MATEMATICAS · Web viewTeorema 1.2 Si f es una función diferenciable de x e y, la derivada...

122
MATEMATICAS A. Matemáticas básicas I. Cálculo 1. Diferencial en una variable Derivada de una función de una variable Definición.- Sea f(x) una función continua en el punto x=a. La derivada de f(x), respecto a x, en el punto x=a, que representaremos con el símbolo Df(a), es el lim f(a+ x)- f(a) x0 x Definición.- Sea f una función definida en un intervalo abierto que contiene a a. Entonces la pendiente m de la recta tangente a la gráfica de f en el punto P(a,f(a)) está dada por m =lim f(a+h)-f(a ) h0 h siempre y cuando este limite exista. Definición.- Sea f una función definida en un intervalo abierto que contiene a a. Entonces la derivada de f en , denotada por f’(a), está dada por f’(a)=lim f(a+h)-f(a) ho h Reglas para encontrar derivadas 1. d dx 2. d (c) = 0 (x)

Transcript of MATEMATICAS · Web viewTeorema 1.2 Si f es una función diferenciable de x e y, la derivada...

MATEMATICAS

MATEMATICAS

A. Matemáticas básicas

I. Cálculo

1. Diferencial en una variable

( Derivada de una función de una variable

Definición.- Sea f(x) una función continua en el punto x=a. La derivada de f(x),

respecto a x, en el punto x=a, que representaremos con el símbolo

Df(a), es el

lim f(a+(x)-f(a)

(x(0 (x

Definición.- Sea f una función definida en un intervalo abierto que contiene a a.

Entonces la pendiente m de la recta tangente a la gráfica de f en el

punto P(a,f(a)) está dada por

m =lim f(a+h)-f(a)

h(0 h

siempre y cuando este limite exista.

Definición.- Sea f una función definida en un intervalo abierto que contiene a a.

Entonces la derivada de f en (, denotada por f’(a), está dada por

f’(a)=lim f(a+h)-f(a)

h(o h

Reglas para encontrar derivadas

1. d

dx

2. d

dx

3. d d d

dx dx dx

4. d d

dx dx

5. d d d

dx dx dx

6. d d d d

dx dx dx dx

7. d u = 1(d

dx c c dx

d c d 1 c ( d

dx u dx u u2 dx

d u d d

dx v dx dx

v2

d

dx

d d

dx dx

Ejemplos:

Encuentre la pendiente de la recta tangente a la gráfica de f en el punto P(a, f(a)).

1. f(x)=2-x3

=d (2)- d (x3)

dx dx

= 0- 3x2 = -3x2

2. f(x)=3x-5

=3 d (x)- d (5)

dx dx

= 3(1) – 0 = 3

3. f(x)= ( x +1

= 1 (x)-1/2 d (x) + d (1)

2 dx dx

= 1 (x) –1/2

2

= 1

2 (x

4. f(x)= 1- 1

x

=d (1/x) – d (1)

dx dx

=x d (1) – (1)d (x) - 0

dx dx

x2

= - 1

x2

La posición de un punto P moviéndose sobre una recta coordenada l está dada por f(t) donde t está medido en segundos y f(t) en centímetros.

Encuentre la velocidad media de P en el siguiente intervalo de tiempo:

f(t)= 4t2 + 3t en el intervalo (1,1.2)

= 4 d (t2) + 3 d (t)

dx dx

= 4(2t) + 3(1)

= 8t + 3

Sumando los puntos del intervalo y dividiendo entre 2

1+1.2 = 1.1

2

Sustituyendo en la derivada resultante

=8(1.1) + 3

=11.8

Hallar f’(x)

f(x)=(3x+1 = (3x+1)1/2

f’(x)= 1 (3x+1)-1/2 d (3x+1)

2 dx

= 1 (3x+1)-1/2 (3)

2

= 3

2(3x+1

Derivar las siguientes funciones:

1. g(w)= 1

w4

=w4 (0) –1(4w3)

(w4)2

= -4w3 = -4w3-8 = -4w-5

w8

2. g(x) = (x3-7)(2x2+3)

= (x3-7) d (2x2+3)+(2x2+3) d (x3-7)

dx dx

= (x3-7)(4x)+(2x2+3)(3x2)

= 4x4-28x+6x4+9x2

= 10x4+9x2-28x

3. f(x)= 4x-5

3x+2

(3x+2)d (4x-5) – (4x-5)d (3x+2)

dx dx

(3x+2)2

(3x+2)(4)-(4x-5)(3)

(3x+2)2

12x+8-12x+15 23

(3x+2)2 (3x+2)2

4. 8-z+3z2

2-9z

(2-9z)d (8-z+3z2)-(8-z+3z2)d (2-9z)

dx dx

(2-9z)2

(2-9z)(-1+6z)-(8-z+3z2)(-9)

(2-9z)2

(-2+12z+9z-54z2)-(-72+9z-27z2)

(2-9z)2

-2+12z+9z-54z2+72-9z+27z2

(2-9z)2

-27z2+12z+70

(2-9z)2

Usar (y = f(x2)-f(x1) = f(x1+(x)-f(x1) para encontrar (y usando los valores iniciales de x y (x indicados.

1. y =2x2-4x+5, x=2, (x=-0.2

= f(1.8)-f(2)

= {2(1.8)2-4(1.8)+5} – {2(2)2-4(2)+5}

= (6.48-7.2+5)-(8-8+5)

= 4.28-5

= -0.72

2. y = 1/x2, x=3, (x=0.3

= f(3.3)-f(3)

1 1

(3.3)2 (3)2

1 1

10.89 9

= -0.0192837

Derivar las funciones definidas.

1. f(x) = (x2-3x+8)3

3(x2-3x+8)2 d (x2-3x+8)

dx

= 3(x2-3x+8)2 (2x-3)

2. g(x) = (8x-7)-5

-5(8x-7)-6 d (8x-7)

dx

= -5(8x-7)-6 (8)

= -40(8x-7)-6

3. x

(x2-1)4

(x2-1)4 d (x) – x d (x2-1)4

dx dx

((x2-1)4)2

((x2-1)4 (1)) – ((x) ((4 (x2-1)3 (2x)))

((x2-1)4)2

((x2-1)4 (1)) – (x (8x (x2-1)3 )

((x2-1)4)2

(x2-1)4 – 8x2 (x2-1)3 )

(x2-1)8

-7x2(x2-1)3

(x2-1)8

1 6

4. g(z) = z2 –

z2

1 5 1

= 6 z2 – z2 -

z2 z2

1 5 ((z2)(0)-(1)(2z))

= 6 z2 – 2z-

z2 (z2)2

1 5 2z

= 6 z2 – 2z +

z2 z4

1 5 2

= 6 z2 – 2z +

z2 z3

4. (u2+1)3

(4u-5)5

3 20

= u2+1 - + (4u-5)-5 (6u(u2+1)2)

(4u-5)6

-20(u2+1)3

(4u-5)6

-20(u2+1)3 + 6u(4u-5)-5 (u2+1)2 (4u-5)6

(4u-5)6

-20(u2+1)3 + 6u(4u-5) (u2+1)2

(4u-5)6

-20(u2+1)3 6u (4u-5)(u2+1)2

(4u-5)6 (4u-5)6

-20(u2+1)3 6u (u2+1)2

(4u-5)6 (4u-5)6

-20(u2+1)3 + 6u (u2+1)2 (4u-5)

(4u-5)6

(u2+1)2[-20(u2+1)+6u (4u-5) ]

(4u-5)6

(u2+1)2 [-20u2-20+24u2-30u]

(4u-5)6

(u2+1)2 [4u2-30u-20]

(4u-5)6

Encontrar al menos una función implícita f determinada por la ecuación dada.

3x-2y+4 = 2x2+3y-7x

-2y-3y = 2x2-7x-3x-4

-5y = 2x2 – 10x –4

2x2 10x 4

-5 -5 -5

2x2 4

-5 -5

Derive la función definida

1. f(x) = 3(x2 + 4(x3

= x2/3 + 4x3/2

2 3 3

3 2

2

3

2

3

2. k(r) = 3(8r3 + 27

= (8r3 + 27)1/3 ( 3(8r2)

1

3

24

3

= 8r2 (8r3 + 27)-2/3

( Máximos y mínimos de una función de una variable

Si la función es creciente a la izquierda del punto, y de creciente a la

derecha, lo llamaremos máximo. Si a la izquierda del punto la función es

decreciente y a la derecha creciente, diremos que se trata de un mínimo.

Definición.- Sea f(x) con primera derivada y segunda derivada alrededor de un

punto x0. Diremos que hay un máximo en x0, si f’(x0) = 0 y si f’’(x0)

< 0.

Definición.- Sea f(x) con primera y segunda derivada alrededor de un punto x0,

se dice que en x0 hay un mínimo si f’(x) = 0 y si f’’ (x) > 0.

Ejemplos:

1. f(x) = 3x3 + 2x – 1

f’(x) = 9x2 + 2

f’’(x) = 18x

( Problemas que requieren el concepto de la diferencial.

