Proyecto de Investigacion Suelos

92
CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ MECANICA DE SUELOS I ING. VIDAL CALCINA COLQUI DOCENTE MECANICA DE SUELOS I

Transcript of Proyecto de Investigacion Suelos

Page 1: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ MECANICA DE SUELOS I

ING. VIDAL CALCINA COLQUI DOCENTE MECANICA DE SUELOS I

Page 2: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

1 FACULTAD DE INGENIERIA - UPLA

INDICE

Prefacio 03

RESUMEN 04

CAPITULO I

FORMULACION DEL PROBLEMA DE INVESTIGACION

1.1. IDEA DE INVESTIGACION 05

1.2. TEMA DE INVESTIGACION 06

1.3. PROBLEMA DE INVESTIGACION 06

1.3.1. PLANTEAMIENTO DEL PROBLEMA DE INVESTIGACION 06

1.3.2. FORMULACION DEL PROBLEMA DE INVESTIGACION 08

1.3.3. OBJETIVOS 08

1.3.4. JUSTIFICACION 08

CAPITULO II

REFERENCIA TEORICA

2.1. MARCO TEORICO 11

2.2. MARCO CONCEPTUAL 12

2.1.1. CIMENTACIONES 12

2.1.1.1. GENERALIDADES 12

2.1.1.2. TIPOS DE CIMENTACIONES 13

2.1.2. SUELOS DIFICILES 18

2.1.2.1. SUELOS DISPERSIVOS 18

2.1.2.2. SUELOS EXPANSIVOS 22

2.1.2.3. SUELOS COLAPSABLES 31

2.1.2.4. SUELOS LICUABLES 35

CAPITULO III

SISTEMA DE HIPOTESIS

3.1. HIPOTESIS 42

3.1.1. HIPOTESIS GENERAL 42

3.1.2. HIPOTESIS ESPECÍFICAS 42

Page 3: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

2 FACULTAD DE INGENIERIA - UPLA

3.1. INDICADORES DE LAS HIPOTESIS 42

3.1.1. CONSECUENCIAS DE LAS CIMENTACIONES SOBRE SUELOS DISPERSIVOS

EN EL PERU. 43

3.1.2. CONSECUENCIAS DE LAS CIMENTACIONES SOBRE SUELOS COLAPSABLES

EN EL PERU.

3.1.3. CONSECUENCIAS DE LAS CIMENTACIONES SOBRE SUELOS EXPANSIVOS EN

EL PERU. 47

3.1.4. CONSECUENCIAS DE LAS CIMENTACIONES SOBRE SUELOS LICUABLES EN

EL PERU. 53

CAPITULO IV

DISEÑO METODOLOGICO

4.1. DECISIONES METODOLOGICAS 56

4.2. MUESTRA DE ORGANIZACIÓN A ESTUDIAR 56

4.3. FORMAS DE ABORDAR LA INVESTIGACIÓN 56

4.4. REVISIÓN LITERARIA. 57

4.5. RECOLECCIÓN DE DATOS. 57

4.6. INDICADORES A OBSERVAR 57

4.7. PROPUESTA DE ANALISIS 57

4.7.1. TECNICAS DE MEJORAMIENTO DE UN SUELO DISPERSIVO 57

4.7.2. TECNICAS DE MEJORAMIENTO DE UN SUELO COLAPSABLES 60

4.7.3. TECNICAS DE MEJORAMIENTO DE UN SUELO EXPANSIVO 72

4.7.4. TECNICAS DE MEJORAMIENTO DE UN SUELO LICUABLE 84

CONCLUSIONES

RECOMENDACIONES

REFERENCIA BIBLIOGRAFICA

ANEXO

Page 4: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

3 FACULTAD DE INGENIERIA - UPLA

Prefacio

Desde los inicios de la carrera eh estado interesado en la construcción de los grandes

edificios. Al estar estudiando Ingeniería eh aprendido que la cimentación es la parte

primordial de la construcción de una estructura, así propuse la tarea de abordar el tema de

“PROBLEMAS DE CIMENTACIONES EN LAS EDIFICACIONES DEL PERÚ” y hacer una

investigación científica, ya que es un tema que no ah sido muy explorado, ya que en

principio, los estudios de suelos tiene gran material de investigación y hasta hace poco no

habían sido explorados.

En cuanto a las cimentaciones, estas pueden ir cambiando según las necesidades del suelo

y/o estructura, y aun pueden proponerse nuevos métodos y tipos de cimentación, puesto

que se irán revolucionando, según los nuevos investigadores.

Los fundamentos de la investigación, son investigaciones bibliográficas y algunos datos de

campo, que se realizaron en un cierto lapso de tiempo.

Page 5: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

4 FACULTAD DE INGENIERIA - UPLA

RESUMEN

Este es un proyecto relacionado con la Mecánica de suelos, la cual ha sido estudiada por

muchos profesionales de la ama pero que muchas veces no se toma en consideración a la

hora de la ejecución de obras en nuestro país.

A lo largo de la investigación usted podrá observar sobre el suelos difíciles (Dispersivos,

Expansivos, Colapsables y Liacuables), sus propiedades, y principalmente en cómo influye

el tipo de suelo al querer diseñar la estructura de una obra.

Consta de seis capítulos en el primero, vera desde cómo surgió la idea, como se planteo el

problema, cuáles fueron las preguntas y objetivos de la investigación. En el segundo capítulo

se encuentra el marco teórico, en el tercer capítulo podrá ver la formulación de las hipótesis.

La metodología de la investigación viene brevemente explicada en el cuarto capítulo,

mientras que en el quinto se observan los resultados de la investigación. En el sexto se

presentaran las conclusiones.

Espero que esta investigación pueda servir de ayuda para diferentes estudiantes, maestros,

y personas que les sea de curiosidad.

Page 6: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

5 FACULTAD DE INGENIERIA - UPLA

CAPITULO I

FORMULACION DEL PROBLEMA DE INVESTIGACION

1.1. IDEA DE INVESTIGACION

Esta idea surgió de que es una cimentación, problemas que afrontan las

cimentaciones y saber cuál es la necesaria según lo que se desea construir y

donde se desea construir (tipos de suelo).

Antes de entrar a la facultad de ingeniería, al observar un edificio, surgió en mi

la inquietud de cómo era que esa estructura aguantaba tanto peso, como fue

construida, con que materiales, si siguió un proceso, y cual fue, además de quien

era la persona encargada de que esa estructura no colapsara. Para mí eso era

algo que requería de tiempo y preparación, así fue como me surgió la idea de

estudiar ingeniería civil. Al entrar a la carrera se me dieron diferentes materias,

de acuerdo al plan de estudio, y eh estado estudiando alguna de ellas. Así fue

conociendo la terminología de cimentación, suelos, entre otras. Al empezar el

quinto semestre se me impartió al materia de mecánica de suelos, y en una de

las primeras clases el ingeniero docente hablo de cómo la materia tenia

aplicación en problemas de ingeniería, ahí fue cuando relacione el suelo con las

cimentaciones, y entro en m la inquietud de investigar más acerca de ello, las

relaciones que hay entre estas dos variables, como se apoyan la una de la otra,

ya que el tipo de suelo es indispensable para saber el diseño de la cimentación.

A su vez me entere de que hay una gran variedad de suelos, que a su vez estos

pueden mezclarse, y en nuestro país, ay una gran diversidad de suelos, por lo

tanto se ha tenido que diseñar diferentes tipos de cimentaciones debido a la

demanda, al tipo de estructura a construir, y a la capacidad de carga del suelo.

Indagué un poco en internet me entere que según el suelo, y el clima y

temperatura donde este se encuentre, la capacidad de carga varia, y por lo tanto

el diseño de cimentación también lo es.

Page 7: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

6 FACULTAD DE INGENIERIA - UPLA

La cimentación es la parte estructural del edificio, encargada de transmitir las

cargas al terreno, el cual es el único elemento que no podemos elegir, por lo que

la cimentación la realizaremos en función del mismo. Al mismo tiempo este no

se encuentra todo a la misma profundidad por lo que eso será otro motivo que

nos influye en la decisión de la elección de la cimentación adecuada.

Y para saber cuál es la cimentación adecuada antes debemos determinar qué

tipo de suelo hay en dicha construcción y su capacidad de carga.

