Presentation eng

49
Interpretable Bayesian Functional Linear Regression Paul-Marie Grollemund Introduction Data Functional regression Aim Model Sparsity Bayesian modeling Inference Implementation Application Simulation study Agronomic data Conclusion Interpretable Bayesian Functional Linear Regression Paul-Marie Grollemund Christophe Abraham, Meïli Baragatti et Pierre Pudlo University of Montpellier 1 / 17

Transcript of Presentation eng

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Interpretable Bayesian Functional LinearRegression

    Paul-Marie Grollemund

    Christophe Abraham, Meli Baragatti etPierre Pudlo

    University of Montpellier

    1 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Content

    Introduction

    Model

    Application

    Conclusion

    1 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Content

    IntroductionDataFunctional regressionAim

    Model

    Application

    Conclusion

    1 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    DataSample of n observations :

    The real response Y :(Yi , 1 i n

    )(average number of grains of maize per plant)

    585.02375.64

    ...358.49

    The functional covariate X :(Xi (.), 1 i n

    )(temperature curve)

    0 20 40 60 80

    510

    1520

    2530

    Day

    Averag

    e daily

    temper

    ature

    2 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Functional regression

    Explain the number of grains with the temperature

    Model

    Yi = +T

    Xi (t)(t)dt + i for i = 1, . . . , n

    where i is a Gaussian noise

    Three methods :

    FDA (Ramsay and Silverman 2005) FLiRTI (James et al. 2009) Fused Lasso (Tibshirani et al. 2005)

    3 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Functional regression

    Explain the number of grains with the temperatureModel

    Yi = +T

    Xi (t)(t)dt + i for i = 1, . . . , n

    where i is a Gaussian noise

    Three methods :

    FDA (Ramsay and Silverman 2005) FLiRTI (James et al. 2009) Fused Lasso (Tibshirani et al. 2005)

    3 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Functional regression

    Explain the number of grains with the temperatureModel

    Yi = +T

    Xi (t)(t)dt + i for i = 1, . . . , n

    where i is a Gaussian noise

    Three methods :

    FDA (Ramsay and Silverman 2005) FLiRTI (James et al. 2009) Fused Lasso (Tibshirani et al. 2005)

    3 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Functional regressionExplain the number of grains with the temperatureModel

    Yi = +T

    Xi (t)(t)dt + i for i = 1, . . . , n

    where i is a Gaussian noise

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    50.

    000.

    050.

    100.

    15

    FDA

    Support

    Target functionEstimate

    Ramsay and Silverman (2005)

    3 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Functional regressionFind relevant periodsModel

    Yi = +T

    Xi (t)(t)dt + i for i = 1, . . . , n

    where i is a Gaussian noise

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    50.

    000.

    050.

    100.

    15

    FLiRTI

    Support

    Target functionEstimateCI 95%

    James et al. (2009)3 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Functional regressionFind relevant periodsModel

    Yi = +T

    Xi (t)(t)dt + i for i = 1, . . . , n

    where i is a Gaussian noise

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    50.

    000.

    050.

    100.

    15

    Fused Lasso

    Support

    Target functionEstimate

    Tibshirani et al. (2005)3 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Aim

    Construct a method Stable with respect to its tuning parameters Can include prior knowledge Provide an evaluation of its confidence Produce interpretable estimators

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    Support

    NoninterpretableInterpretable

    4 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Aim

    Construct a method Stable with respect to its tuning parameters Can include prior knowledge Provide an evaluation of its confidence Produce interpretable estimators

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    Support

    NoninterpretableInterpretable

    4 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Content

    Introduction

    ModelSparsityBayesian modelingInferenceImplementation

    Application

    Conclusion

    4 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Sparsity

    Y |X , , , 2 Nn(1n +

    T

    X (t)(t)dt , 2In)

    The set of interpretable functions E

    (t) =K

    k=1

    k 1 {t Ik} (1)

    0 20 40 60 80 100

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    Function beta_0

    Support

    0(t)

    5 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Sparsity

    Y |X , , , 2 Nn(1n +

    T

    X (t)(t)dt , 2In)

    The set of interpretable functions E

    (t) =K

    k=1

    k 1 {t Ik} (1)

    0 20 40 60 80 100

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    Function beta_0

    Support

    0(t)

    5 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Sparsity

    Y |X , , , 2 Nn(1n +

    T

    X (t)(t)dt , 2In)

    The set of interpretable functions E

    (t) =K

    k=1

    k 1 {t Ik} (1)

    0 20 40 60 80 100

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    Function beta_0

    Support

    0(t)

    5 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Sparsity

    Y |X , , , 2 Nn(1n +

    T

    X (t)(t)dt , 2In)

    The set of interpretable functions E

    (t) =K

    k=1

    k 1 {t Ik}

    0 20 40 60 80 100

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    Relevant regions

    Support

    I1

    I2

    5 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Sparsity

    Y |X , , , 2 Nn(1n +

    T

    X (t)(t)dt , 2In)

    The set of interpretable functions E

    (t) =K

    k=1

    k 1 {t Ik}

    0 20 40 60 80 100

    0.00

    0.01

    0.02

    0.03

    0.04

    0.05

    0.06

    0.07

    Function beta

    Support

    I1

    I2

    *1

    *2

    Constrained functionFunction beta_0

    (t)

    5 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Bayesian modeling

    When E , the integrant can be rewrittenT

    X (t)(t)dt =K

    k=1

    k

    Ik

    X (t)dt

    = X I

    Parametric model

    Y |X , , , 2, I Nn(1n + X I , 2In

    )|2 N

    (0, v02

    ), 2 NIGK (,V , a, b)I I(.)