Definición.- Sea y = f(x) donde f es derivable y sea (x un incremento de x.

Entonces

(i) la diferencial dy de la variable dependiente y está dada por

dy = f’(x) (x.

(ii) la diferencial dx de la variable independiente x está dada por

dx = (x.

Definición.- Sea w = f(x, y). Las diferenciales dx y dy de las variables

independientes x y y se definen como

dx = (x y dy = (y,

donde (x y (y son incrementos de x y y. La diferencial dw de la

variable dependiente w se define por medio de

(w (w

(x (y

Definición.- Sea w = f(x, y). Decimos que f es diferenciable o que tiene una

diferencial en (x0, y0) si (w se puede expresar en la forma

(w = fx(x0, y0) (x + fy(x0, y0) (y + (1 (x + (2 (y

donde (1 y (2 tienden a cero cuando ((x, (y)( (0, 0).

Use diferenciales para estimar el cambio en f(x, y, z) = x2z3 – 3yz2 + x-3 + 2y1/2z cuando (x, y, z) cambia de (1, 4, 2) a (1.02, 3.97, 1.96).

= (2xz3 + (-3x-4)) dx + (-3z2 + y-1/2z) dy + (x23z2 + (-3y2z)+ 2y1/2) dz

x1 = 1 y1 = 4 z1 = 2

x2 = 1.02 y2 = 3.97 z2 = 1.96

(x = 1.02 – 1 (y = 3.97 – 4 (z = 1.96 – 2

dx = (x = 0.02 dy = (y = -0.03 dz = (z = - 0.04

= (2(1)(2)3+(-3(1)-4)) (.02) + (-3(2)2 + 4-1/2 (2)) (-0.03) + ((1)2 3(2)2 + (-3 (4)(2(2)) + 2

(4)1/2) (-0.04)

= (2(8)+ (-3)) (0.02) + (-3(4) + (.5)(2)) (-0.03) + ((1)(12)+(-12)(4)+2(2)) (-0.04)

= (16-3)(0.02)+ (-12+1) (-0.03) + (12+(-48)+4) (-0.04)

= (13)(0.02)+(-11)(-0.03) + (-32) (-0.04)

= 0.26 + 0.33 + 1.28

= 1.87

Use diferenciales para estimar el cambio en f(x, y) = x2 – 3x3y2 + 4x - 2y3 + 6 cuando (x, y) cambia de (-2, 3) a (-2.02, 3.01).

= (2x + 9x2y2 +4) dx + (-3x3 2y – 6y2) dy

= (2x + 9x2y2 +4) dx – (6x3y – 6y2) dy

x1 = -2 y1 = 3

x2 = -2.02 y2 = 3.01

(x = -2.02 – (-2) (y = 3.01-3

(x = -2.02 +2 (y = 0.01

dx = (x = -0.02 dy =(y = 0.01

= (2(-2) + 9(-2)2 (3)2 + 4) (-4.02) + (-6(-2)3 (3) – 6(3)2) (0.01)

= (-4 - 324 + 4 ) (-0.02) + (144 - 54)(0.01)

= (-324) (-0.02) + (90) (0.01)

= 6.48 + 0.9

= 7.38

Encuentre dw.

1. w = x3 – x2y + 3y2

(w (w

(x (x (y

= (3x2 – 2xy) dx + (x2 + 6y) dy

2. w = x2 sen y + 2y3/2

(w (w

(x (y

= (2x sen y) dx + x2 (sen y) + sen y (x2) + 2 3 -1/2

2

= (2x sen y) dx + (x2 cosy + 3y1/2) dy

3. w = x2 exy + (1/y2)

( ( ( ( (

(x (x (x (y (y

(

(y

= x2(xexy) + exy (2x) + 0 + x2 (yexy) + exy(0) + y2 (1) (– 1) (y2)

y4

-2y

= x3exy + 2xexy + x2yexy +

y4

2

= x3exy + 2xexy + x2yexy –

y3

= x3exy + 2xexy + x2yexy – 2y-3

= exy (x2y + 2x) dx + (x3 exy – 2y-3) dy

4. w = x2 ln (y2 + z2)

=x2 ln (y2+z2)+ln (y2+z2) (x2)+x2 ln (y2+z2)+ln (y2+z2) (x2)

+ x2 ln (y2+z2) + ln (y2 + z2) (x2)

1 ( 1 (

= ln (y2 + z2)(2x) + x2 ln y2 + z2 +x2 ln y2+z2

y2+z2 (y y2 + z2 (z

1 1

= 2x ln (y2 + z2) + x2 (2y) dy +x2 (2z) dz

y2+z2 y2 + z2

2y 2z

= 2x ln (y2 + z2)dx + x2 dy + x2 dz

y2+z2 y2 + z2

2x2y 2x2z

= 2x ln (y2 + z2)dx + dy + dz

y2+z2 y2 + z2

2. Cálculo integral en una variable

( Problemas aplicando el concepto de integral

Definición.- Sea f una función definida en un intervalo cerrado [a, b]. La

integral definida de f desde a hasta b denotada por (b f(x) dx,

a

está dada por

(b f(x) dx = lim ( f(wi) (xi

a ||p||(0 i

siempre que el límite exista.

Ejemplos:

2

1. (-3

2

= (-3

2

= (-3

x1+1 2 2

= 2 + 6x

1+1 -3 -3

x2 2 2

= 2 + 6x

2 -3 -3

2 2

= x2 + 6x

-3 -3

= {(2)2 – (-3)2} + {(6)2 – 6(-3)}

= 4-9+12+18 = 25

2. (3 ( 9-x2 dx

0

1 1 x

2 2 3

1 9 x

2 2 3

1 9 3 1 9 0

2 2 3 2 2 3

9

2

(

9 (

2 2

9(

4

3. Cálculo de varias variables

( Gradiante de una función

Definición.- Si f es una función de dos variables, entonces el gradiante de f se

define como

(f (x, y) = = fx(x, y)i + fy(x, y)j.

DIVERGENCIA

Supongamos (Fig.3) un punto P dentro de un pequeño volumen ( v limitado a su vez por una superficie s. En este caso el volumen es un prisma recto de aristas ( x, ( y y ( z, paralelas a los ejes x, y, y z respectivamente. Todo ello en un espacio en el que se supone que existe un campo vectorial F. El flujo del campo F a través de la superficie s es, como hemos visto en (5.9),

por ( v, tendríamos el flujo por unidad de volumen: . Se denomina divergencia de F (div F) al límite, cuando (v tiende a cero, de esta última expresión.

div F = (5.17)

Vamos a encontrar otra expresión de la divergencia en el sistema de coordenadas más frecuentemente utilizado (coordenadas cartesianas). El fujo de F a través de las 6 caras del cubo será la suma de los flujos a través de cada una de dichas caras. Así, a través de la cara A paralela al plano yz, el flujo valdrá:

( A = Fx

y a través de la cara opuesta a la A:

( A’ = - Fx

Desarrollando en serie de Taylor (Fx (x+ x/2, y, z) y Fx x/2, y, z) tendríamos:

( A =

( A’ =

donde con los puntos suspensivos queremos indicar los términos del desarrollo x)(con (2 x)(, (3, etc ..... Pero como vamos a hacer z, esos términos serán( y y ( x, ( v y por lo tanto (tender a cero despreciables frente al primero. Luego ( A +(A’

=

Con un razonamiento idéntico para las caras paralelas a xz y a xy tendremos que

( B +(B’ =

( C + ( C’ =

Como = ( A + (A’ +( B + ( B’ +( C + ( C’, nos queda finalmente:

div F = ; div F = (5.18)

Si utilizamos coordenadas cilíndricas,

div F = (5.19)

Y en coordenadas esféricas:

div F = (5.20)

ROTACIONAL DE UN CAMPO VECTORIAL

Hemos definido anteriormente (5.8) el concepto de circulación de un campo vectorial F a lo largo de una trayectoria (abierta o cerrada). También hemos visto que si c es una curva cerrada:

= 0 para F conservativo y 0 para F no conservativo

Cuando un depósito lleno (una bañera, por ejemplo) está vaciándose a través de un desagüe, alrededor de éste se forman remolinos que son una imagen muy intuitiva de la circulación del vector velocidad. El desagüe sería la ‘fuente’ de la circulación, la causa de la ‘rotación’ a su alrededor, una imagen intuitiva de lo que vamos a definir en seguida como rotacional.

Supongamos un punto P0 en el espacio en el que está definido un campo vectorial F. Alrededor de este punto imaginamos una curva cerrada y plana C, que limita una superficie pequeña S que incluye al punto P0. La circulación de F alrededor de la curva C dependerá de la orientación de esta. Supongamos que hemos escogido la orientación en la que el valor de dicha circulación es máximo. "Se llama rotacional de F en el punto P0 al valor cuando s tiende a cero de un vector perpendicular a la superficie S; sentido determinado por la regla del sacacorchos o de la mano derecha, y cuyo módulo es: ".