1.2. TEMA DE INVESTIGACION

CIMENTACIONES EN LAS EDIFICACIONES DEL PERU

1.3. PROBLEMA DE INVESTIGACION

1.3.1. PLANTEAMIENTO DEL PROBLEMA DE INVESTIGACION

En su práctica profesional, el ingeniero civil tiene muchos encuentros diferentes

e importantes con el suelo. El ingeniero civil utiliza el suelo como cimentación de

estructuras y terraplenes; utiliza el suelo como material de construcción; debe

diseñar estructuras de retención para excavaciones y aberturas subterráneas; y

encuentra el suelo en un gran número de problemas especiales. En el desarrollo

de dichas tareas, el ingeniero se basa en la Mecánica de Suelos, que es una

disciplina que organiza de manera sistemática los principios y el conocimiento

de las propiedades ingenieriles del suelo.

El problema a estudiar es como saber cuál es tipo de cimentación adecuada,

según el tipo de suelo donde se realizar. Pero para ello también se debe saber

para qué tipo de estructura se diseñara dicha cimentación.

Para conocer este problema primero se debe saber cuál es la diversidad de

suelos en el Perú, ya que en el Perú hay distintas diversidades de suelos, y los

suelos pueden mezclarse entre sí. También es importante conocer sobre los

tipos de cimentaciones más adecuadas, según el suelo, y las características

tanto como del suelo como para las cimentaciones.

Page 8: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

7 FACULTAD DE INGENIERIA - UPLA

Numerosos casos de fallas en cimentaciones han ocurrido en los últimos años

en el país, debido en parte al desconocimiento del comportamiento de cierto tipo

de suelos de cimentación, y por otro lado a la incompetencia o negligencia, que

se refleja generalmente en la incapacidad de hacer lo que es requerido para un

proyecto determinado, tal como en muchos casos hemos establecido después

de producida la falla.

Extensas áreas de nuestro país presentan suelos difíciles tales como

dispersivos, colapsables, expansivo y licuables; que deben ser estudiados

convenientemente para utilizarlos como soporte en obras de ingeniería de poca

o gran envergadura, dado a que presentan problemas principalmente de

deformación por cambio de volumen del suelo, casi siempre por presencia de

filtraciones de agua en exceso del contenido de humedad natural. Estos suelos

han llamado la atención también en muchas partes del mundo y han sido materia

de numerosas presentaciones en Congresos Internacionales y reuniones

técnicas desde hace varias décadas, destacando las últimas ocurridas en

nuestra región : la 7a. Sesión del XII Congreso Internacional de Mecánica de

Suelos llevada a cabo en Río de Janeiro, Brasil en 1989 y la Sesión sobre

Propiedades Geotécnicas de los Suelos de América, del IX Congreso

Panamericano de Mecánica de Suelos de Viña del Mar, Chile, en 1991.

Es de suma importancia conocer el tipo de suelo, ya que hay distintos tipos de

cimentaciones, y estás pueden variar según el tipo de suelo donde se construirá

y también que tipo de construcción se realizara, ya que una casa habitación, es

muy diferente a la construcción de un edificio.

Esta investigación es de mucha importancia para la ingeniería, porque la

cimentación es el esqueleto, lo que soporta un edificio y sin una buena

cimentación, las bases de la estructura no soportarían tanta carga, causando

grandes problemas, desde agrietamientos en dicha estructura, como el

derrumbe de esta. Además debemos de tomar en cuenta que Perú está en una

zona sísmica de gran actividad sísmica, por ello es necesario tener buenos

cimientos.

Los esfuerzos que generan en las diversas capas del subsuelo debido a las

presiones de las cimentaciones, producen asentamientos que dependen de las

propiedades del suelo, así como de la carga y permanencia de esta. Se hace

notar que el suelo es un medio continuo y que una carga aplicada bajo un punto

cualquiera de alguna estructura, produce asentamiento en los demás puntos de

Page 9: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

8 FACULTAD DE INGENIERIA - UPLA

la cimentación de la misma, y por lo tanto, hay interacciones entra las cargas y

los asentamientos entre las diferentes puntos donde estas se aplican.

1.3.2. FORMULACION DEL PROBLEMA DE INVESTIGACION

1.3.2.1. PROBLEMA GENERAL

¿Cómo afectan las cimentaciones los suelos difíciles en las edificaciones

del Perú en el año 2013?

1.3.2.1. PROBLEMAS ESPECIFICOS

¿Cómo inciden en los agrietamientos de la estructura los suelos difíciles en las

edificaciones del Perú en el año 2013?

¿Cómo se relacionan los asentamientos y los suelos difíciles en las edificaciones

del Perú en el año 2013?

1.3.3. OBJETIVOS

1.3.3.1. OBJETIVO GENERAL

Conocer los efectos en las cimentaciones por suelos difíciles en las

edificaciones del Perú en el año 2013.

1.3.2.1. OBJETIVOS ESPECIFICOS

Identificar las incidencias en los agrietamientos de la estructura los suelos

difíciles en las edificaciones del Perú en el año 2013.

Conocer la relación de los asentamientos y los suelos difíciles en las

edificaciones del Perú en el año 2013.

Page 10: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

9 FACULTAD DE INGENIERIA - UPLA

1.3.4. JUSTIFICACION

El tipo de suelo, puede afectar gravemente el proceso de construcción de las

cimentaciones de una estructura, ya que si el suelo es blando, y tiende a

agrietarse, se necesitaran ciertas medidas para que al excavar para realizar el

colado de una pila, el suelo no se desmorone.

Una cimentación inadecuada para el tipo de terreno, mal diseñada o calculada

se traduce en la posibilidad de que tanto el propio edificio como las fincas

colindantes sufran asientos diferenciales con el consiguiente deterioro de los

mismos pudiendo llegar incluso al colapso. El tratar de iniciar cualquier

construcción sin llevar a cabo primero un estudio del suelo es, quizá, uno de los

mayores riesgos que pueden correrse en el campo de la ingeniería. Es imposible

proyectar una cimentación adecuada para una estructura sin conocer las

características del suelo que se encuentra bajo ella, ya que, en definitiva, es

dicho suelo el que soportará la carga.

La capacidad de carga o apoyo es una característica de cada sistema de suelo-

cimentación, y no sólo una cualidad intrínseca del suelo. Los distintos tipos de

suelo difieren en capacidad de carga, pero también ocurre que en un suelo

específico dicha capacidad varía con el tipo, forma, tamaño y profundidad del

elemento de cimentación que aplica la presión.

Al investigar este tema, aprenderé los tipos de cimentación que se pueden

utilizar en diferente tipos de obras, así también aprenderé los diferentes tipos de

suelos que existen en el Perú y cuáles son las capacidades de carga de ellos.

Conoceré los métodos con los cuales pueden identificar el suelo y determinar su

carga.

La cimentación es importante porque es el grupo de elementos que soportan a

la superestructura; para lo cual se utiliza la llamada zapata de cimentación, esta

divide las cargas de la edificación en partes iguales de manera que ninguna

exceda a la otra, esto solamente no se da cuando se trata de un terreno de

piedra.

Page 11: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

10 FACULTAD DE INGENIERIA - UPLA

La elección del tipo de cimentación depende especialmente de las

características mecánicas del terreno, como su cohesión, su ángulo de

rozamiento interno, posición del nivel freático y también de la magnitud de las

cargas existentes. A partir de todos esos datos se calcula la capacidad portante,

que junto con la homogeneidad del terreno aconsejan usar un tipo u otro

diferente de cimentación. Siempre que es posible se emplean cimentaciones

superficiales, ya que son el tipo de cimentación menos costoso y más simple de

ejecutar. Cuando por problemas con la capacidad portante o la homogeneidad

del mismo no es posible usar cimentación superficial se valoran otros tipos de

cimentaciones.

La cimentación puede definirse en general como el conjunto de elementos de

cualquier edificación cuya misión es transmitir al terreno que la soportan las

acciones procedentes de la estructura. Su diseño dependerá por tanto no solo

de las características del edificio sino también de la naturaleza del terreno.

La importancia del conocimiento de los caracteres propios del suelo se pone de

manifiesto desde el momento de la propia ejecución de la obra por su influencia

sobre la seguridad de los trabajadores en la realización de excavaciones y

movimientos de tierras así como en la de los elementos auxiliares de la

construcción: cimbras, encofrados, pozos y zanjas de cimentación líneas

enterradas, etc.

Page 12: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

11 FACULTAD DE INGENIERIA - UPLA

CAPITULO II

REFERENCIA TEORICA

2.1. MARCO TEORICO

La cimentación puede definirse en general como el conjunto de elementos de

cualquier edificación cuya misión es transmitir al terreno que la soporta las

acciones procedentes de la estructura. Su diseño dependerá por tanto no solo

de las características del edificio sino también de la naturaleza del terreno.