    The intervals Ik can overlap K large enough to detect all relevant regions We can fix hyperparametres so that the prior is weakly informative

    6 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Bayesian modeling

    When E , the integrant can be rewrittenT

    X (t)(t)dt =K

    k=1

    k

    Ik

    X (t)dt

    = X I

    Parametric model

    Y |X , , , 2, I Nn(1n + X I , 2In

    )

    |2 N(0, v02

    ), 2 NIGK (,V , a, b)I I(.)

    The intervals Ik can overlap K large enough to detect all relevant regions We can fix hyperparametres so that the prior is weakly informative

    6 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Bayesian modeling

    When E , the integrant can be rewrittenT

    X (t)(t)dt =K

    k=1

    k

    Ik

    X (t)dt

    = X I

    Parametric model

    Y |X , , , 2, I Nn(1n + X I , 2In

    )|2 N

    (0, v02

    ), 2 NIGK (,V , a, b)I I(.)

    The intervals Ik can overlap K large enough to detect all relevant regions We can fix hyperparametres so that the prior is weakly informative

    6 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Bayesian modeling

    When E , the integrant can be rewrittenT

    X (t)(t)dt =K

    k=1

    k

    Ik

    X (t)dt

    = X I

    Parametric model

    Y |X , , , 2, I Nn(1n + X I , 2In

    )|2 N

    (0, v02

    ), 2 NIGK (,V , a, b)I I(.)

    The intervals Ik can overlap K large enough to detect all relevant regions We can fix hyperparametres so that the prior is weakly informative

    6 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Inference

    Bayes estimator

    For a loss function L, the Bayes estimator of f () based on the data Dis

    f () argmind

    L(d , f ()

    )(|D) d

    (t) = f(, I

    ; t)=

    Kk=1

    k 1{

    t Ik}

    L2-loss and posterior expected value

    For the L2-loss function, the Bayes estimator of is

    (.) =

    (.) (, I|Y ) ddI

    Problem : / E , the set of interpretable function (non-convexity of E ).

    7 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Inference

    Bayes estimator

    For a loss function L, the Bayes estimator of f () based on the data Dis

    f () argmind

    L(d , f ()

    )(|D) d

    (t) = f(, I

    ; t)=

    Kk=1

    k 1{

    t Ik}

    L2-loss and posterior expected value

    For the L2-loss function, the Bayes estimator of is

    (.) =

    (.) (, I|Y ) ddI

    Problem : / E , the set of interpretable function (non-convexity of E ).

    7 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Inference

    Bayesian modeling and constraints

    (estimator) argmin

    (loss)

    (constraints)

    (likelihood) (prior)

    (constraints)

    8 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Inference

    Bayesian modeling and constraints

    (estimator) argmin

    (loss)

    (constraints)

    (likelihood) (prior)

    (constraints)

    8 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Inference

    Bayesian modeling and constraints

    (estimator) argmin

    (loss)

    (constraints)

    (likelihood) (prior)

    (constraints)

    8 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Inference

    Bayesian modeling and constraints

    (estimator) argmin

    (loss)

    (constraints)

    (likelihood) (prior)

    (constraints)

    New loss function

    L(, d) = d22 1 {d E } + 1 {d / E }

    where E denotes the set of the interpretable functions

    8 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Inference

    Bayesian modeling and constraints

    (estimator) argmin

    (loss)

    (constraints)

    (likelihood) (prior)

    (constraints)

    New loss function

    L(, d) = d22 1 {d E } + 1 {d / E }

    where E denotes the set of the interpretable functionsEstimator of

    Under the loss function L(d , ) = d22 1 {d E } + 1 {d / E },the Bayes estimator is

    argmind

    L(d , ) (, I|Y ) ddI

    8 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Implementation

    Posterior

    Non-conjugate prior for I tractable full

    conditional distributions

    Gibbs sampler

    Estimator

    Monte Carlo to integrate L over the posterior

    1N

    Ni=1

    L(d , i ) L(d , ) (, I|Y ) ddI

    Simulated annealing to optimize the criterion

    9 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Content

    Introduction

    Model

    ApplicationSimulation studyAgronomic data

    Conclusion

    9 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Simulation study

    Data simulation :

    For X (t) :

    Simulate 50 curves onto a grid of 100equally spaced points

    0.0 0.2 0.4 0.6 0.8 1.0

    2

    02

    4

    Simulation of curves X(t) n=50 and p=100

    Support

    For :

    Pick a function (to estimate)