Lo escribimos así:

rot F= (5.21)

Siendo an un vector unitario en la dirección perpendicular a la superficie s. Naturalmente si F fuera un campo conservativo, el rot F será el vector nulo.

ROTACIONAL EN COORDENADAS CARTESIANAS.

Vamos a determinar la componente x del rot F usando coordenadas cartesianas. En Fig. 4 - a:

(rot F)x = (5.22)

La circulación C1 en el lado 1 será:

C1 = , y desarrollando en serie de

Taylor, = ; pero

como y 0, los términos representados por los puntos suspensivos pueden despreciarse. Luego,

C1 =

Pero la circulación en el lado opuesto 3 será lógicamente,

C3 = , y desarrollando como antes en serie de Taylor, nos quedará:

C3 =

Y sumando C1 + C3 :

C1 + C3 = (5.23)

De la misma manera, calcularíamos las circulaciones de F en los lados 2 y 4 y nos quedaría:

C2 + C4 = - (5.24)

Finalmente

C1 + C3 +C2 + C4 = =

; y por lo tanto,

(rot F)x = (5.25)

Repitiendo el razonamiento anterior en las Fig. 4 - b y 4 - c, determinaríamos las otras dos componentes del rot F en coordenadas cartesianas:

(rot F)y = ; (rot F)z = (5.26)

rot F =i +j +k (5.27)+

Puede escribirse un determinante de tercer orden cuyo desarrollo sea el rotacional cartesiano de A.

z

y

x

z

y

x

A

A

A

z

y

x

a

a

a

A

rotacional

=

Los elementos de la segunda fila son los componentes del operador nabla. Esto sugiere que el rotacional A se puede escribir como . Como con otras expresiones del análisis vectorial, esta conveniente notación se usa para rotacional A en otros sistemas coordenados aunque solo está definido en el cartesiano.

Las expresiones para el rotacional A en coordenadas cilíndricas y esféricas pueden derivarse en la misma forma antes mencionada, aunque con más dificultad.

z

r

r

z

r

r

z

a

A

r

rA

r

a

r

A

z

A

a

z

A

r

A

A

rotacional

ú

û

ù

ê

ë

é

-

+

÷

ø

ö

ç

è

æ

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

=

f

f

f

f

)

(

1

1

(Cilíndrico)

f

q

f

f

f

f

f

q

q

q

q

a

A

r

rA

r

a

r

rA

A

sen

r

a

z

A

sen

A

rsen

A

rotacional

r

r

r

r

ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

+

ú

û

ù

ê

ë

é

-

=

)

(

1

)

(

1

1

)

(

1

(Esférica)

Dos propiedades del operador rotacional frecuentemente útiles son:

(1) la divergencia de un rotacional es cero. Esto es:

(

)

0

=

A

´

Ñ

×

Ñ

Para cualquier campo vectorial A.

(2) el rotacional de un ardiente es cero. Esto es :

(

)

0

=

Ñ

´

Ñ

´

Ñ

f

Para cualquier función escalar de posición ƒ

( Derivada direccional de una función

Definición.- Si f es una función de x y y y u = es un vector

unitario, entonces la derivada direccional de f en la dirección de

u, denotada por Du f(x, y), está dada por

Du f(x, y) =

“MAXIMOS Y MINIMOS DE FUNCIONES DE DOS VARIABLES”. Gradiente

La derivada direccional Duf(x,y) puede expresarse como el producto escalar del vector unitario

y el vector

Este vector es importante y tiene usos diversos. Lo llamamos vector gradiente de f.

Definición 1.2

Si z=f(x,y), entonces el gradiente de f, que se denota mediante , es el vector

Otra notación para el gradiente es grad f(x,y)

Puesto que el gradiente de f es un vector, podemos escribir la derivada direccional de f en la dirección de u como

En otras palabras, la derivada direccional es el producto escalar del gradiente por el vector dirección. Este importante resultado constituye el contenido del siguiente teorema.

Teorema 1.2 Si f es una función diferenciable de x e y, la derivada direccional de f en la dirección del vector unitario u es

Ejemplo 1.3

Calcular la derivada direccional de en (-1,3) en la dirección que va desde P(-1,3) a Q(1,-2)

Solución

Un vector en la dirección especificada es

y un vector unitario en esta dirección es

Como , el gradiente (-1,3) es

En consecuencia, en (-1,3) la derivada direccional es

Ya hemos visto que hay muchas derivadas direccionales en el punto (x,y) de una superficie. En muchas aplicaciones nos gustaría conocer en qué dirección movernos para que f(x,y) crezca lo más rápidamente posible. Llamamos a esta dirección de máxima pendiente, y viene dada por el gradiente, como se establece en el teorema 1.3.

Aplicaciones del gradiente

Teorema 1.3

Si f es una función diferenciable en el punto (x,y)

1) Si , entonces para todo u.

2) La dirección de máximo crecimiento de f viene dada por . El valor máximo de es .

3) La dirección de mínimo crecimiento de f viene dada por - . El valor mínimo de es -

Para visualizar una de las propiedades del gradiente, consideremos un esquiador descendiendo una de las laderas de una montaña. Si f(x,y) denota la altitud del esquiador, entonces - indica la dirección que el esquiador debe adoptar para deslizarse por la trayectoria de máxima pendiente (Recordemos que el gradiente indica dirección en el plano xy y por si mismo no señala hacia arriba o hacia abajo en la ladera de la montaña).

Como ilustración alternativa del gradiente consideremos la temperatura T(x,y) en un punto (x,y) cualqueira de una placa metálica plana. En este caso, grad T da la dirección de máximo crecimiento de la temperatura en el punto (x,y), como se señala en el ejemplo 1.4.

Ejemplo 1.4

La temperatura, en grados Celsius, sobre la superficie de una placa metálica viene dada por

midiendo x e y en centímetros. Desde el punto (2,-3), ¿en qué dirección crece la temperatura más rápidamente?. ¿A qué ritmo se produce este crecimiento?

Solución

El gradiente es

Se sigue que la dirección de más rápido crecimiento viene dada por

como se muestra en la figura 5.5, y que la razón de crecimiento espor centímetro

Curvas de nivel

figura 1.5

Dirección de más rápido crecimiento en (2,-3)

La solución que se presenta en el ejemplo 1.4 puede resultar engañosa. A pesar de que el gradiente apunta en la dirección de crecimiento más rápido de la temperatura, no necesariamente apunta hacia el lugar más caliente de la placa. En otras palabras, el gradiente proporciona una solución local al problema de encontrar un crecimiento relativo a la temperatura en el punto (2, -3). Una vez que abandonamos esa posición, la dirección de más rápido crecimiento puede cambiar.

Ejemplo 1.5

Una partícula rastreadora de calor está situada en el punto (2,-3) de una placa metálica cuya temperatura en (x,y) es . Encontrar la trayectoria de la partícula al moverse de forma continua en la dirección de más rápido crecimiento de la tempertatura.

Solución

Representaremos la trayectoria por la función posición

Un vector tangente en cada punto (x(t),y(t)) viene dado por

Puesto que la partícula busca el crecimiento más rápido de temperatura, la dirección de

son las mismas en cada punto de la trayectoria. Luego

Estas ecuaciones diferenciales representan un crecimiento exponencial y las soluciones son

Como la partícula parte de (2,-3) se sigue que 2=x(0)=C1 y -3=y(0)=C2. Luego la trayectoria se representa mediante

Eliminando el parámetro t, obtenemos

Mostramos esta trayectoria en la figura 1.6.

figura 1.6

Camino seguido por una partícula que va hacia el calor

En la figura 1.6, la trayectoria de la partícula (determinada por el gradiente en cada punto) aparece como ortogonal a cada una de las curvas de nivel. Esto se clarifica cuando consideramos el hecho de que la temperatura T(x,y) es constante sobre una curva, de nivel dada. Luego en un punto arbitario (x,y) de la curva, la razón de cambio de T en la dirección de un vector tangente unitario u es 0, y podemos escribir

u es un vector tangente unitario. Puesto que el producto escalar de y u es cero, deben ser ortogonales. Este resultado se anuncia en el siguiente teorema:

Teorema 1.4

Si f es diferenciable en (x0,y0) y , entonces es

normal a la curva de nivel que pasa por (x0,y0).

Ejemplo 1.6

Dibujar la curva de nivel correspondiente a c=0 para la función y encontrar vectores normales en diferentes puntos de la curva.

Solución

La curva de nivel para c=0 viene dada por

como se indica en la figura 1.7. Como el vector gradiente de f en (x,y) es

figura 1.7

El gradiente es normal a la curva de nivel

podemos utilizar el teorema 1.4 para concluir que es normal a la curva de nivel en el punto (x,y). Algunos vectores gradientes son

Maximos y minimos en funciones de varias variables

Teorema 2.1

Sea f una función continua de dos variables x e y definida en una región acotada cerrada R del plano xy.

Al menos hay un punto en R en el que f adquiere su valor mínimo.

Al menos hay un punto en R en el que f adquiere su valor máximo.