ALVA HURTADO 2010. El cimiento es aquella parte de la estructura encargada

de transmitir las cargas al terreno. Debido a que la resistencia y rigidez del

terreno suelen ser inferiores a las de la estructura, la cimentación posee un área

en planta muy superior a la suma de las áreas de todos los pilares y muros

portantes (estructura vertical).

CRESPO VILLALAZ 2003 “Se denomina cimentación al conjunto de elementos

estructurales cuya misión es transmitir las cargas de la edificación al suelo.

Debido a que la resistencia del suelo es, generalmente, menor que los pilares o

muros que soportará, el área de contacto entre el suelo y la cimentación será

proporcionalmente más grande que los elementos soportados (excepto en

suelos rocosos muy coherentes). La cimentación es importante porque es el

grupo de elementos que soportan a la superestructura; para lo cual se utiliza la

llamada zapata de cimentación, esta divide las cargas de la edificación en partes

iguales de manera que ninguna exceda a la otra, esto solamente no se da cuando

se trata de un terreno de piedra.”

La importancia del conocimiento de los caracteres propios del suelo se pone de

manifiesto desde el momento de la propia ejecución de la obra por su influencia

sobre la seguridad de los trabajadores en la realización de excavaciones y

movimientos de tierras así como en la de los elementos auxiliares de la

construcción: cimbras, encofrados, pozos y zanjas de cimentación líneas

enterradas, etc.

Page 13: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

12 FACULTAD DE INGENIERIA - UPLA

Una cimentación inadecuada para el tipo de terreno, mal diseñada o calculada

se traduce en la posibilidad de que tanto el propio edificio como las fincas

colindantes sufran asientos diferenciales con el consiguiente deterioro de los

mismos pudiendo llegar incluso al colapso.

Barkan 1992. En obras de importancia y características especiales, y sobre todo,

cuando es proyectada su construcción en terrenos cuyo subsuelo no es

conocido, es obligatorio el estudio del suelo para cada caso en particular. No es

prudente deducir la resistencia y comportamiento de un suelo a partir de las

características de otro, aun cuando estén próximos entre sí.

2.2. MARCO CONCEPTUAL

2.1.1. CIMENTACIONES

2.1.1.1. GENERALIDADES

Las cimentaciones tienen como misión transmitir al terreno las cargas que

soporta la estructura del edificio. De modo general se puede decir que existen

dos tipos de cimentación según que principalmente vayan a soportar esfuerzos

de compresión pura o que soporten, además, tensiones de tracción. Esta

consideración afecta al material que va a constituir la cimentación.

Los cimientos por tanto serán por lo general piezas de volumen considerable con

respecto al volumen de las piezas de la estructura. Se construyen en hormigón

armado y en general se empleará hormigón de calidad relativamente baja ya que

no resulta económicamente interesante el empleo de hormigones de resistencias

mayores.

Para poder realizar una buena cimentación es necesario un conocimiento previo

del terreno en el que se va a construir la estructura. Aquí vamos a realizar una

pequeña introducción sobre el suelo y la roca.

Los términos roca y suelo, tal como se usan en la ingeniería civil, implican una

clara distinción entre dos clases de materiales de cimentación. Se dice que roca

es un agregado natural de granos minerales unidos por grandes y permanentes

fuerzas de cohesión. Por otra parte, se considera que suelo es un agregado

natural de granos minerales, con o sin componentes orgánicos, que pueden

separarse por medios mecánicos comunes, tales como la agitación en el agua.

Page 14: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

13 FACULTAD DE INGENIERIA - UPLA

El ingeniero para preparar un proyecto debe saber cuáles son los materiales que

están presentes y qué propiedades poseen, este conocimiento se adquiere,

parcialmente, consultando libros, pero sobre todo, extrayendo, examinando y tal

vez probando muestras que considere representativas de los materiales. En la

ingeniería de las cimentaciones, la experiencia es un factor inapreciable.

La correcta clasificación de los materiales del subsuelo es un paso importante

para cualquier trabajo de cimentación, porque proporciona los primeros datos

sobre las experiencias que puedan anticiparse durante y después de la

construcción. El detalle con el que se describen, prueban y valoran las muestras,

depende del tipo de estructura que se va a construir, de consideraciones

económicas, de la naturaleza de los suelos, y en cierto grado del método con el

que se hace el muestreo. Las muestras deben describirse primero sobre la base

de una inspección ocular, y de ciertas pruebas sencillas que pueden ejecutarse

fácilmente tanto en el campo como en el laboratorio clasificando el material en

uno de los grupos principales.

Las estructuras de cimentación son, con frecuencia, elementos tridimensionales,

en ocasiones elementos lineales, por ejemplo las vigas de cimentación.

2.1.1.2. TIPOS DE CIMENTACIONES

CIMENTACIONES SUPERFICIALES

Cuando a nivel de la zona inferior de la estructura, el terreno presenta

características adecuadas desde los puntos de vista técnico y económico para

cimentar sobre él, la cimentación se denominará superficial o directa. Las

cimentaciones superficiales estarán constituidas por zapatas, vigas y placas, o

por combinaciones de estos elementos.

Estas características del terreno son fundamentales a la hora de la elección de

la cimentación.

La influencia del tipo de edificio a ejecutar también es importante en la selección

de la cimentación.

Las características más importantes de los edificios a la hora de la cimentación

pueden ser:

Page 15: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

14 FACULTAD DE INGENIERIA - UPLA

a) Existencia de sótanos

a) Edificios ligeros de poca altura: se usará cimentación superficial

b) Edificios de poca altura: losas, pilotaje

c) Edificios de gran altura: Cimentaciones profundas o losas de cimentación

Antes de la selección de la cimentación, y como parte previa a la redacción del

proyecto, debe realizarse un estudio geotécnico del terreno que en sus

conclusiones debe recomendar los tipos de cimentaciones más adecuados.

Como características principales una zapata debe cumplir:

a) Conducción de las cargas al terreno a través de los elementos estructurales.

b) Reparto uniforme de las cargas para que no se superen las tensiones

superficiales del terreno.

c) Deben limitarse los asientos de la estructura a los máximos admisibles por

ésta, y evitar asimismo los asientos diferenciales.

d) Las cimentaciones deben quedar ocultas.

En el caso de edificios industriales el modo de selección de las cimentaciones

no difiere del resto de las edificaciones, siendo incluso en muchos casos un

factor decisivo a la hora de decidir el emplazamiento de la industria, pues un

coste muy elevado por las malas características del terreno encarecería

demasiado el proyecto. El tipo de cimentación más usado en proyectos

industriales es la zapata en sus diversas variantes. No se desestimará en caso

necesario el uso de losas e incluso, en casos muy desfavorables del terreno,

cimentaciones profundas como pilotes.

A. Zapatas

Se trata de la solución más usada, debido a que es la más económica, de más

fácil ejecución y adaptarse bien a terrenos resistentes. Es además una solución

interesante para luces importantes.

Una zapata es una ampliación de la base de una columna o muro que tiene por

objeto transmitir la carga al subsuelo a una presión adecuada a las propiedades

del suelo. A las zapatas que soportan una sola columna se llaman individuales

o zapatas aisladas. La zapata que se construye debajo de un muro se llama

Page 16: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

15 FACULTAD DE INGENIERIA - UPLA

zapata corrida o zapata continua. Si una zapata soporta varias columnas se

llama zapata combinada. Una forma especial de zapata combinada que se usa

normalmente en el caso que una de las columnas soporte un muro exterior es la

zapata en voladizo o cantilever.

En las zonas frías, las zapatas se desplantan a una profundidad no menor que

la penetración normal de la congelación. En los climas más calientes, y

especialmente en las regiones semiáridas, la profundidad mínima de las zapatas

puede depender de la mayor profundidad a que los cambios estaciónales de

humedad produzcan una contracción y expansión apreciable del suelo. La

elevación a la que se desplanta una zapata depende del carácter del subsuelo,

de la carga que debe soportar y del coste del cimiento. Generalmente la zapata

se colocara a la altura máxima en que pueda encontrarse un material que tenga

de forma estable la capacidad de carga adecuada.

La excavación de una zapata para hormigón armado debe mantenerse seca,

para poder colocar el refuerzo y sostenerlo en su posición correcta mientras seca

el hormigón. Para hacer esto en los suelos que contienen agua debe ser

necesario bombear o instalar previamente un sistema de drenaje.

La clasificación de zapatas es muy amplia. Según su forma de trabajo se

puede clasificar como: aislada, combinada, corrida o continua y arriostrada

o atada. Según su forma en planta su clasificación será: rectangular,

cuadrada, circular, anular o poligonal.

