del cigüeñal

Dirección de movimiento del sensor

Punto de referencia del objetivo usado por el EMS para sincronizar el motor

Espacio de aire=1±0.5mm

Rueda Objetivo Mecánica del cigüeñal

Señal Eléctrica del Sensor de Salida

1 diente = 6º

Sobre 7.4V

Bajo 0.8V Tolerancia =0.45 º cigüeñal

Generación de la señalUna rueda “objetivo” de material ferromagnético de 60 dientes está unida al cigüeñal. En la rueda que se usa en la práctica, faltan 2 dientes. Este espacio más grande se asigna a una posición definida del cigüeñal para el cilindro 1.El sensor de velocidad del cigüeñal monitorea la secuencia de dientes de la rueda. Está compuesto por un imán permanente y un alma de hierro dulce con un bobinado de cobre (Fig. 1). El flujo magnético en el sensor cambia a medida que los dientes y espacios pasan frente a él y se genera un voltaje sinusoidal de CA cuya amplitud aumenta abruptamente como respuesta a la mayor velocidad del motor (cigüeñal). La amplitud requerida está disponible desde velocidades tan bajas como 50 rpm.

Page 32: Instructor Guide4kia

30

Sensor de temperatura del combustible

Sensor de temperatura del combustible

El sensor de temperatura del combustible se ubica en la línea de alimentación de combustible.

A medida que aumenta la temperatura del combustible, el ECM modificará la inyección y tasa de entrega, al mismo tiempo ajustará los parámetros de funcionamiento de la válvula de control de presión del riel.

Page 33: Instructor Guide4kia

31

Sensor de temperatura del refrigerante

Motor D Motor A

Sensor de temp. del refrigerante del motor

Los sensores de temperatura están instalados en diversos puntos:−En el circuito del refrigerante, para monitorear la temperatura del

motor, a través de la temperatura del refrigerante,−En el múltiple de admisión para medir la temperatura del aire de

admisión,−En el aceite lubricante del motor para medir la temperatura del

aceite, y−En la línea de retorno de combustible para medir la temperatura

del combustible.Los sensores están equipados con un resistor dependiente de temperatura con un coeficiente de temperatura negativo, que es parte de un circuito divisor de voltaje al que se aplican 5V.

Page 34: Instructor Guide4kia

32

Sensor de temperatura del refrigerante

Medidor del Calor

Tierra

Señal

Código

Descripción detallada

SíntomasCondición

de verificación

Combustib.= 0

Límite de Combust.

Motorfuncionando

Señal bajo el límite inferior (señal <225mV)

Señal sobre el límite superior (señal >4.9V)

La caída de voltaje en el resistor se ingresa al ECM mediante un convertidor análogo a digital y es una medición de la temperatura. Se almacena una curva característica en el microcomputador del ECM, el cual define la temperatura como una función del valor del voltaje dado.

Page 35: Instructor Guide4kia

33

Interruptor del embrague

•Cancelación del control de crucero

•Inminente señal de carga del motor (desembrague, enganche de primera marcha, retirada)

•Evitar el aumento brusco de las RPM del motor durante el cambio de marcha, el ECM ajusta el funcionamiento del inyector.

ECMInt. del embrague

Interruptor del embrague

El interruptor del embrague tiene las siguientes funciones.

• Cancelación del control de crucero

• Inminente señal de carga del motor (desembrague, enganche de primera marcha, retirada)

• Evitar el aumento brusco de las RPM del motor al desembragar durante el cambio de marcha, el ECM ajusta el funcionamiento del inyector.

Page 36: Instructor Guide4kia

34

Interruptor del freno

ECM

Luz de detención

Batería +Relé de Control Interruptor del freno

Interruptor del freno

El interruptor del freno tiene las siguientes funciones:

1. Circuito de la luz de advertencia del freno

2. Cancelación del control de crucero

3. Freno redundante

El circuito del freno redundante es activado cuando se presiona el acelerador y el pedal de freno al mismo tiempo. El ECM aplicará el modo a prueba de fallos, limitando la señal del acelerador y controlando el funcionamiento del inyector (modo en ralentí rápido), lo que permite que el motor gire a 1200 RPM sólo cuando se suelta el freno, la señal APS vuelve y se restablece el funcionamiento del inyector.