Definición 2.1

Sea f una función definida en una región R conteniendo el punto (x0,y0)

f(x0,y0) es un mínimo relativo de f si para todo (x,y) en un disco abierto que contiene a (x0,y0).

f(x0,y0) es un máximo relativo de f si para todo (x,y) en un disco abierto que contiene a (x0,y0).

Decir que z0=f(x0,y0) es un máximo relativo de f significa que el punto (x0,y0,z0) es al menos tan alto como los puntos de su entorno en la gráfica de z=f(x,y). De forma similar, z0=f(x0,y0) es un mínimo relativo de f si (x0,y0,z0) está al menos tan bajo como los puntos de su entorno en la gráfica.

Para localizar extremos relativos de f, investigaremos los puntos en que su gradiente es cero o no está definido. Llamaremos a tales puntos puntos críticos de f.

Definición 2.2

Sea f definida en una región abierta R conteniendo (x0,y0). Decimos que (x0,y0) es un punto crítico de f si se verifica una de las siguientes afirmaciones:

Recordemos del teorema 1.3 que si f es diferenciable y

entonces toda derivada direccional en (x0,y0) ha de ser cero. Eso implica que la función tiene un plano tangente horizontal en el punto (x0,y0) como se ilustra en las figuras 2.3 y 2.4. Es evidente que ese punto es candidato a que haya en el un extremo relativo.

figura 2.3

Máximo relativo

figura 2.4

Mínimo relativo

Teorema 2.2

Si f(x0,y0) es un extremo realtivo de f en una región abierta R, entonces (x0,y0) es un punto crítico de f.

Ejemplo 2.1

Determinar los extremos relativos de

Solución

Comenzamos buscando los puntos críticos de f. Como

se hallan definidas para todo x e y, los únicos puntos críticos son aquellos en que se anulan ambas derivadas parciales primeras. Para localizar estos puntos, anulamos fx y fy, y resolvemos el sistema de ecuaciones

4x+8=0 y 2y-6=0

para obtener el punto crítico (-2,3). Completando cuadrados, podemos concluir que para todo (x,y) distinto de (-2,3),

Por lo tanto, hay un mínimo relativo de f en (-2,3). El valor del mínimo relativo es f(-2,3)=3, como se ve en la figura 2.5.

figura 2.5

El ejemplo 2.1 nos muestra un mínimo relativo para un tipo de punto crítico -aquel en que ambas derivadas parciales primeras son nulas-. En el ejemplo 2.2 nos fijamos en un máximo relativo que ocurre en el otro tipo de punto crítico -aquel para el que las derivadas parciales primeras no existen-.

Ejemplo 2.2

Determinar los extremos relativos de

Solución

Como

vemos que ambas derivadas parciales están definidas en todo el plano xy, excepto en (0,0). Además, este es el único punto crítico, ya que las derivadas parciales no pueden anularse simultáneamente salvo que x e y sean nulos. En la figura 2.6 vemos que f(0,0)=1. Para cualquier otro (x,y) está claro que< 1

Luego, f(0,0) es un máximo relativo de f.

figura 2.6

fx y fy no están definidas en (0,0)

En este ejemplo, fx(x,y)=0 para todo punto del eje y, excepto (0,0). Sin embargo, como fy(x,y) no es nula, estos puntos no son puntos críticos. Recordemos que una de las derivadas parciales debe no estar definida o ambas deben anularse en caso de conducir a un punto crítico.

El teorema 2.2 nos dice que para encontrar los extremos relativos necesitamos solamente examinar valores de f(x,y) en puntos críticos. Sin embargo, al igual que se cumple para una función de una variable, los puntos críticos de una función de dos variables no siempre nos conduce a máximos o mínimos relativos. Algunos puntos críticos conducen a puntos de silla, que no son ni máximos ni mínimos relativos. Por ejemplo, el punto de silla que se muestra en la figura 2.7 no es un extremo relativo, ya que en un disco abierto centrado en el (0,0) la función toma ambos, valores negativos (sobre el eje x) y valores positivos (sobre el eje y).

figura 2.7

Punto de silla en (0,0,0): fx(0,0=fy(0,0)=0

Para las funciones de los ejemplos 2.1 y 2.2, es relativamente fácil determinar los extremos relativos, ya que cada función fue, o bien dada o susceptible de escribirse en forma de cuadrados perfectos. Para funciones más complicadas, los argumentos algebraicos no son tan útiles, y dependemos de los medios más analíticos que se introducen en el siguiente criterio de las derivadas parciales segundas. Este es el criterio que en dos variables corresponde al criterio de la segunda derivada para funciones de una variable.

( Derivadas de funciones vectoriales

Definición.- Una función vectorial r es continua en a si lim r(t) = r (a)

t(a

Definición.- Si r es una función vectorial, entonces la derivada de r es la

función vectorial r’ definida por

r’(t) = [r(t + (t) – r(t)]

para todo t para el cual el límite existe.

4. Ecuaciones diferenciales

Si una ecuación contiene las derivadas diferenciales de una o más variables

dependientes con respecto a una o más variables independientes, se dice

que es una ecuación diferencial. Las ecuaciones diferenciales se clasifican de

acuerdo con las propiedades siguientes:

Clasificación según el tipo

Si una ecuación contiene solo derivadas ordinarias de una o más variables

dependientes con respecto a una sola variable independiente, se dice

entonces que una ecuación diferencial ordinaria.

Ejemplo:

Las ecuaciones dy

dx

(x+y) dx – 4y dy = 0,

du du

dx dx

d2y dy

dx2 dx

son ecuaciones diferenciales ordinarias

Una ecuación que contiene las derivadas parciales de una o más variables

dependientes de dos o más variables independientes se llama ecuación

diferencial parcial.

Ejemplo:

Las ecuaciones

(u (v

(y (x

(u (v

(y (x

(2u

(x(y

(2u (2u (u

(x2 (t2 (t

son ecuaciones diferenciales parciales.

Clasificación según el orden

El orden de la derivada más alta en una ecuación diferencial se llama orden

de la ecuación.

Ejemplo:

La ecuación + 5 - 4y = x es una ecuación diferencial

ordinaria de segundo orden. Puesto que la ecuación diferencial

x2dy + y dx = 0

puede llevarse a la forma

dy

dx

dividiendo entre la diferencial dx, es un ejemplo de ecuación diferencial

ordinaria de primer orden. La ecuación

(4u (2u

(x4 (t2

es una ecuación diferencial parcial de cuarto orden.

Una ecuación diferencial ordinaria general de orden n se representa con

frecuencia mediante la expresión simbólica

dy dny

dx dxn

Clasificación según la linealidad o no linealidad

Se dice que una ecuación diferencial es lineal si tiene la forma

dny dn-1y dy

dxn dxn-1 dx

Las ecuaciones diferenciales lineales se caracterizan por

(a) la variable dependiente y junto con todas sus derivadas son de primer grado; esto es, la potencia de cada término en y es 1.

(b) Cada coeficiente depende sólo de la variable independiente x.

Si no se cumple lo anterior la ecuación es no lineal.

Ejemplo:

Las ecuaciones

x dy + y dx = 0

yn – 2y’ + y = 0

d3y d2y dy

dx3 dx 2 dx

son ecuaciones diferenciales ordinarias lineales de primero, segundo y tercer orden, respectivamente.

dy

dx

yy’’ – 2y’ = x + 1

d3y

dx3

son ecuaciones diferenciales ordinarias no lineales de primero, segundo y

tercer orden, respectivamente.

INTEGRALES DOBLES SOBRE RECTANGULOS.

Suponga que f(x, y) está definida sobre una región rectangular R dada por

R: a

Imaginamos R cubierta por una red de rectas paralelas a los ejes x y y. Esas rectas dividen R en pequeños elementos de área "A1, "A2…, "An, escogemos un punto (xk, yp) en cada elemento "Ak y formamos la suma

Si f es continua en toda la legión R, entonces al refinar el ancho de la red para hacer tender "x, "y a cero, las sumas en (1) tienden a un límite llamado integral doble de f sobre R. Su notación es

Entonces,

Igual que en las funciones de una sola variable, las sumas tiende a este límite independientemente de cómo se subdividan los intervalos [a, b] y [c, d] que determinan R, siempre que las normas de las subdivisiones tiendan ambas a cero. El límite (2) también es independiente del orden en que se numeren las áreas "Ak e independiente de la selección del punto (xk, yk) dentro de cada "Ak. Los valores de las sumas aproximadas individuales Sn depende de esas selecciones, pero al final las sumas tienden al mismo límite. La prueba de la existencia y unicidad de este límite para una función continua f se da en textos más avanzados.

La continuidad de f es una condición suficiente para la existencia de la integral doble, pero no es una condición suficiente para la existencia de la integral doble, pero no es una condición necesaria. El límite en consideración también existe para muchas funciones discontinuas.

PROPIEDADES DE LAS INTEGRALES DOBLES.

Las integrales dobles de funciones continuas tienen propiedades algebraicas que son útiles en los cálculos y en las aplicaciones.