B. Losas de Cimentación

Las losas de cimentación son zapatas de gran tamaño encargadas de repartir lo

más uniformemente posible las cargas al terreno. Sus principales características

pueden ser: espesor reducido en función de sus otras dimensiones. Son útiles

cuando la suma de las superficies de la zapata > 50% de la superficie de la

edificación. Se trata de una solución cara por lo que su uso será en terrenos con

baja resistencia pues en terrenos heterogéneos reducen asientos diferenciales.

CIMENTACIONES PROFUNDAS

Page 17: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

16 FACULTAD DE INGENIERIA - UPLA

Estas cimentaciones se usarán cuando el terreno firme no se encuentra en la

superficie sino a mayor profundidad. La cimentación profunda más usada es la

cimentación por pilotes.

A. Pilotes

Un pilote es un elemento de cimentación de gran longitud comparada con su

sección transversal, que enterrado consigue una cierta capacidad de carga,

suma de su resistencia por rozamiento con el terreno y su apoyo en punta.

Cuando el suelo situado al nivel en que se desplantaría normalmente una zapata

o una losa de cimentación, es demasiado débil o compresible para proporcionar

un soporte adecuado, las cargas se transmiten al material mas adecuado a

mayor profundidad por medio de pilotes. Los pilotes son elementos estructurales

con un área de sección transversal pequeña, comparada con su longitud, y

usualmente se instalan usando una piloteadora que tiene un martinete o un

vibrador. A menudo se hincan en grupos o en filas, conteniendo cada uno

suficientes pilotes para soportar la carga de una sola columna o muro.

Las columnas con poca carga, pueden en algunos casos, necesitar un solo

pilote. Sin embargo, ya que en las condiciones del trabajo de campo, la posición

real de un pilote puede quedar a varios centímetros de la posición proyectada,

difícilmente pueden evitarse las cargas excéntricas. En consecuencia las

cabezas de los pilotes aislados usualmente se arriostran en dos direcciones por

medio de contratrabes. Si solo se necesitan dos pilotes las cabezas se unen con

un cabezal de hormigón, siendo arriostradas solamente en una dirección,

perpendicular a la línea que une los dos pilotes. Los grupos que contienen tres

o más pilotes están provistos de cabezales de hormigón reforzado y se

consideran estables sin apoyarlos con contratrabes.

También pueden usarse pilotes verticales para resistir cargas laterales; por

ejemplo, debajo de una chimenea alta sometida al viento. Comparada con la

capacidad axial, la capacidad lateral es usualmente pequeña. Cuando es

necesario soportar grandes cargas laterales, pueden usarse pilotes inclinados.

Las inclinaciones de 1 horizontal por 3 vertical representan aproximadamente la

Page 18: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

17 FACULTAD DE INGENIERIA - UPLA

mayor inclinación que puede obtenerse con el equipo ordinario para el hincado.

La economía favorece usualmente las menores inclinaciones, aunque tenga que

usarse un mayor número de pilotes.

B. Muros de contención

El terreno tiene su propio talud natural siendo la pendiente función de la cohesión

interna. La modificación del talud de un terreno por encima de su pendiente

natural obliga a utilizar procedimientos artificiales de contención.

Un muro de contención es aquella obra encargada de contener las tierras que

tienden a alcanzar su talud natural. En unas ocasiones se tratará de un terreno

natural y en otras de un relleno artificial.

Las estructuras de contención pueden clasificarse según dos tipos:

a) Rígidas

b) Flexibles

Dentro de los muros de hormigón los muros más frecuentes son :

a) Muros de gravedad: Son de hormigón en masa

b) Muros ménsula: Aligeran el muro de gravedad y son útiles para grandes

muros por razón de economía

c) Muros con contrafuertes

d) Muros de sótano

C. CAJONES DE CIMENTACIÓN

Los cajones de cimentación son elementos estructurales de concreto armado

que se construyen sobre el terreno y se introducen en el terreno por su propio

peso al ser excavado el suelo ubicado en su interior. El PR deberá indicar el

valor la fricción lateral del suelo para determinar el peso requerido por el cajón

para su instalación.

Page 19: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

18 FACULTAD DE INGENIERIA - UPLA

2.1.2. SUELOS DIFICILES

2.1.2.1. SUELOS DISPERSIVOS

Antiguamente, los suelos arcillosos eran considerados altamente resistentes a

la erosión debido al fluir el agua, sin embargo esta creencia es errada debido a

que eso no sucede con todas las arcillas, de hecho existen arcillas que son

altamente erosionables, como los son las arcillas dispersivas.

El tipo de suelo conformado por arcilla dispersiva fue conocido primero por los

ingenieros agrónomos hace mas de 100 años, y su naturaleza fundamental fue

bien entendida por los científicos de suelos e ingenieros agricultores hace casi

50 años. La importancia del tema en la práctica de la Ingeniería Civil ha sido

reconocida aproximadamente desde 1940, pero no fue ampliamente apreciada

sino hasta comienzos de 1960. Se inicia en Australia cuando, se investiga las

fallas de socavación en presas de tierra y se observa el comportamiento de la

arcilla dispersiva en presas pequeñas de arcilla. Desde este tiempo, muchas

investigaciones han sido ejecutadas a fin de mejorar los procedimientos para

identificar a las arcillas dispersivas

Los suelos dispersivos son aquellos que por la naturaleza de su mineralogía

(donde existe una preeminencia de cationes de sodio) son susceptibles a la

defloculación (dispersión) y se rechazan en la presencia del agua así posea poco

o nada de velocidad hidráulica. Cuando el suelo de arcilla dispersiva es

sumergido en agua, la fracción de arcilla tiende a comportarse de manera

semejante a las partículas granulares, es decir las partículas de arcilla tienen

una atracción mínima de electro-química y fallan hasta adherirse cercanamente

o enlazarse con otras partículas de suelo. Así, el suelo de arcilla dispersiva

erosiona con la presencia del agua que fluye cuando las plaquetas individuales

Page 20: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

19 FACULTAD DE INGENIERIA - UPLA

de la arcilla son partidas y transportadas. Tal erosión puede suceder por la

presencia de quebradas profundas o fallas por tubificación en pequeñas presas,

la presencia de aguas nubladas en presas pequeñas o en charcos de agua luego

de la lluvia, por mencionar los casos más comunes. También es visible en las

grietas de los caminos y a lo largo de las quebradas y en las arcillas unidas a la

roca.

IDENTIFICACION DE LOS SUELOS DISPERSIVOS

La identificación de los suelos dispersivos debería comenzar con el

reconocimiento en campo para determinar si existe alguna indicación en la

superficie, como erosiones en forma de túneles y hondonadas profundas, junto

con cualquier depósito de agua. Aunque la falta de tal evidencia no excluye la

presencia de arcillas dispersivas en la profundidad, y se debería proceder con

exploraciones adicionales. Los suelos dispersivos también pueden determinarse

por el comportamiento de los suelos. Por ejemplo:

La presencia de quebradas profundas y fallas por tubificación en

pequeñas presas, habitualmente indican la presencia de suelos

dispersivos.

La erosión en grietas de los caminos, la erosión tipo túnel a lo largo de

las líneas de quebradas y la erosión de intemperización o arcillas unidas

en roca pueden señalar suelos potencialmente dispersivos.

La presencia de agua nublada en presas pequeñas y charcos de agua

después de la lluvia indica suelos dispersivos.

Se puede deducir la mineralogía de la arcilla a partir de tales técnicas de

observación. La geología del área también puede ser una guía de la

dispersividad. Sherard & Decker (1977) señalan que:

Muchas arcillas dispersivas son de origen aluvial. Algunas arcillas de las

laderas de lechos de río son también dispersivas.

Algunos suelos derivados de la lutita y la arcillita bajo un medio marítimo

son también dispersivos.

Los suelos derivados de la intemperización de las rocas ígneas y

metamórficas son casi todos no dispersivos, pero pueden ser

erosionables, (por ejemplo, la arena limosa derivada de la granodiorita).

Page 21: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

20 FACULTAD DE INGENIERIA - UPLA

Suelos con un alto contenido orgánico probablemente no son dispersivos

(esto necesita ser tratado con cautela, desde que muchos suelos tipo

“algodón negro” son dispersivos).

Las áreas de producción con poca cosecha y el crecimiento mal

desarrollado también pueden indicar suelos altamente salinos, muchos

de los cuales son dispersivos. Sin embargo, los suelos dispersivos

pueden también presentarse en suelos neutrales o en suelos ácidos y

pueden apoyar al crecimiento frondoso del césped.