Esta operación es una transición suave sin tironeos.

NOTA.

Esto sólo se aplica cuando el vehículo se está moviendo (VSS). Para llevar a cabo las pruebas de ‘stall’ en la caja automática se aplican losprocedimientos normales.

Page 37: Instructor Guide4kia

35

ACTUADORESACTUADORES

Page 38: Instructor Guide4kia

36

Inyector

Inyector Inyector

Inyectores especiales con un sistema servo hidráulico y un elemento de activación eléctrica se utilizan con el sistema Common Rail para lograr eficiencia al comienzo de la inyección y dosificar la cantidad de combustible inyectado. Al comienzo de la inyección, se aplica una alta corriente al inyector, de manera que se abra rápidamente la válvula solenoide. Apenas la aguja de la boquilla haya recorrido su carrera completa, y la boquilla se haya abierto completamente, se reduce la corriente energizante a un valor de retención menor. La cantidad de combustible inyectado está ahora definido por el tiempo de apertura del inyector y la presión del riel. La inyección termina cuando la válvula solenoide ya no está activa y como resultado se cierra.

Page 39: Instructor Guide4kia

37

Inyector

Inyección Piloto Inyección Principal

Cuando ocurre una falla en dos o más inyectores al mismo tiempo el motor se detiene inmediatamente. Si el problema ocurre en un solo inyector, el ECM controla el volumen de combustible de inyección, dando como resultado un límite máximo de rpm de aproximadamente 2000 rpm.※ C018 causas posibles de problemas:

- Corto circuito de la línea lateral alta a B(+)- Corto circuito de la línea lateral baja a TIERRA- Problema de inyectores y voltaje del inyector (ECM lateral)

※ C019 causas posibles de problema : - Línea lateral alta rota/ línea lateral baja rota- resistencia de contacto- Problema de inyectores y voltaje del inyector (ECM lateral)

Page 40: Instructor Guide4kia

38

Válvula de control de presión del riel

CP1

La válvula de control de presión es responsable de mantener la presión en el riel a nivel constante. Este nivel es función de las condiciones de funcionamiento del motor. Si la presión de combustible es excesiva, se abre la válvula y el combustible se devuelve al tanque a través de la línea de retorno. Si la presión no es lo suficientemente elevada, se cierra la válvula y la bomba de alta presión aumenta la presión en el riel.

Page 41: Instructor Guide4kia

39

Funcionamiento de la válvula de control de presión del riel

La bola del asiento de la válvula está sujeta a la presión del acumulador de alta presión. Esta fuerza se yuxtapone al total de las fuerzas que actúan contra la bola desde el otro lado mediante el resorte y el electro imán. La fuerza generada es función de la corriente con la cual se activa. Por lo tanto, una variación en la corriente permite que la alta presión en el acumulador pueda ser fijada en un valor dado. La corriente variable se obtiene usando la modulación ancha de pulso (PWM)

Control modulado ancho de pulso con frecuencia 1.0 Khz.

Page 42: Instructor Guide4kia

40

Bomba de suministro previo (bomba de baja presión)

Bomba de suministro previo

Ubicada en el tanque de combustible

Bomba eléctrica

Entrada Salida

CP1

La bomba celular de rodillos es impulsada por un motor eléctrico. Su rotor está montado de manera excéntrica y está provisto de ranuras por las cuales circulan libremente rodillos móviles. El combustible fluye a través de la cavidad con forma de riñón en el lado de succión de la bomba y hacia la cámara entre la placa base y los rodillos. Puesto que los rodillos son forzados contra la placa base por la rotación y por la presión del combustible, el combustible es transportado a las aberturas de salida en el lado de presión de la bomba.