1.

2.

3.

4.

5.

Esta propiedad es válida cuando R es la unión de dos rectángulos R1 y R2 que no se traslapan.

INTEGRALES DOBLES COMO VOLUMENES.

Cuando f(x ,y) es positiva podemos interpretar la integral doble de f sobre una región rectangular R como el volumen del prisma sólido limitado abajo por R y arriba por la superficie z = F(x, y). Cada termino f (xk, yk) "Ak en la suma Sn = "Ak es el volumen de un prisma rectangular vertical que aproxima el volumen de la porción del sólido que está directamente arriba de la base "Ak. La suma Sn aproxima entonces a lo que llamamos volumen total del sólido. Definido este volumen como

TEOREMA DE FUBINI PARA CALCULAR INTEGRALES DOBLES.

Suponga que queremos calcular el volumen bajo el plano z=4-x-y sobre la región rectangular en el plano xy. Entonces el volumen es

Donde A(x) es el área de la sección transversal en x. Para cada valor de x podemos calcular A(x) como la integral

Que es el área bajo la curva z=4-x-y en el plano de la sección transversal en x. Al calcular A(x), x se mantiene fija y la integración se efectúa respecto a y. Al combinar (4) y (5), vemos que el volumen de todo es sólido es

Si quisiéramos escribir sólo las instrucciones para calcular el volumen, sin llevar a cabo ninguno de las integraciones, podríamos escribir

La llamada integral repetida o iterada, dice que el volumen se obtiene integrando 4-x-y respecto a y de y=0 a y=1, manteniendo fija a x y luego integrando la expresión resultante en x respecto a x=0 a x=2.

¿Qué pasa si calculamos el volumen formando rebanadas con planos perpendiculares al eje?

¿Cómo función de y, el área transversal típica es?

Por tanto el volumen de todo el sólido es

INTEGRALES DOBLES SOBRE REGIONES ACOTADAS NO RECTANGULARES.

Para definir la integral doble de una función f(x, y) sobre una región acotada no rectangular, imaginamos de nuevo R cubierta por una retícula rectangular, pero incluimos en la suma parcial sólo las pequeñas piezas de área "A = "x"y que se encuentran totalmente dentro de la región. Numeramos las piezas en algún orden, escogemos un punto arbitrario (xk, yk) en cada "Ak y formamos la suma

La única diferencia entre esta suma y la de la ecuación (1) para regiones rectangulares es que ahora las áreas "Ak pueden dejar de cubrir toda R. Pero conforme la red se vuelve más fina y el número de términos en Sn aumenta, más de R queda incluida. Si f es continua y la frontera de R está hecha de las gráficas de un número finito de funciones continuas de xy/o de y, unidas extremo con extremo, entonces las sumas Sn tendrán un límite cuando las normas de las subdivisiones que definen la malla rectangular tiendan independientemente a cero. Llamamos al límite integral doble de f sobre R.

Este límite también puede existir en circunstancias menos restrictivas.

Las integrales dobles de funciones continuas sobre regiones no rectangulares tienen las mismas propiedades algebraicas que las integrales sobre regiones rectangulares. La propiedad de aditividad de dominio correspondiente a la propiedad 5 dice que si R se descompone en regiones no traslapadas R1 y R2 con fronteras que están nuevamente hechas de un número finito de segmentos de rectas o curvas, entonces

.

Si R es una región limitada “arriba” y “abajo” por las curvas y=g2(x) y y=g1(x) y lateralmente por las rectas x=a, x=b, nuevamente podemos calcular el volumen por el método de rebanadas. Primero determinamos el área de la sección transversal

Y luego integramos A(x) de x=a a x=b para obtener el volumen como una integral iterada:

(8)

De manera similar, si R es una región, limitada por las curvas x=h2 (y) y x=h1 (y) y las rectas y=c y y=d, entonces el volumen calculado por el método de rebanadas está dado por la integral iterada

INTEGRALES TRIPLES EN COORDENADAS RECTANGULARES.

Usamos integrales triples para hallar los volúmenes de formas tridimensionales, la masa y los momentos de sólidos y los valores promedio de funciones de tres variables.

INTEGRALES TRIPLES.

Si F(x, y, z) es una función definida sobre una región D cerrada en el espacio, por ejemplo, la región ocupada por una bola sólida o una masa de arcilla, entonces la integral de F sobre D puede definirse de la siguiente manera. Subdividimos una región rectangular que contenga a D en celdas rectangulares por planos paralelos a los planos coordenados. Las celdas que se encuentran dentro de D de 1 a n en cierto orden; una celda típica tendrán entonces dimensiones "xk por "yk por "zk y volumen "x"xk. Escogemos un punto (xk, yk, zk) en cada celda y formamos la suma

Si F es continua y la superficie que limita a D está hecha de superficies suaves unidas a lo largo de curvas continúas, entonces cuando "xk, "yk, "zk tienden a cero independientemente, las sumas Sn tenderán a un límite

Llamamos a este límite integral triple de F sobre D. El límite también existe par algunas funciones discontinuas.

PROPIEDADES DE LAS INTEGRALES TRIPLES.

Las integrales triples tienen las mismas propiedades algebraicas que las integrales simples y dobles. Si F=F(x, y, z) y G=G(x, y, z) son continuas, entonces

1.

2.

3.

4.

Si el dominio D de una función continua F se subdivide por medio de superficies suaves en números finito de celda sin traslapes D1, D2,…..Dn, entonces

5.

INTEGRALES TRIPLES EN COORDENADAS CILINDRICAS Y ESFERICAS.

COORDENADAS CILINDRICAS.

Las coordenadas cilíndricas son apropiadas para describir cilindros cuyos ejes coinciden con el eje x y planos que contienen el eje z o bien son perpendiculares a el.

r = 4 Cilindro, radio 4, eje el eje z=Plano que contiene al eje z

z= 2 Plano perpendicular al eje z

El elemento de volumen para subdividir una región en el espacio con coordenadas cilíndricas es

Las integrales triples en coordenadas cilíndricas son entonces evaluadas como integrales iteradas, como el siguiente ejemplo.

COORDENADAS ESFERICAS.

Las coordenadas esféricas son apropiadas para describir con centro en el origen, medios planos articulados a lo largo de eje z y conos simples, cuyos vértices se encuentran en el origen, y con ejes a lo largo del eje z.

Las superficies como ésas tienen ecuaciones de valor coordenado constante: Esfera, radio 4, centro en el rigen. Se abre desde el origen y forma un ángulo de py3 radianes con el eje z positivo. Medio plano, articulado a lo largo del eje z, que forma un ángulo de radianes con el eje x positivo.

El elemento de volumen en coordenadas esféricas es el volumen de una cuña esférica definida por los diferenciales La cuña es aproximadamente una caja rectangular con un arco circular de longitud en un lado y un arco circular de longitud y espesor de en otro lado. Por consiguiente, el elemento de volumen en coordenadas esféricas es

Y las integrales triples adoptan la forma

INTEGRALES DE LINEA.

Cuando una curva r (t) = g(t)i +h(t)j+k(t)k, , pasa por el dominio de una función f(x, y, z) en el espacio, los valores de f a lo largo de la curva están dados por la función compuesta f(g(t), h(t), k(t)). Si integramos esta composición respecto a la longitud de arco de

t = a a t = b, calculamos la así llamada integral de línea de f a lo largo e la curva. A pesar de la geometría tridimensional, la integral de línea es una integral ordinaria de una función real sobre un intervalo de números reales.

Definición y notación.

Supongamos que f(x, y, z) es una función cuyo dominio contiene la curva r (t) = g(t)i +h(t)j+k(t)k, . Subdividimos está última en un número finito de subarcos. El subarco típico tiene longitud "sk. En cada subarco escogemos un punto (xk, yk, zk) y formamos la suma

(1)

Si f es continua y las funciones g, h y k tienen primeras derivadas continuas, entonces las sumas en (1) tienden a un límite cuando n cree y las longitudes "sk tienden a cero. Llamamos a este límite la integral de f sobre la curva de a a b. Si la curva se representa por una sola letra, C por ejemplo, la notación para la integral es

(2)

Evaluación de curvas suaves.

Si r (t) es suave para (v=dr/dt es continua y nunca (0), podemos usar la ecuación

Para expresar ds en la ecuación (2) como ds =. Un teorema del cálculo avanzado dice que entonces podemos evaluar la integral de f sobre C como

Esta fórmula evaluará correctamente la integral sin importar qué parametrización usemos (siempre y cuando sea suave).

Como evaluar una integral de línea.

Para integrar una función continua f(x, y, z) sobre una curva C:

1. Encuentre una parametrización suave C, r (t) = g(t)i +h(t)j+k(t)k,

2. Evalúe la integral como

(3)

Note que si f tiene el valor constante 1, entonces la integral de f sobre C da la longitud de C.