Ensayos Químicos:

Estos ensayos analizan la composición química del agua de poros de una

muestra de suelo para determinar su grado de dispersividad, entre éstos están:

Proporción de Absorción de Sodio (SAR): es un parámetro que refleja la

posible influencia del Ion sodio sobre las propiedades del suelo. Se basa

en una fórmula empírica que relaciona los contenidos de sodio, calcio y

magnesio y que expresa el porcentaje de sodio de cambio en el suelo en

situación de equilibrio

SAR= Na/ ( ( Ca+Mg)/2 ) ½

Porcentaje Intercambiable de Sodio (ESP)

Ensayos Físicos:

El Ensayo de Crumb

El ensayo de Emerson Crumb (Emerson, 1967) fue desarrollado como un

procedimiento simple para identificar el comportamiento dispersivo en campo,

pero ahora es muy frecuente usado en el Laboratorio. Entrega una buena

indicación del potencial de erodibilidad de los suelos de arcillas; sin embargo un

suelo dispersivo puede a veces dar una reacción no dispersiva en el ensayo de

Crumb. Si el ensayo de Crumb señala dispersión, lo más probable es que el

suelo sea dispersivo.

Page 22: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

21 FACULTAD DE INGENIERIA - UPLA

El ensayo consiste en colocar una muestra de suelo en agua, observando la

dispersión como el grado de nubosidad del agua, para luego clasificarlo de la

siguiente manera:

Grado 1: Ninguna reacción

Grado 2: Reacción ligera

Grado 3: reacción moderada

Grado 4: reacción fuerte

El Ensayo del Doble Hidrómetro

Este ensayo implica dos ensayos del Hidrómetro en suelos tamizados a través

del tamiz de 2.36 mm. Los ensayos del Hidrómetro son conducidos con y sin

dispersante.

La dispersión en porcentaje es:

A x100

B

Donde

A = porcentaje de suelos más finos que 0.005 mm para el ensayo sin dispersante.

B = porcentaje de suelos más finos que 0.005 mm para el ensayo con

dispersante.

La interpretación del porcentaje de dispersión es la siguiente:

Mayor que 30% es no dispersivo

Entre 30% a 50% es intermedio

Mayor al 50% es dispersivo

El Ensayo de Pinhole

La clasificación de dispersión de Pinhole, conocido también como el Ensayo de

Pinhole, o el ensayo de Pinhole Sherard según Normas de la Asociación de

Australia, 1980.

Page 23: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

22 FACULTAD DE INGENIERIA - UPLA

Este ensayo fue desarrollado por Sherard en 1976. Consiste en perforar un

hueco de 1.0 mm de diámetro en el suelo a ser ensayado, y a través del agujero

se pasa agua bajo diferentes cargas y duraciones variables. El suelo es

tamizado a través del tamiz de 2.36 mm y compactado aproximadamente en el

límite plástico a una proporción de densidad del 95 % (las condiciones a simular

en un terraplén de presa con una fisura o agujero en el suelo).

2.1.2.2. SUELOS EXPANSIVOS

Se conocen como suelos expansivos, dado que sufren procesos de expansión y

contracción.

Éstos, al estar en clima estacional generan grandes grietas por donde migra el material

del suelo, hacia abajo y hacia arriba, son los suelos denominados Vertisoles que

generan constante inestabilidad en las obras civiles.

La utilización de estos suelos requiere condiciones especiales, tanto desde el punto de

vista de la ingeniería como de la preparación para agricultura. Los problemas que se

presentan en estos suelos son derivados más que todo por los cambios de humedad;

éstos a su vez pueden estar inducidos por las cambiantes condiciones ambientales

(épocas de sequía y de lluvia), efecto termo-ósmosis, fugas en las conducciones de

aguas, extracción de agua por la vegetación aledaña a la construcción.

Depende de la estructura de los cristales

Depende de su composición mineralógica

Depende de la capacidad de cambios de cationes

Su comportamiento se caracteriza principalmente por:

La contracción de la arcilla debido al secado

La expansión de la arcilla al humedecerse

Desarrollo de presiones de expansión cuando esta confinado y no puede

expandirse

Page 24: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

23 FACULTAD DE INGENIERIA - UPLA

IDENTIFICACIÓN DE SUELOS EXPANSIVOS

Identificación visual

Los suelos expansivos se pueden identificar visualmente por varias

características

De su existencia son solo problemas en zonas arcillosas

Tiene alta plasticidad

Se fundan en zonas costeras, como en el norte del país

Si observamos el terreno encontraremos grietas o rajaduras, esto se debe al

fenómeno de palpitación que sufre la superficie la superficie de estos suelos

cuando varía la humedad

Identificación por su mineralogía

Existen varios métodos para la identificación mineralógica y las mas utilizadas y

recomendadas son:

La difracción de rayos X

El análisis termino diferencial

La absorción de tinte, los análisis químicos

La microscopia electrónica

Los tres grupos más importantes en que se clasifican los minerales arcillosos

son: illita, caolinita y montmorillonita, compuestos por hidroaluminosilicatos. Los

ensayos mineralógicos tienden a detectar la presencia de montmorillonita, que

es el mineral preponderantemente expansivo.

La presencia de cargas eléctricas negativas en la superficie de los minerales

arcillosos, así como la capacidad de intercambio catiónico resultan

fundamentales para la magnitud de la expansión.¨

La presencia de cargas eléctricas negativas en la superficie de los minerales

arcillosos, así como la capacidad de intercambio catiónico resultan

fundamentales para la magnitud de la expansión.

Page 25: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

24 FACULTAD DE INGENIERIA - UPLA

Identificación por métodos indirectos

Este tipo de identificación se basa en los ensayos de Limite de Atterberg, la

contracción lineal, el contenido coloidal, cambio de volumen potencial (PVC), etc.

Límite Líquido y Límite Plástico

Investigadores como Seed, Woodward y Lundgren demostraron que las

características plásticas de los suelos pueden ser usados como un indicador

primario de la características expansivas de las arcillas.

Es natural pensar en una relación como la antes mencionada ya que ambas

dependen en la cantidad de agua que una arcilla absorbe.

La relación entre las características plásticas y el hinchamiento de los suelos

puede establecerse como:

Si bien es cierto que todos los suelos altamente expansivos tienen plasticidades

altas, no es cierto que los suelos con elevada plasticidad sean necesariamente

expansivos.

Contenido de Coloides

Dentro de los materiales que tiene un tamaño inferior a 74 micras están los limos

y las arcillas. Desde el punto de vista del tamaño se considera arcillas aquellos

materiales que tienen un tamaño inferior a 2 micras (0.002 mm), siendo

necesario para su determinación la realización de un ensayo hidrométrico.

Page 26: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

25 FACULTAD DE INGENIERIA - UPLA

La magnitud de la expansión que experimenta una arcilla está vinculada con la

cantidad de partículas de tamaño arcilla presente en el suelo.

Se ha establecido una relación del tipo: S = k CX

Dónde:

S = Hinchamiento potencial, expresado como % del hinchamiento de una

muestra compactada a la humedad óptima y al P.U.S.M. según Proctor

Estándar.

C = Porcentaje de fracción arcilla (partículas menores a 0.002 mm).

x = exponente que depende del tipo de arcilla

k = Coeficiente que depende del tipo de arcilla.

x y k, que indican el tipo de partículas coloidales presentes se determinan

a través de ensayos difracción por rayos X.

Determinación de la expansión Libre

Este ensayo consiste en colocar en una probeta normalmente cilíndrica un

volumen conocido de suelo “seco” y sumergirlo en agua sin aplicación de

sobrecarga alguna, mientras se mide la expansión. La diferencia entre el

volumen final e inicial, expresado como un porcentaje del volumen inicial es la

expansión libre.

Esta medida de la expansión se realiza en condiciones muy desfavorables, ya

que se hace en condiciones de ninguna sobrecarga y hoy en día se utilizan

métodos más adecuados a tales efectos. Experimentos realizados por Holtz

indican que una arcilla como la bentonita comercial puede tener en este ensayo

expansión del orden de 1200 a 2000 %. Holtz sugiere que las expansiones

medidas en este ensayo por encima del 100% pueden causar daños

significativos a la estructura, mientras que suelos que alcanzan una expansión

por debajo del 50 %, rara vez experimentan cambios de volúmenes apreciables

bajo la aplicación de cargas estructurales, aún cuando estas sean provenientes

de estructuras livianas.