    0.0 0.2 0.4 0.6 0.8 1.0

    2

    1

    01

    23

    45

    Function beta

    Support

    Simulate a Gaussian noise such that V[Y ]/V[] 4Build Yi from the model

    10 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Simulation study

    0.0 0.2 0.4 0.6 0.8 1.0

    50

    510

    FLiRTI

    Support

    Target functionEstimationIC 95%

    0.0 0.2 0.4 0.6 0.8 1.0

    20

    24

    Fused Lasso

    Support

    Target functionEstimation

    11 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Simulation study

    0.0 0.2 0.4 0.6 0.8 1.0

    4

    2

    02

    46

    Support

    0.0 0.2 0.4 0.6 0.8 1.0

    4

    2

    02

    46

    Support

    Target functionEstimate

    12 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Agronomic data

    29 observations (different environmental conditions)

    X : Temperature curve over 80 days

    0 20 40 60 80

    510

    1520

    2530

    Day

    Averag

    e daily

    temper

    ature

    Franois Tardieu

    Claude Welcker

    Emilie Millet

    Y : Average of grains of maize

    Y1 Y2 Y3 . . . Y28 Y29585.02 375.64 176.09 . . . 96.38 441.22

    13 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Agronomic data

    FLiRTI

    0 20 40 60 80

    30

    0

    200

    10

    00

    100

    Support

    EstimationIC 95%

    Fused Lasso

    0 20 40 60 80

    3

    2

    1

    01

    Support

    14 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Agronomic data

    Loss L :

    4

    2

    02

    4

    < >

    growth< >

    reproductive system< >flowering

    Mode :

    4

    2

    02

    4

    < >

    growth< >

    reproductive system< >flowering

    15 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Content

    Introduction

    Model

    Application

    Conclusion

    15 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Conclusion

    Produce estimates with very simple shape Provide a convenient representation of the posterior

    Perspectives

    Can include prior knowledge must be generalized to a model including an extra categorical

    variable

    theoretical result

    16 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    17 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    E is non convex

    0.0 0.2 0.4 0.6 0.8 1.0

    2

    1

    01

    23

    Support

    fgmean(f,g)

    17 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Bad behavior of the mode

    Loss L :

    0.0 0.2 0.4 0.6 0.8 1.0

    4

    2

    02

    46

    Support

    Target functionEstimate

    Mode :

    0.0 0.2 0.4 0.6 0.8 1.0

    4

    2

    02

    46

    Support

    Target functionEstimate

    17 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Bad behavior of the mode

    Loss L :

    0.0 0.2 0.4 0.6 0.8 1.0

    2

    1

    01

    23

    Support

    Target functionEstimate

    Mode :

    0.0 0.2 0.4 0.6 0.8 1.0

    2

    1

    01

    23

    Support

    Target functionEstimate

    17 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Generalization to other formsGaussian kernel :

    0.0 0.2 0.4 0.6 0.8 1.0

    5

    05

    10

    EstimationFonction cible

    17 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Generalization to other formsTriangular kernel :

    0.0 0.2 0.4 0.6 0.8 1.0

    5

    05

    10

    EstimationFonction cible

    17 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Generalization to other formsEpanechnikov kernel :

    0.0 0.2 0.4 0.6 0.8 1.0

    4

    2

    02

    46

    8

    EstimationFonction cible

    17 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Intervals parametrization

    Ik =[mk `k , mk + `k

    ]

    Hierarchical model

    Y |X , , , 2,m, ` Nn(1n + X m`

    , 2In)

    |2 N(0, v02

    )` U

    (]0, `max]K

    ), 2 NIGK (,V , a, b) m U

    (T K)

    17 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Gibbs sampler : Full conditional distribution

    |Y ,X , , 2,m, ` N(0v10 + 1

    Tn(Y Xm`

    )n + v10

    ,2

    n + v10

    )

    |Y ,X , , 2,m, ` N

    (Xm`

    T (Y 1n) + V1,Xm`T Xm` + V

    1)

    2|Y ,X , , ,m, ` IG

    (a +

    n + K + 1

    2, b2

    )

    (mk |Y ,X , ,

    ,

    2,mk , `

    ) exp

    {

    1

    22Y 1n Xm`2} 1 {mk T }

    (`k |Y ,X , ,

    ,

    2, `k ,m

    ) exp

    {

    1

    22Y 1n Xm`2} 1 {`k ]0, `max ]}

    where

    b2 = b +

    1

    2

    Y 1n Xm`2 + 12v0 ( 0)2 + 12 2V1 .

    17 / 17

  • InterpretableBayesian

    Functional LinearRegression

    Paul-MarieGrollemund

    IntroductionDataFunctionalregressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion

    Simulated annealing

    Minimize the critera C()

    Initialize 0 and 0.

    Iterate i from 1 to N : Propose a . Calculate the acceptance probability

    = min

    {1, exp

    (C() C(i1)

    i1

    )}.

    Simulate u U ([0, 1]). If u < , i = (accept)

    else i = i+1 (reject)

    17 / 17

    IntroductionDataFunctional regressionAim

    ModelSparsityBayesian modelingInferenceImplementation

    ApplicationSimulation studyAgronomic data

    Conclusion