Page 43: Instructor Guide4kia

41

Bomba de suministro previo (bomba de baja presión)

CP3

Bomba de baja presión

Ubicada en la parte trasera de la bomba de alta presión

Bomba mecánica de engranajes

Bomba de baja presión

Bomba de combustible tipo engranaje (esquemática)

1 Fin de succión

2 engranaje impulsor

3 Fin de presión

En los automóviles de pasajeros, vehículos comerciales y vehículos todo terreno, se usa una bomba tipo engranaje para suministrar combustible a la bomba de alta presión de Common Rail. Está integrada a la bomba de alta presión con la cual comparte una propulsión común o está unida directamente al motor y tiene propulsión propia.Formas comunes de propulsión son los acoples, rueda dentada o correa dentada.Los componentes principales son dos engranajes de rotación opuesta que se entrecruzan mientras giran, con lo cual se atrapa el combustible en las cámaras formadas entre los dientes y la pared de la bomba, transportándolo hacia la salida (lado de presión).

Page 44: Instructor Guide4kia

42

Funcionamiento de bomba de suministro previo (bomba de baja presión)

Bomba de baja presión

La línea de contacto entre los engranajes que giran constituyen un sello entre los finales de la succión y presión de la bomba y evitan que el combustible se devuelva.El caudal que entrega la bomba de combustible tipo engranaje es prácticamente proporcional a la velocidad del motor. Es por esto que el caudal es reducido por una mariposa de succión en el lado de entrada (succión) o limitada por una válvula de rebalse en el lado de salida (presión).La bomba tipo engranaje no necesita mantenimiento. Para purgar el sistema de combustible antes de la primera partida, o cuando el tanque se ha “secado”, se puede instalar una bomba manual directamente en la bomba tipo engranaje o en las líneas de baja presión.

Page 45: Instructor Guide4kia

43

Recirculación de los gases de escape (EGR)

Relé Principal

MODULADOR DE VACIO

(PARA LA VÁLVULA EGR)

Con la Recirculación de los Gases de Escape (EGR) una parte de los gases de escape es derivada al ducto de admisión del motor. Hasta cierto grado, el alimentar una parte del contenido de los gases de escape residuales tiene un efecto positivo en la conservación de la energía y, por tanto, en las emisiones de los gases de escape.

De acuerdo con el punto de funcionamiento del motor, la masa de aire/gas entregada a los cilindros puede estar compuesta por hasta un 40% de gases de escape.

Para el control ECM, la masa real de aire fresco que ingresa se mide y se compara en cada punto de funcionamiento con el valor establecido de masa de aire. Con la señal generada por el circuito de control, la válvula solenoide de la EGR se hace funcionar, permitiendo que la EGR se abra por vacío.

Page 46: Instructor Guide4kia

44

Condición de funcionamiento de la EGRCondición de la EGR en OFF

• Menos de 650 RPM

• Falla del sensor de presión

• Falla del sensor de flujo de aire

• Falla de la EGR

• Batería bajo 9V

• Cantidad de Inyección sobre 42 mm³

• Motor sobre 3050 RPM

• Condición en ralentí (bajo 1000RPM por 52 segundos

• Temperatura del refrigerante

• Presión atmosférica (gran altitud)

Menor a 920 mbar OFF

Sobre 930 mbar ON

OFF

ON

20 25 100 105

(Pequeñas diferencias entre los modelos)

Page 47: Instructor Guide4kia

45

Bujía incandescente

Revisión de funcionamiento

Conectar la energía de la bateríadirectamente a la bujía incandescente

Las bujías incandescentes son responsables de asegurar la partida eficiente en frío, acortando el período de calentamiento, un hecho que es relevante para las emisiones de escape. El período de calentamiento previo depende del ECM y la temperatura del refrigerante, lo que controla el funcionamiento del relé de incandescencia. Las bujías pueden alcanzar 850°C dentro de pocos segundos.

Las fases siguientes de incandescencia durante la partida del motor o cuando el motor está funcionando, de hecho, están determinadas por un sinnúmero de parámetros que incluyen la velocidad del motor y cantidad de combustible inyectado. Con las temperaturas de las bujías incandescentes de entre 950°Cy 1050°C se reducen las emisiones de humo y ruido.