EVALUACIÓN DEL POTENCIAL EXPANSIVO EN BASE A LOS MÉTODOS

EXPUESTOS

Page 27: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

26 FACULTAD DE INGENIERIA - UPLA

Existen varios métodos que realizando diversas combinaciones de los resultados

de las medidas de las propiedades antes mencionadas clasifican en categorías

los potenciales expansivos del suelo

Método desarrollado por Holtz y Gibbs

En el gráfico siguiente se muestra una relación típica entre el contenido de

coloides, el Índice Plástico y el límite de contracción.

Basado en las curvas presentadas Holtz propone el siguiente criterio para

la identificación de suelos expansivos:

Método del “Índice de la actividad de la arcilla” propuesto por Seed,

Woodward y Lundgren

Page 28: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

27 FACULTAD DE INGENIERIA - UPLA

Está basado en muestras remoldeadas de suelo compuestos por mezcla de

arcillas, bentonita, illita, caolinita y arena fina.

La expansión se midió como un % del hinchamiento que experimentan probetas

compactadas al 100 % del P.U.S.M. del Proctor Estándar y con el contenido de

humedad óptimo y sometidas a una sobrecarga de 1 Psi

La actividad de la arcilla se define como: A = PI / (C-10)

IP: Índice Plástico

C = % < 0.002 mm

Métodos indirectos de determinación del potencial expansivo del suelo

Estos métodos consisten en predecir el potencial expansivo del suelo de una

forma cualitativa, en base a medidas directas de la expansión del suelo sobre

muestras re moldeadas compactadas en condiciones prefijadas de humedad y

densidad.

Los métodos más utilizados son el de “ Ladd y Lambe” auspiciado por la Federal

Housing Administration y el método de “ PVC “ o método de la medida del cambio

volumétrico.

Métodos directos de la expansión del suelo.

Page 29: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

28 FACULTAD DE INGENIERIA - UPLA

Estos métodos consisten en medir la expansión del suelo al saturarlo bajo

diferentes condiciones de carga, graficándose las variaciones de hinchamiento

para diferentes presiones aplicadas.

Es universalmente aceptado que los dos parámetros que definen el potencial de

hinchamiento son:

Presión de hinchamiento (PS) definida como la presión aplicada en laboratorio

sobre una muestra de suelo expansivo para que, una vez en contacto con agua,

la probeta mantenga constante su volumen inicial, es decir que la variación de

volumen sea nula.

Hinchamiento libre (Hc) definido como el % de la elevación máxima para

presión nula en relación a la longitud inicial de la probeta.

Las medidas de estos parámetros se realizan fundamentalmente mediante

pruebas edométricas o en técnicas basadas en la succión, tendiendo a simular

los factores relevantes que sigue el fenómeno cuando se desarrolla in situ. Para

lograr este objetivo se han propuestos innumerables metodologías

experimentales que siguen operativas distintas, cuando no opuestas. Las

principales divergencias radican en:

• Forma de simular las condiciones de campo en el edómetro

• Tamaño y forma de la muestra

• Valor de la humedad inicial del ensayo

• Magnitud de la precarga y secuencias de cargas

• Momento de saturación

• Mecanismos para medir el hinchamiento

• Número de muestras que intervienen en el ensayo.

Es por esto que la abundante bibliografía internacional disponible evidencia

marcadas discrepancias en los valores finales obtenidos y que la predicción del

comportamiento resulte fuertemente influenciada por aquellas variables, más

precisamente, por el camino de tensiones seguido y por el criterio de saturación

utilizado.

Page 30: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

29 FACULTAD DE INGENIERIA - UPLA

Por lo expuesto la definición de hinchamiento no es tan simple como la definida

con anterioridad, ya que está supeditada al procedimiento experimental utilizado

para su cuantificación.

Si bien estos métodos constituyen el procedimiento más adecuado para predecir

la expansión del suelo, además de las dificultades señaladas, tienen el

inconveniente de requerir un equipamiento bastante completo (celdas de

cargas, pesas, etc.), no disponibles en los laboratorios de uso común en

ingeniería.

FACTORES QUE INTERVIENEN EN EL FENÓMENO DE LA EXPANSIÓN

El potencial expansivo de un suelo (presión de hinchamiento y elevación)

dependen, como mínimo, de las siguientes variables:

Naturaleza y tipo de arcilla.

La composición mineralógica de la arcilla (porcentajes de illita, caolinita y

montmorillonita) que está compuesto la arcilla resultan fundamentales en cuanto

al potencial expansivo del suelo.

Los suelos expansivos por excelencia son aquellos que tienen altos porcentajes

de montmorillonita.

Humedad inicial

El elemento “catalizador” del fenómeno de la expansión, es precisamente, la

variación en el contenido de humedad del suelo. Por más montmorillonita que

esté compuesta una arcilla, si no hay variación en el contenido de humedad del

suelo, no habrá cambios volumétricos.

No es necesario que el suelo se sature completamente para que produzca

expansión del mismo.

Page 31: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

30 FACULTAD DE INGENIERIA - UPLA

Por el contrario, en determinados casos, es suficiente variaciones en el

contenido de humedad del suelo de sólo 1 o 2 puntos porcentuales, para causar

hinchamientos y producir daños estructurales.

El contenido de humedad inicial del suelo controla la magnitud del asentamiento.

Arcilla “secas”, con contenido de humedad por debajo del 15 % indican un riesgo

de expansión alto, pues fácilmente pueden llegar absorber contenidos de

humedad de 35 % con las consecuentes daños estructurales.

Por el contrario, arcillas cuyo contenido de humedad está por encima del 30 %

indica que la mayoría de la expansión ya ha tenido lugar y sólo es esperable

algún leve hinchamiento remanente.

Peso específico seco del suelo

Muy relacionada con la humedad inicial, el peso específico seco del suelo es otra

variable fundamental en el proceso expansivo del suelo.

La densidad seca de una arcilla se ve reflejada en valores altos en los resultados

en el ensayo de penetración estándar. Valores de "N" inferiores a 15 indican

densidades secas bajas y riesgo expansivo bajo, aumentando significativamente

estos a medida que aumenta el valor de “N”.

Características plásticas del suelo

Como ya fue explicado anteriormente las propiedades plásticas del suelo juegan

un importante papel en el fenómeno expansivo

Potencia del estrato activo

Page 32: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

31 FACULTAD DE INGENIERIA - UPLA

A través de ensayos de laboratorio sobre muestras de un mismo suelo,

compactadas al mismo grado densidad y humedad inicial, se ha estudiado el

efecto del espesor del estrato en la magnitud total del hinchamiento.

Los resultados mostraron que la magnitud del cambio volumétrico

experimentado es proporcional al espesor del estrato, mientras que la presión

de expansión se mantiene constante.

Esto nos estaría indicando que si una estructura es capaz de trasmitir una

presión uniforme y constante a profundidades importantes debajo de la

fundación se podría contrarrestar el fenómeno de cambio volumétrico. Pero

como sabemos esto no es posible, ya que, a medida que aumentamos la

profundidad, la presión trasmitida por la zapata de fundación disminuye y por lo

tanto no constituye un método efectivo para el control de la expansión.

Fatiga de la expansión

En muestras sometidas en laboratorio a ciclos de saturación y disecado

mostraron señales de fatiga después de varios ciclos.

Este fenómeno no ha sido todavía suficientemente investigado.

Se ha notado en pavimentos sometidos a variaciones estacionales en el

contenido de humedad del mismo que tienden a un cierto punto de estabilización

luego de un cierto número de años.

En el gráfico adjunto se puede ver una curva de fatiga típica de las obtenidas en

ensayos de laboratorio.

Page 33: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

32 FACULTAD DE INGENIERIA - UPLA

2.1.2.3. SUELOS COLAPSABLES

Reginatto (1977) señala que, en general, los suelos colapsables presentan una

serie de características comunes, tales como:

Estructura macroporosa, con índice de huecos (e), entre relativamente

alto, a muy alto.

Granulometría predominantemente fina, con predominio de fracciones de

limos y de arcilla. El tamaño de los granos es generalmente poco

distribuido y con los granos más grandes escasamente meteorizados. La

mayoría de las veces, la cantidad de la fracción arcilla es relativamente

escasa, pero sin embargo, tiene una influencia importante en el

comportamiento mecánico de la estructura intergranular.

Estructura mal acomodada, con partículas de mayor tamaño separadas

por espacios abiertos, y unidas entre sí por acumulaciones o "puentes"

de material predominantemente arcilloso. En muchos casos existen

cristales de sales solubles insertados en tales puentes o uniones

arcillosas.