Aditividad. Las integrales de línea tienen la útil propiedad de que si una curva C se forma por la unión de un número finito de curvas C1, C2,…., Cn extremo con extremo, entonces la integral de una función sobre C es la suma de las integrales sobre las curvas que la forman:

(4)

5. Series de Fourier

(Funciones periódicas

Una función periódica se puede definir como una función para la cual

f(t) = f(t + T)(1.1) para todo valor de t. La constante mínima T que satisface la

relación (1.1), se obtiene

f(t) = f(t + nT), n = 0, (1, (2, ...

II. Álgebra

1. Clásica

( Funciones, tipos y propiedades

Función.- Es una relación que asigna a cada elemento del dominio uno y

sólo un elemento del contradominio. Este último se llama el

valor de la función para el elemento dado del dominio.

Una función f de A en B, se escribe f: A(B es la relación de A en B.

Propiedades.

(a) Dom (f) = A

(b) Si (a, b) y (a, c) pertenecen a f, entonces b = c.

La propiedad (b) dice que, si (a, b) ( f, entonces b está determinada únicamente por a. Por esta razón, también se escribe b = f (a) y se enlista la

relación f como {(a, f(a))|a ( A}. Las funciones son también llamadas

aplicaciones o transformaciones.

Ejemplos:

1. Sean A = {1, 2, 3, 4} y B = {a, b, c, d} y sea

f = {(1, a), (2, a), (3, d), (4, c)} **

Entonces f es una función, ya que ningún elemento de A aparece como

primer elemento de dos pares ordenados diferentes. Aquí se tiene

f(1) = a

f(2) = a

f(3) = d

f(4) = c

El codominio de f, Cod (f) = {a, d, c}.

Una función puede tomar el mismo valor en dos elementos diferentes de A.

2. Sean A = {1, 2, 3} y B = {x, y, z}

R = {(1, x), (2, x)} y S = {(1, x), (2, z), (3, y)}

Ninguna de estas relaciones es una función de A en B, por diferentes

razones. La relación S no es una función ya que contiene los pares

ordenados (1, x)(1, y) lo que viola la propiedad (b) de la definición de una

función.

La relación R no es una función de A en B, ya que el Dom (R) ( A.

Tipos

Una función f: A(B se llama inyectiva, o uno a uno si para toda a, a’ en A,

a (a’ implica que f(a) ( f(a’)

La función f definida en el ejemplo 1 (**) no es inyectiva ya que

f(1) = f(2) = a

(Sea A = B = Z y sea f: A(B definida por

f(a) = a + 1 para a ( A

f consta de todos los pares ordenados (a, a+1) para a ( Z. Entonces cada a

( A aparece como el primer elemento de algún par, por lo cual Dom (f) = A.

También, si (a, b) ( f y (a, c) ( f, de modo que

b = f(a) = a+1

y

c = f(a) = a+1

entonces

b = c

Por consiguiente, f es una función. Supóngase que

f(a) = f(a’)

para a y a’ en A. Entonces

a+1 = a’+1

por lo cual

a = a’

De aquí que f sea inyectiva.

A una función f: A ( B se le llama suprayectiva si f(A) = B, esto es, si el

Cod(f)=B. f es suprayectiva si todo elemento b ( B es el segundo elemento

en algún par ordenado (a, b) ( f.

f es suprayectiva si para cada b ( B se puede encontrar alguna a ( A tal

que b=f(a).

Tomando el ejemplo con ( referencia . Sea b un elemento arbitrario de B.

Es posible encontrar un elemento a ( A tal que

f(a) = b

ya que

f(a) = a+1

es necesario un elemento a en A tal que

a+1 = b

Por supuesto,

a = b-1

lo que satisface la ecuación deseada ya que b –1 está en A. De aquí que f

sea suprayectiva.

Cuando una función es inyectiva y suprayectiva, se dice que f es una

biyección o una correspondencia uno a uno.

A una función A ( B se le llama invertible si su relación inversa, f -1 es

también una función. Solo si f es inyectiva y suprayectiva (biyección)

entonces es invertible.

( Números primos

Un número primo es un entero mayor que la unidad, que no tiene más

factores enteros positivos que él mismo y la unidad. Los primeros números

primos son: 1, 3, 5, 7, 11, 13, 17, 19, 23, ...

Todo entero positivo n>1 puede ser escrito en una sola forma así:

n = pk1 pk2 ...pks

1 2 s

donde p1 < p2< ...

son los enteros positivos que dan el número de veces en cada número primo

ocurre como un factor de n.

Ejemplo:

9 = 3(3 = 32

24 = 12(2 = 2(2(2(3

= 23(3

30 = 2(3(5

( Números complejos

Los números complejos son pares ordenados de nuevos objetos para los

que las nociones de igualdad, adición y multiplicación no están definidas

inicialmente. Todo número complejo tiene raíces cuadradas.

2. Lineal

Comenzamos definiendo un campo y un espacio vectorial sobre un campo (es común observar que un campo es en particular un grupo abeliano ). Los ejemplos típicos de campos son el campo de los números reales R, el campo de los números complejos C y para cada número primo p en Z, el campo de los enteros módulo p, Zp. Los ejemplos típicos de espacios vectoriales son Rn sobre el campo R, Cn sobre el campo C (en general, Fn sobre cualquier campo F), al igual que los siguientes ejemplos con las correspondientes operaciones usuales de suma y multiplicación por escalares:

Polinomios con coeficientes en un campo F

P(F) = {a0 + a1t + a2t2 + ... + antn | ai Î F y n Î N}

Funciones de un conjunto X en un campo F

F(S, F) = {f : X ® F | f es una función}

Funciones continuas de un espacio topológico X en un campo F con una topología en él definida

C(X, F) = {f : X ® F | f es una función continua}

Matrices de n x m con entradas en un espacio vectorial V sobre un campo F

Mn x m(V) = {(

a1,1

...

a1,m

:

:

an,1

...

an,m

) | ai,j Î V, con 1 £ i £ n y 1 £ j £ m}

Las siguientes son propiedades elementales de un espacio vectorial V sobre un campo F cuyas pruebas se dejan como ejercicios:

(Ley de la cancelación) Si x, y, z Î V y x + z = y + z, entonces x = y

El vector 0 es único con la propiedad de que para toda x Î V, x + 0 = x

Para toda x Î V, 0x = 0

Para todo a Î F y x Î V, (-a)x = -(ax)

Para toda a Î F, a0 = 0

Se define un subespacio de un espacio vectorial V sobre un campo F y es un ejercicio demostrar que un subconjunto W Í V es un subespacio si y sólo si para todos a, b Î F y x, y Î V, ax + by Î V. Dos ejemplos de subespacios son los subconjuntos de Mn x n(V) formados por matrices (1) simétricas, (2) diagonales y (3) con traza igual a cero. Es claro que la intersección de dos (y por lo tanto de cualesquiera) subespacios de V resulta en un subespacio de V. Sin embargo, esto no sucede con la unión (como ejemplo tómense cualesquiera dos rectas distintas en R2 que pasen por el origen).

Dado un subconjuntos S de un espacio vectorial V sobre un campo F, denotamos por al subespacio generado por S, y se demuestra fácilmente que es precisamente el conjunto de todas las combinaciones lineales de elementos de S, es decir,

= {a1x1 + ... + anxn | n Î N, ai Î F y xi Î V}.

Definimos la suma de un número finito de subconjuntos S1, ..., Sn de un espacio vectorial V sobre un campo F y se verifica directamente que si W1, ..., Wn £ V, entonces

W1 + ... + Wn =

Se define el que un espacio vectorial V sea la suma directa de dos de sus subespacios W1, W2 £ V, y es fácil ver que éste es el caso si y sólo si para cada z en V, existen únicos x Î W1 y y Î W2 tales que z = x + y).

Definimos el que un subconjunto S Í V sea un subconjunto generador. Definimos también (in)dependencia lineal y finalmente se define una base como aquellos subconjuntos generadores de V que son linealmente independiente. Las bases se distinguen como subconjuntos generadores en el sentido de que la combinación lineal correspondiente a cada vector es única.

Para definir la dimensión de un espacio vectorial V sobre un campo F, primero observamos que si S Í V y x Î V - S, entonces el conjunto S È {x} es linealmente dependiente si y sólo si x está en L(S).

( Sistemas de ecuaciones lineales

Un par de ecuaciones lineales se puede resolver trazando la gráfica de

ambas sobre los mismos ejes y determinando las coordenadas del punto de

intersección.

Cualquier sucesión de valores x1 = s1 y x2 = s2 tales que

a11s1 + a12s2 = b1

a21s1 + a22s2 = b2

le llamamos una solución del sistema de ecuaciones lineales.

Si el sistema de ecuaciones lineales tiene solución se le llama compatible o

consistente. Si no tiene solución le llamamos incompatible o inconsistente.

Sistema con solución única.

Considérese el sistema

x - y = 7

x + y = 5

Al sumar las dos ecuaciones se obtiene, por el resultado A, la ecuación

siguiente: 2x = 12 (es decir, x = 6). Entonces, de la segunda ecuación,

y = 5 – x = 5 – 6 = -1. Por lo tanto, el par (6, -1) satisface el sistema. Por la

forma en que se encontró la solución, se ve que no existe ningún otro par que

satisfaga ambas ecuaciones. Por tanto, el sistema tiene una solución

única.