Page 48: Instructor Guide4kia

46

Pre incandescencia

Post incandescencia

Bujía incandescente

Bujía

Partida

Motor en Funcionamiento

Pre –incandescencia

Partida –incandescencia

Post –incandescencia

Temp. del refrigerante (Cº)

Tiempo Incandescencia (Seg)

Temp. del refrigerante (Cº)

Tiempo Incandescencia (Seg)

Pre incandescencia: La luz indicadora de la bujía incandescente sólo se enciende brevemente (función de auto test) cuando el contacto IG. está en condición ‘ON’. Otro caso de iluminación de luz de la bujía incandescente es cuando se configura el tipo de transmisión M/T o A/T en la ECM. Éste es un elemento de revisión.Incandescencia de partida: En caso de que el motor no partiera después de terminar la preincandescencia. Cuando el valor de la temperatura del refrigerante es menor a 60℃, el tiempo de incandescencia máximo dura 30 segundos. Si el valor de la temperatura del refrigerante alcanza 60℃ dentro de 30 Seg., se suspende la incandescencia de partida.Post incandescencia:Se activa en caso de que después de la partida las revoluciones del motor sean menos de 2500 y el volumen de combustible de inyección sea menor a 75cc/min.

Page 49: Instructor Guide4kia

47

El ECM controla una válvula solenoide (relación de trabajo) para efectuar un vacío en el actuador que a su vez está conectado a un varillaje que tira una placa base giratoria. Dentro de la placa base están conectadas las paletas mediante un mecanismo de levas a través del cual se establece el ángulo de inclinación de la paleta.

VGT (Turbo alimentador de geometría variable)

Bomba de Vacío

ECM Válvula Solenoide VGT

Actuador de Vacío

Paleta VGT

Page 50: Instructor Guide4kia

48

Válvula solenoide de la mariposa Válvula solenoide

del EGR

Válvula solenoide del VGT

ECMRelé de Control

Válvula solenoide del VGT

VGT (Turbo alimentador de geometría variable)

Page 51: Instructor Guide4kia

49

VGT (Turbo alimentador de geometría variable)

BPS (Sensor de presión de sobrealimentación) para el VGT

Monitorea la presión de sobrealimentación para controlar la paleta del VGT.

Servicio de la válvula de solenoide del VGT (en ralentí)

Voltaje de salida del BPS (en ralentí)5V

Tierra

Señal

BPSECM

Page 52: Instructor Guide4kia

50

Elementos AuxiliaresElementos Auxiliaresy y

PrecauciPrecaucióón de manipulacin de manipulacióónn

Page 53: Instructor Guide4kia

51

Pre-Calentador

Tres bujías incandescentes

Una unidad pre-calentadora se ubica entre la unidad de calefacción y el paso del refrigerante del motor. Esto sirve para aumentar la temperatura del refrigerante en el sistema de calefacción de manera que la calefacción del vehículo pueda ser activada lo antes posible. Tres bujías incandescentes son controladas por el ECM. Cada bujía tiene una capacidad de 300W respectivamente y en total son 900W.

Page 54: Instructor Guide4kia

52

Filtro del combustible

ENTRADA

SALIDA

Interruptor del Termo

Conector del elemento calentador

Válvula de alivio de presión RETORNO

filtro

Calentador del Filtro de Combustible

El elemento calentador del filtro de combustible se ubica entre la cabeza del filtro y el elemento del filtro.

El combustible que ingresa fluye a través del elemento calentador.

Mediante una señal del termo sensor, se enciende el calentador.

ON –3 ± 3°C OFF. 5 ± 3°C

Page 55: Instructor Guide4kia

53

Calentador del filtro de combustible

Filtro de combustible

Está compuesto de una caja plástica donde se mantienen separados dos discos metálicos de contacto mediante 4 semi conductores.

Finalmente una placa con resortes aplica presión para mantener el buen contacto.

A medida que se suministra corriente, los semiconductores se calientan, calentando, por tanto, el combustible diesel.

Page 56: Instructor Guide4kia

54

Nunca suelte las líneas de alta presión con el motor funcionando

Cómo sacar la línea de alta presión

Nunca suelte las líneas de alta presión con el motor funcionando (Por ejemplo, cuando encuentre un cilindro que no enciende)

La presión alta sólo se puede revisar mediante la lectura del voltaje del sensor de presión de riel.