Zur y Wisemam (1973) definen como colapso a cualquier disminución rápida

de volumen del suelo, producida por el aumento de cualquiera de los

siguientes factores:

o Contenido de humedad (w)

o Grado de saturación (Sr)

Page 34: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

33 FACULTAD DE INGENIERIA - UPLA

o Tensión media actuante (τ)

o Tensión de corte (σ)

o Presión de poros (u)

Reconociendo por lo tanto que el colapso de la estructura del suelo puede

producirse por una variedad de procesos diferentes de la saturación.

Reginatto (1977) sugiere que, a esta lista de factores puede agregarse la

interacción química entre el líquido saturante y la fracción arcillosa.

A efectos de definir y diferenciar los distintos tipos de colapso Uriel y Serrano

(1973,1974) clasifican a los suelos colapsables o desmoronables en:

Grupo I: Suelos en los que tiene lugar un rápido cambio de la relación entre

presiones efectivas y las deformaciones sin que se alcance la resistencia

última del material. De acuerdo con esto la causa del colapso es únicamente

el cambio de las presiones efectivas. A este grupo pertenecen los limos o

arcillas cementadas y las rocas de gran porosidad. Cuando se ensaya a

humedad constante, se detecta una notable modificación de su módulo de

compresibilidad al alcanzar un cierto valor las presiones efectivas.

Grupo II: Suelos en los que, sin la presencia o cambio de las condiciones que

producen el colapso, no hay cambio abrupto en la relación presión-

deformación. Tal es el caso de los loess y algunas arcillas que contienen

sulfatos. Si se ensayan a humedad constante, la relación tensión-

deformaciones es una curva suave y continua y sin agudos quiebros. La

saturación produce, sin embargo, un importante cambio volumétrico, debido

probablemente a un incremento de la presión de los poros que origina el

agotamiento de la resistencia al corte del suelo.

Suelos colapsables por humedecimiento:

Establecida la definición general de colapso, nuestro análisis se centrará en

aquellos suelos en los cuales el colapso de la estructura del suelo es

provocado por un incremento del contenido de humedad. Por lo tanto, en lo

sucesivo cuando se hable de suelos colapsables, se entenderá que son

aquellos suelos, en que un aumento en el contenido de humedad, provoca

una brusca disminución de volumen, sin la necesidad de un aumento en la

presión aplicada.

Page 35: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

34 FACULTAD DE INGENIERIA - UPLA

A partir de esta definición, se advierte:

o Por un lado una destrucción o un cambio en la estructura que el suelo

tenía originalmente, y

o Por el otro lado, un agente externo: el agua, que provoca este

fenómeno.

En la Mecánica de Suelos clásica de los suelos saturados o de los suelos

secos el fenómeno de colapso generalmente viene asociado a un cambio en

el estado tensional del suelo. En cambio aquí, y en una primera definición,

estaría provocado por un agente externo (cambio en el contenido de

humedad).

En el proceso de consolidación de suelos saturados (Teoría clásica de

Terzaghi) también se produce una disminución de volumen, pero puede

decirse que en muchos aspectos el colapso es lo contrario de la

consolidación, tal como se indica en Reginatto (1977).

METODOS DE IDENTIFICACIÓN

A partir de la década de los años 50, se generó una preocupación manifiesta

por parte de diferentes investigadores, en identificar y clasificar la

potencialidad al colapso en los distintos suelos.

Estos intentos a escala mundial se han enfrentado fundamentalmente con

dos inconvenientes o limitaciones, como son:

1. La gran variedad de tipos de suelos que colapsan por humedecimiento:

Así, por ejemplo, métodos probados en ciertos países o regiones en

determinados tipos de suelos no han podido hacerse extensivos a suelos de

otras zonas, cuyo origen geológico y genético es francamente diferente.

2. La frecuente heterogeneidad de los suelos colapsables por

humedecimiento: En este sentido hay coincidencia entre los investigadores,

que han estudiado suelos colapsables de distinto origen geológico. Así,

pueden encontrarse referencias tanto en investigadores que analizaron

suelos lateríticos o de origen eólico como el loess (Abeley y Abeley 1979;

Moretto, 1986) que en principio suelen considerarse como suelos

homogéneos. Es frecuente encontrar una variación en el grado de

cementación (por ejemplo, debido a carbonatos) en sólo algunos

Page 36: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

35 FACULTAD DE INGENIERIA - UPLA

centímetros. En otros casos esta heterogeneidad es debida a la presencia

de grandes macroporos dejados por raíces o insectos.

Esto ha llevado a una gran variedad de metodologías para establecer la

susceptibilidad al colapso de los suelos y una anarquía en la terminología

empleada en los diferentes países para su clasificación. Sin embargo, en la

mayoría de los casos, los diferentes investigadores o códigos han tendido a

discretizar el comportamiento del suelo frente al colapso en dos grupos:

suelos que colapsan bajo peso propio y suelos que colapsan bajo una carga

mayor.

Rocca (1985) ha confeccionado una tabla de equivalencias, con la

denominación que reciben en los distintos países.

Clasificación de los métodos de identificación de suelos colapsables:

En cuanto a los tipos de métodos de identificación propiamente dichos, varios

han sido los enfoques que se han propuesto. Estos podrían clasificarse en

tres grupos:

o Métodos basados en parámetros físicos de identificación de suelos,

tales como Peso Unitario, Límites de Consistencia, Granulometría,

etc.

o Métodos basados en ensayos mecánicos, principalmente en ensayos

edométricos.

o Métodos basados en la magnitud del colapso.

Métodos basados en parámetros físicos de suelos

En general, la mayoría de estos métodos de identificación tienen más bien un

carácter cualitativo que cuantitativo, pretendiendo ubicar el suelo analizado en

algunos de los grupos mencionados en. La clasificación consiste, habitualmente

en establecer si el suelo es autocolapsable (colapsable bajo su propio peso) o

bien si es condicionalmente colapsable (colapsable bajo carga externa).

Métodos basados en ensayos edométricos

Estos métodos están basados en la Presión Inicial de Colapso o Presión de

Fluencia. La determinación del grupo al cual pertenece el suelo estudiado (auto

Page 37: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

36 FACULTAD DE INGENIERIA - UPLA

colapsable o colapsable bajo carga), se realiza comparando la presión de tapada

o geostática con la presión a la cual se produce el colapso. Asumiendo como

hipótesis que el colapso por humedecimiento ocurre sólo a partir de una cierta

presión por encima de la cual, la resistencia estructural del suelo es superada.

La magnitud de esta presión, para la cual se produce el desmoronamiento de la

estructura del suelo, ha sido designada por algunos autores como (47):

Presión Inicial de Colapso (σi.col) (Abelev y Abelev, 1979) o

Presión de Fluencia Saturada (σf sat) (Reginatto, 1970).

Métodos basados en la magnitud del asentamiento por colapso

Los métodos basados en la magnitud del asentamiento por colapso se fundan

en determinar la magnitud del mismo de un perfil de suelos en un lugar

determinado, debido solamente a su peso propio.

2.1.2.4. SUELOS LICUABLES

La licuefacción de suelo describe el comportamiento de suelos que, estando

sujetos a la acción de una fuerza externa (carga), en ciertas circunstancias pasan

de un estado sólido a un estado líquido, o adquieren la consistencia de un líquido

pesado. Es un tipo de corrimiento, provocado por la inestabilidad de un talud. Es

uno de los fenómenos más dramáticos y destructivos y, además, más polémicos

y peor explicados que pueden ser inducidos en depósitos por acciones sísmicas.

Es más probable que la licuefacción ocurra en suelos granulados sueltos

saturados o moderadamente saturados con un drenaje pobre, tales como arenas

sedimentadas o arenas y gravas que contienen vetas de sedimentos

impermeables.

Durante el proceso en que actúa la fuerza exterior, por lo general una fuerza

cíclica sin drenaje, tal como una carga sísmica, las arenas sueltas tienden a

disminuir su volumen, lo cual produce un aumento en la presión de agua en los

poros y por lo tanto disminuye la tensión de corte, originando una reducción de

la tensión efectiva.

Los suelos más susceptibles a la licuefacción son aquellos formados por

depósitos jóvenes (producidos durante el Holoceno, depositados durante los

Page 38: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

37 FACULTAD DE INGENIERIA - UPLA

últimos 10,000 años) de arenas y sedimentos de tamaños de partículas similares,

en capas de por lo menos más de un metro de espesor, y con un alto contenido

de agua (saturadas). Tales depósitos por lo general se presentan en los lechos

de ríos, playas, dunas, y áreas donde se han acumulado arenas y sedimentos

arrastrados por el viento y/o cursos de agua. Algunos ejemplos de licuefacción

son arena movediza, arcillas movedizas, corrientes de turbidez, y licuefacción

inducida por terremotos.