Sistema con un número infinito de soluciones

Considérese el sistema

x – y = 7

2x – 2y = 14

Es obvio que estas dos ecuaciones son equivalentes. A fin de comprobar

esto, multiplíquese la primera por 2. x - y = 7 o y = x –7. Por tanto, el par

(x, x-7) es una solución del sistema para todo número real x. El sistema

tiene un número infinito de soluciones. Por ejemplo, los pares siguientes son

soluciones: (7, 0), (0, -7), (8, 1), (1, -6), (3, -4) y (-2, -9).

Sistema sin solución

Considérese el sistema

x – y = 7

2x – 2y = 13

Multiplicando la primera ecuación por 2, se obtiene 2x – 2y = 14. Esto

contradice a la segunda ecuación.

Entonces el sistema no tiene solución.

Ejemplo:

Resolver el sistema

2x1 + 4x2 + 6x3 = 18

4x1 + 5x2 + 6x3 = 24

3x1 + x2 - 2x3 = 4

Dividiendo la primera ecuación entre 2.

x1 + 2x2 + 3x3 = 9

4x1 + 5x2 + 6x3 = 24

3x1 + x2 - 2x3 = 4

Multiplicando por –4 ambos lados de la primera ecuación y sumando esta

nueva ecuación a la segunda. Se obtiene entonces

-4x1 – 8x2 – 12x3 = -36

4x1 + 5x2 + 6x3 = 24

- 3x2 – 6x3 = -12

El sistema ahora es

x1 + 2x2 + 3x3 = 9

- 3x2 – 6x3 = -12

3x1 + x2 - 2x3 = 4

La primera ecuación se multiplica por –3 y el resultado se suma a la tercera

ecuación:

x1 + 2x2 + 3x3 = 9

- 3x2 – 6x3 = -12

- 5x2 -11x3 = -23

La segunda ecuación se divide entre –3:

x1 + 2x2 + 3x3 = 9

x2 + 2x3 = 4

-5x2 -11x3 = -23

La segunda ecuación se multiplica por –2 y el resultado se suma a la primera,

y luego la segunda ecuación se multiplica por 5 y el resultado se suma a la

tercera:

x1 ( x3 = 1

x2 + 2x3 = 4

( x3 = -3

La tercera ecuación se multiplica por –1:

x1 ( x3 = 1

x2 + 2x3 = 4

x3 = 3

Por último, la tercera ecuación se suma a la primera y luego la tercera

Ecuación se multiplica por –2 y el resultado se suma a la segunda,

obteniéndose el sistema siguiente [el cual es equivalente al primer sistema]:

x1 = 4

x2 = -2

x3 = 3

( Triangulación y diagonalización

Se dice que una matriz cuadrada es triangular superior si todos los

elementos situados debajo de su diagonal principal son cero.

Se dice que una matriz cuadrada es triangular inferior si todos los

elementos situados arriba de su diagonal principal son cero.

Ejemplo:

1 2 3 1 0 0

0 1 -5 -5 1 0

0 0 1 2 3 1

triangular superior triangular inferior

· Producto hermitiano

ESPACIOS COMPLEJOS CON PRODUCTO INTERNO (PRODUCTO HERMITIANO)

Definición. Sea V un espacio vectorial sobre los números complejos. Un producto hermitiano es una regla que el asocia a cualquier par de elementos u, v de V un número complejo, denotado por

v

u

,

que satisface las siguientes propiedades:

a) Propiedad lineal. Si a, b ( C

v

u

b

v

u

a

v

bu

au

,

,

,

2

1

2

1

+

=

+

b) Propiedad simétrica:

u

v

v

u

,

,

=

c) Propiedad definida positiva:

0

0

,

;

0

,

=

Û

=

³

u

u

u

y

u

u

d) Propiedad antilineal. Si a ( C

v

u

a

v

a

u

,

,

=

Al espacio vectorial V se le denomina Espacio vectorial complejo con producto interno o hermitiano.

Con esta definición de producto hermitiano, se deducen propiedades similares al caso real.

Ejemplos.

a) Hallar el coeficiente de Fourier y la proyección de u sobre v, si

u = (3 + i, –1 – 2i) y v = (1 , 5exp(j30°)).

b) Sea V el espacio vectorial de las funciones continuas definidas en [-] y evaluadas en los complejos. Sea fn la función definida por

)

exp(

)

(

jnt

t

f

n

=

El producto hermitiano se define como

ò

p

p

-

=

dt

t

g

t

f

g

f

)

(

)

(

,

Si n y m son distintos, entonces las funciones son ortogonales y el coeficiente de Fourier de una función f respecto a fn está dado por

ò

p

p

-

-

p

=

=

dt

jnt

t

f

f

f

f

f

c

n

n

n

)

exp(

)

(

2

1

,

,

( Norma

Longitud o norma de un vector.- Si v ( (n, entonces la longitud o norma de v,

denotada por |v|, está dada por

|v| = (v ( v

Ejemplo:

Norma de un vector en (2 Sea v = (x, y) ( (2. Entonces |v| = (x2+y2 es la

definición ordinaria de la longitud de un vector en el plano.

Norma de un vector en (3 Si v = (x, y, z) ( (3, entonces

|v| = (x2 + y2 + z2

Norma de un vector en (5 Si v = (2, -1, 3, 4, -6) ( (5, entonces

|v| = (4 + 1 + 9 + 16 +36 = (66.

( Proyecciones

Definición.- Sean u y v en (2 diferentes de cero. La proyección de u en

(sobre) v es el vector, denotado por proyu, definido por:

v

proyu = v

v

Al escalar le llamamos la componente de u en la dirección de v.

Ejemplos:

u = (2, 5)

v = (7, 3)

Encontrar proyu

v

Encontramos la componente de u en la dirección de v

u ( v = (2) (7) + (5) (3) = 29

||v||2 = (v2 + v2

1 2

||v||2 = 72 + 32 = 58

= =

entonces proyu = (7, 3)

v

= = (3.5, 1.5)

¿Cuál es la distancia de u a proyu?

v

d(u, proyu) = ||u – proyu||

v v

= ||(-1.5, 3.5)||

= ((-1.5)2 + (3.5)2

= (14.5

= 3.8

( Bases ortogonales y ortonormales

Definición.- Conjunto ortonormal en (n El conjunto de vectores

S = {u1, u2, ..., uk} en (n se llama conjunto ortonormal si

ui ( uj = 0 si i ( j

ui ( uj = 1

Si sólo se satisface la ecuación (1), se dice que el conjunto es

ortogonal.

Un conjunto de vectores es ortonormal si un par cualquiera de ellos es

ortogonal y si cada uno tiene longitud 1.

· Valores y vectores propios

POLINOMIOS DE MATRICES

Sea f(t) un polinomio de grado n:

n

n

t

a

t

a

t

a

a

t

f

+

+

+

+

=

L

2

2

1

0

)

(

Si A es una matriz M n x n, entonces se define el polinomio asociado de la matriz A como

n

n

A

a

A

a

A

a

I

a

A

f

+

+

+

+

=

L

2

2

1

0

)

(

Si existe una matriz cuadrada B de tal manera que f(B) = 0, se dice que B es un cero o una raíz de f(t).

· Ejemplo. Sean

2

2

5

2

)

(

2

3

7

)

(

3

4

2

1

t

t

t

g

y

t

t

t

f

y

A

+

-

-

=

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

=

Calcular f(A) y g(A).

Teorema. Sean f y g dos polinomios sobre K y A una matriz M n x n sobre K, entonces

a) (f + g)(A) = f(A) + g(A)

b) (f g)(A) = f(A) g(A)

c) (f)(A) = f(A) , (

d) (f g)(A) = f(A) g(A) = g(A) f(A)

POLINOMIO CARACTERÍSTICO DE UNA MATRIZ

Sea A una matriz M n x n sobre K

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

=

nn

n

n

n

n

a

a

a

a

a

a

a

a

a

A

L

M

O

M

M

L

L

2

1

2

22

21

1

12

11

la matriz característica de A es, suponiendo que (

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

-

l

-

-

-

-

l

-

-

-

-

l

=

-

l

nn

n

n

n

n

a

a

a

a

a

a

a

a

a

A

I

L

M

O

M

M

L

L

2

1

2

22

21

1

12

11

el determinante de esta matriz recibe el nombre de polinomio característico de A:

(

)

A

I

A

-

l

=

l

D

det

)

(

y la ecuación característica de A es

(

)

0

det

)

(

=

-

l

=

l

D

A

I

A

VALORES Y VECTORES PROPIOS (O CARACTERÍSTICOS) DE UNA MATRIZ

Si A es una matriz M n x n sobre K . Al escalar (se le llama valor propio de A si existe un vector columna no nulo tal que

Av = v

Todo vector que satisfaga esa relación, se le llama vector propio.