El funcionamiento del Inyector / Cilindro se puede revisar al desconectar el conector eléctrico (uno por uno)

Nota: Después de ello borre cualquier DTC

Page 57: Instructor Guide4kia

55

Revisión de la presión del combustible y el funcionamiento del inyector

La presión alta sólo se puede revisar mediante la lectura del

voltaje del sensor de la presión del riel.

La presión alta sólo se puede revisar mediante la lectura del voltaje del sensor de presión del riel.

Precauciones

Precauciones

La presión alta sólo se puede revisar mediante la lectura del voltaje del sensorde presión del riel.

El funcionamiento del inyector se puede revisar al desconectar el conector eléctrico

Page 58: Instructor Guide4kia

56

T40 Torx (torque: 2.7±0.2 kgm)

Tapón de cierre

Cerrar

Abrir

Inyector

Cómo sacar e instalar los inyectores

Extracción 1) Desconectar el terminal (-) de la batería2) Sacar el conector eléctrico del inyector.3) Soltar la línea alta presión en el riel y del inyector.4) Presionar hacia adentro con la mano la abrazadera del riel de la línea de

retorno y tirar hacia afuera el riel de línea de retorno.5) Sacar la tapa de la cubierta del motor y soltar el perno de bloqueo y la

abrazadera deslizante y tire hacia afuera el inyector.Al sacar los inyectores,

6) Sacar el anillo de estanqueidad de cobre.

Page 59: Instructor Guide4kia

57

Cómo sacar e instalar los inyectores

Inyector

Inyector

Inyector

Antes de volver a instalar el inyector, limpiar el alojamiento interior en la culata y la superficie de sellado.1) Insertar una escobilla.2) Limpiar la superficie de sellado y soplar.

Instalación1) Insertar un nuevo anillo de estanquidad de cobre (si es necesario, aplicar una pequeña cantidad de

grasa para unirlo al inyector).2) Insertar el inyector (no tocar la punta de la boquilla) y la abrazadera deslizante con el perno de bloqueo.3) Ajustar la tubería del inyector (Apretar las tuercas sólo con los dedos)3) Perno de bloqueo del inyector (torque: 2.7±0.2 kgm)

* Si el inyector está demasiado suelto, el cilindro puede perder presión, * si el inyector está demasiado apretado, puede tener como resultado apretar la aguja, lo que produce

detonación o que el cilindro no encienda. 4) Instalar las líneas de alta presión

( 3.3±0.2 kgm – Recientemente revisado el 11 de junio de 2002)(Especificación antigua: torque : 2.7±0.2 kgm)

* las líneas de alta presión se deben instalar sin tensión5) Unir el riel de línea de retorno. Nunca calzar sin abrazadera.6) Tirarla un poco para revisar instalación.7) Unir el conector eléctrico.8) Volver a conectar el terminal negativo de la batería.9) Hacer partir el motor y revisar si hay fugas en el circuito de alta presión.

Leer la memoria de fallas y cancelar

Page 60: Instructor Guide4kia

58

Manipulación del inyector

Los inyectores tienen boquillas atomizadoras con 5 orificios de “mini-sac”, el diámetro interior es tan pequeño que se realiza mediante un proceso de fabricación EDM (maquinado por descarga eléctrica)

La revisión de las boquillas del inyector para comprobar el patrón de atomización y la cantidad de entrega de combustible debe llevarse a cabo sólo en un taller de Bosch

No desmantelar la boquilla del inyector y eje de agujas

Riesgo de daños

Sólo servicios especializados Bosch

Page 61: Instructor Guide4kia

59

DOC (Catalizador de oxidación de Diesel)

Similar en diseño a la versión de gasolina, es decir, el Monolito es envuelto en una esterilla (malla), para evitar roturas por impactos, etc.

El catalizador de oxidación no tiene sensor de oxígeno y los metales preciosos son diferentes.

En este tipo de catalizadores se usan aproximadamente 4.5 – 5.0 gramos de Platino para cambiar el estado de hidrocarburos (HC) y monóxido de carbono (CO) a agua y anhídrido carbónico. Además se reduce cierta cantidad de óxido de nitrógeno (NOX).

Como resultado también se reduce el nivel de partículas de hollín.