Sea E el conjunto de todos los vectores propios de A, se afirma que es un subespacio de Kn y se le conoce como espacio propio de .

Ejemplo.

÷

÷

ø

ö

ç

ç

è

æ

=

3

4

2

1

A

y sean v1 = (2, 3) T y v2 = (1, -1)T. Verifique que son vectores propios de A.

Teorema. Si A es una matriz M n x n sobre K, las siguientes afirmaciones son equivalentes:

a) El escalar (es un valor propio de A.

b) La matriz M = I – A es singular.

c) El escalar (es una raíz del polinomio característico de A.

Se puede demostrar, auxiliándose del Teorema Fundamental del Álgebra y del resultado anterior, que si A es una matriz M n x n sobre C tiene al menos un valor propio.

Teorema sobre diagonalización. Una matriz A ( M n x n sobre K es diagonalizable si y sólo si A tiene n vectores propios linealmente independientes. En cuyo caso, los elementos de la matriz diagonal B = P (1AP son los valores propios de A y la matriz P contiene en sus columnas a los vectores propios de A.

Como consecuencia de este resultado, se tiene el siguiente

Teorema. Sea {u1, u2, …, un} el conjunto de vectores propios no nulos de A, pertenecientes a n valores propios distintos; entonces {u1, u2, …, un} forman un conjunto de vectores LI.

Ejemplo.

Encuentre una matriz diagonal similar a

a)

÷

÷

ø

ö

ç

ç

è

æ

-

=

1

3

2

4

A

.

Solución:

÷

÷

ø

ö

ç

ç

è

æ

-

=

3

1

1

2

P

b)

÷

÷

ø

ö

ç

ç

è

æ

-

=

1

4

1

5

A

.

Solución: no se puede.

c)

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

2

1

5

2

A

.

Solución:

÷

÷

ø

ö

ç

ç

è

æ

-

=

i

i

B

0

0

Teorema. Toda matriz real simétrica es diagonalizable. Sus valores propios son reales y sus vectores propios son ortogonales entre sí.

Ejemplo. Encuentre una matriz que diagonalice a

÷

÷

ø

ö

ç

ç

è

æ

-

-

=

5

2

2

2

A

.

Solución:

÷

÷

ø

ö

ç

ç

è

æ

-

=

5

1

5

2

5

2

5

1

P

Si se tiene una forma cuadrática del tipo:

q(x) = xTAx

también se puede diagonalizar esta forma cuadrática, el significado geométrico es que se orienta esta superficie en los ejes que determinan los vectores característicos. Esta opción se usa para transformar una superficie a su forma canónica.

Definición.

a) Multiplicidad algebraica es la multiplicidad de un valor característico dentro del polinomio característico.

b) Multiplicidad geométrica es la dimensión del espacio propio correspondiente a :

multiplicidad geométrica de = dim E = (A - I) v y multiplicidad geométrica de ( multiplicidad algebraica de

3. Teoría de grupos

( Grupos

Un grupo (G, *) es un monoide, con idéntico e, que tiene la propiedad

adicional de que, para cualquier elemento a ( G, existe un elemento a’ ( G

tal que a * a’ = a’ * a = e. Por consiguiente, un grupo es un conjunto G con

una operación binaria * en G tal que

1. (a * b) * c = a * (b * c) para elementos cualquiera a, b, y c en G.

2. Existe un elemento único e en G tal que

a * e = e * a para cualquier a ( G

3. Para cada a ( G existe un elemento a’ ( G, al que se le llama inverso de

a, tal que

a * a’ = a’ * a = e

Se dice que un grupo G es abeliano o conmutativo si ab = ba para todos

los elementos a y b en G.

Ejemplos:

1. El conjunto de todos los enteros Z con la operación de suma ordinaria es

un grupo abeliano. Si a ( Z, entonces el inverso de a es el negativo –a.

2. El conjunto Z+ bajo la operación de multiplicación ordinaria no es un grupo

ya que el elemento 2 en Z+ no tiene inverso. Sin embargo, este conjunto

con la operación dada es un monoide.

3. El conjunto de los números reales sin el cero bajo la operación de

multiplicación ordinaria es un grupo. Un inverso de a ( 0 es 1/a.

4. Sea G el conjunto de los números reales sin el cero y sea

a * b =

Demuestre que (G, *) es un grupo abeliano.

Solución. Primero, se verificara que * es una operación binaria. Si a y b son elementos de G, entonces a * b (= ab/2) es un número real diferente de cero y, por tanto, está en G. En seguida se verificara su propiedad asociativa. Como

(a * b) * c = * c =

y

a * (a * b) = a * =

la operación * es asociativa.

El número 2 es el idéntico en G, si a ( G, entonces,

a * 2 = = a = = 2 * a

Por último, si a ( G, entonces a’ = 4/a es un inverso de a ya que,

a * a = a * = = 2 = = * a = a’ * a

Como a * b = b * a para todas las a y b en G, se concluye que G es un

grupo abeliano.

Propiedades que son satisfechas por cualquier grupo G.

1. Sea G un grupo. Cada elemento a en G tiene un inverso único en G.

aa-1 = a-1a = e

2. Sea G un grupo y sean a, b y c elementos en G. Entonces,

(a) ab = ac implica que b = c (propiedad de cancelación izquierda).

(b) ba = ca implica que b = c (propiedad de cancelación derecha).

3. Sea G un grupo y sean a y b elementos en G. Entonces,

(a) (a-1)-1 = a

(b) (ab)-1 = b -1a-1

4. Sea G un grupo y sean a y b elementos de G. Entonces,

(a) La ecuación ax = b tiene una solución única en G.

(b) La ecuación ya = b tiene una solución única en G.

Si un grupo G tiene un número finito de elementos, su operación binaria

puede darse por una tabla de multiplicación. La tabla de multiplicación del

grupo G = {a1, a2, ..., an} bajo la operación binaria * deberá satisfacer las

siguientes propiedades:

1. El renglón etiquetado por e deberá de contener los elementos

a1, a2, ..., an

y la columna etiquetada por e deberá contener los elementos

a1

a2

.

.

.

an

2. Cada elemento b en el grupo deberá aparecer exactamente una vez en

cada renglón y en cada columna de la tabla. Por tanto, cada columna y

cada renglón es una permutación de los elementos a1, a2, .... , an de G y

cada renglón (y cada columna) determina una permutación diferente.

Si G es un grupo que tiene un número finito de elementos, se dice que G es un grupo finito y el orden de G es el número de elementos |G| en G. Las tablas de multiplicación de todos los grupos de órdenes 1, 2, 3 y 4 son:

Si G es un grupo de orden 1, entonces G = {e}, y se tiene ee = e. Ahora sea G = {e, a} un grupo de orden 2. Entonces se obtendrá la tabla de multiplicación

e a

e e a

a a

donde es necesario llenar el espacio en blanco. Puede llenarse con a o e. Como no es posible repetir elementos en un mismo renglón o columna, se deberá escribir e en el espacio en blanco.

e a

e e a

a a

Esta tabla es de orden 2.

Sea G = {e, a, b} un grupo de orden 3. Se tiene la tabla de multiplicación donde es necesario llenar los cuatro espacios en blanco.

e a b e a b

e e a b e e a b

a a a a b e

b b b b e a

Sea G = {e, a, b, c} de orden 4. La tabla de multiplicación es:

e a b c e a b c e a b c e a b c

e e a b c e e a b c e e a b c e e a b c

a a e c b a a e c b a a b c e a a c e b

b b c e a b b c a e b b c e a b b e c a

c c b a e c c b e a c c e a b c c b a e

Subconjuntos de un grupo G

Sea H un subconjunto de un grupo G tal que:

(a) El idéntico e de G pertenece a H.

(b) Si a y b pertenecen a H, entonces ab ( H.

(c) Si a ( H, entonces a -1 ( H.

Entonces, a H se le llama subgrupo de G. La parte (b) anterior, dice que H

es un subsemigrupo de G. Un subgrupo de G puede verse como un

subsemigrupo que tiene las propiedades (a) y (c) anteriores.

Ejemplo:

Sea G un grupo. Entonces G y H = {e} son subgrupos de G, a estos se les

llama subgrupos triviales de G.

5. sean (G, *) y (G’, *’) dos grupos y sea ( : G ( G’ un homomorfismo de G

en G’.

(a) Si e es idéntico en G y e’ es el idéntico en G’, entonces ((e) = e’.

(b) Si a ( G, entonces ( (a -1) = (( (a)) –1.

(c) Si H es un subgrupo de G, entonces

( (H) = {((h)|h ( H}

es un subgrupo de G’.

Productos y cocientes de los grupos

Si G1 y G2 son grupos, entonces G = G1 ( G2 es un grupo con la operación

definida por

(a1, b1)(a2, b2) = (a1a2, b1b2)

Sea R una relación de congruencia en el grupo (G, *). Entonces el

semigrupo (G/R, () es un grupo, donde la operación ( se define en G/R por