Según cual sea la fracción de vacío inicial, el material del suelo puede responder

ante la carga bien en un modo de ablandamiento inducido por deformación o

alternativamente sufrir endurecimiento inducido por deformación. En el caso de

suelos del tipo ablandamiento inducido por deformación, tales como arenas

sueltas, los mismos pueden alcanzar un punto de colapso, tanto en forma

monótona o cíclica, si la tensión de corte estática es mayor que tensión de corte

estacionaria del suelo. En este caso ocurre licuefacción de flujo, en la cual el

terreno se deforma con una tensión de corte constante de valor reducido. Si el

terreno es del tipo endurecimiento inducido por deformación, o sea arenas de

densidad moderadas a altas, en general no ocurrirá una licuefacción por flujo.

Sin embargo, puede presentarse un ablandamiento cíclico a causa de cargas

cíclicas sin drenaje, tales como cargas sísmicas. La deformación durante cargas

cíclicas dependerá de la densidad del terreno, la magnitud y duración de la carga

cíclica, y la magnitud de inversión de la tensión de corte. Si es que ocurre una

inversión de la tensión, la tensión de corte efectiva puede ser nula, en cuyo caso

puede ocurrir el fenómeno de licuefacción cíclica. Si no ocurre inversión de las

tensiones, no es posible que la tensión efectiva sea nula, en cuyo caso puede

ocurrir el fenómeno de movilidad cíclica.

La resistencia de un suelo sin cohesión frente a la licuefacción dependerá de la

densidad del terreno, las tensiones de confinamiento, la estructura del terreno

(textura, antigüedad y cementación), la magnitud y duración de la carga cíclica,

y de si ocurre inversión de la tensión de corte.

La licuefacción de los suelos es un proceso observado en situaciones en que la

presión de poros es tan elevada que el agregado de partículas pierde toda la

resistencia al corte y el terreno su capacidad soportante. Se producen en suelos

granulares:

Arenas limosas saturadas

Arenas muy finas redondeadas (loess)

Page 39: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

38 FACULTAD DE INGENIERIA - UPLA

Arenas limpias

Rellenos mineros

Debido a la gran cantidad de agua intersticial que presentan, las presiones

intersticiales son tan elevadas que un seísmo, o una carga dinámica, o la

elevación del nivel freático, pueden aumentarlas, llegando a anular las tensiones

efectivas. Esto motiva que las tensiones tangenciales se anulen, comportándose

el terreno como un «pseudolíquido».

Si bien los efectos de la licuefacción han sido comprendidos desde hace mucho

tiempo, los ingenieros y sismólogos han tenido un recordatorio sobre su

relevancia a partir de los terremotos de 1964 ocurridos en Niigata, Japón y

Alaska.

Condición de un suelo para que sea licuable

Seed and Idriss (1982) consideran que un suelo puede licuar si:

El porcentaje en peso de partículas <0,005 mm es menor del 15%

LL<35

w/LL>0,9

A este criterio se le conoció como criterio chino.

Cálculo

Los estudios de la licuefacción sísmica de Seed (1966) llevaron a postular las

siguientes condiciones:

Si la presión de poros inducida por la acción dinámica o cíclica del terremoto

alcanza el valor de la presión de confinamiento, el suelo alcanzará el estado de

licuefacción inicial

Si la arena sometida a acción cíclica alcanza el 20% de deformación se

alcanzará la licuefacción total.

Estudio

Page 40: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

39 FACULTAD DE INGENIERIA - UPLA

El limitado conocimiento relativo a este fenómeno se debe en gran parte a dos

factores:

Dificultad en observar sus características en condiciones reales.

Complejidad del fenómeno, pues para además de ser el resultado de una acción

símica de carácter altamente variable, induce en el suelo un comportamiento

fuertemente no lineal e histerético, con fuerte degradación de las características

mecánicas del suelo de cada ciclo determinada por la generación de presiones

neutras en la muestra bajo acción sísmica.

Uno de los problemas fundamentales es el conocimiento rudimentario sobre los

mecanismos de rotura y deformación asociados al fenómeno de la licuefacción,

lo que limita el uso de ensayos elementales para estudiarlo.

No existe una definición única para el fenómeno de la licuefacción.

Una definición general y cualitativa para este fenómeno, capaz de producir

grandes deformaciones en el terreno y de las estructuras en él existentes,

asociado a gran degradación de las características mecánicas de los suelos

granulares debido a la generación o migración del exceso de presión neutra

resultante de la acción cíclica producida por sismos en condiciones por lo menos

parcialmente no drenadas.

Licuefacción inducida por terremoto

Un mapa de susceptibilidad a la licuefacción - extracto de un mapa del Servicio

Geológico de los Estados Unidos de la zona de la bahía de San Francisco.

Numerosas zonas en esta área poseen una urbanización de alta densidad.

La licuefacción inducida por terremoto es uno de los principales contribuyentes

al riesgo sísmico urbano. Las sacudidas hacen que aumente la presión de agua

en los poros lo que reduce la tensión efectiva, y por lo tanto disminuye la

resistencia al corte de la arena. Si existe una corteza de suelo seco o una

cubierta impermeable, el exceso de agua puede a veces surgir en la superficie a

través de grietas en la capa superior, arrastrando en el proceso arena licuificada,

lo que produce borbotones de arena, comúnmente llamados "volcanes de

arena".

El estudio de características de licuefacción resabios de terremotos ocurridos en

épocas prehistóricas, llamado paleolicuefacción o paleosismología, puede

Page 41: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

40 FACULTAD DE INGENIERIA - UPLA

brindar gran cantidad de información sobre los terremotos que ocurrieron antes

de que existieran registros históricos o se pudieran realizar mediciones

precisas.5

Arenas movedizas

Las arenas movedizas se producen cuando una zona de arenas sueltas que está

saturada con agua es agitada. Cuando el agua que se encuentra atrapada en el

bloque de arena no puede escapar, se licúa el suelo y pierde la capacidad de

soportar pesos. La arena movediza se puede formar por un flujo en ascenso de

aguas subterráneas (como el que proviene de un manantial natural), o a causa

de terremotos. En el caso de un flujo de agua subterráneo, la fuerza producida

por el flujo de agua se contrapone a la fuerza de gravedad, produciendo la

flotación de los granos de la arena. En el caso de terremotos, la fuerza de la

sacudida puede aumentar la presión de aguas subterráneas próximas a la

superficie, y en el proceso licuar los depósitos de arena y sedimentos de la

superficie. En ambos casos, la superficie que se licúa pierde resistencia, lo que

desestabiliza a los edificios u otras estructuras que se encuentran en la superficie

produciendo se inclinen o derrumben. Los sedimentos saturados pueden parecer

sumamente sólidos hasta el instante en que un cambio en la presión del suelo o

una sacudida disparan el proceso de licuefacción. dicho proceso hace que la

arena forme una suspensión en la cual cada grano pasa a estar rodeado por una

delgada película de agua. Esta configuración le otorga a las arenas movedizas,

y otros sedimentos licuados una textura esponjosa similar a la consistencia de

un fluido. Los objetos que se encuentran envueltos en arenas movedizas se

hundirán hasta el nivel en el cual el peso del objeto se iguale con el peso

desplazado de la mezcla de arena y agua y el objeto "flote" de acuerdo al

principio de Arquímedes.

Arcillas rápidas

Las llamadas arcillas rápidas o arcillas marinas, también conocidas en Canadá

como arcillas de Leda o quick clays, es un tipo particular de arcilla sumamente

sensible, que al ser perturbada posee la tendencia a cambiar su estado desde

uno relativamente rígido a un estado líquido. En reposo, las arcillas rápidas

parecen un gel hidrosaturado. Sin embargo, si se toma un bloque de arcilla y se

Page 42: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

41 FACULTAD DE INGENIERIA - UPLA

le golpea, instantáneamente toma la constitución de un fluido, mediante un

proceso conocido como licuefacción espontánea. Las arcillas rápidas se

comportan así porque, aunque son sólidas, tienen un altísimo contenido de agua,

que puede ser de hasta un 80%. La arcilla retiene una estructura sólida a pesar

de su alto contenido acuoso, porque la tensión superficial del agua mantiene

"escamas" de arcilla unidas en una delicada estructura. Cuando la estructura se

quiebra por un golpe, la arcilla cambia su estado y se transforma en un fluido.

Las arcillas rápidas se encuentran por lo general en regiones ubicadas en el

norte del hemisferio norte en países tales como Rusia, Canadá, Alaska en

Estados Unidos, Noruega, Suecia, y Finlandia, todas estas zonas fueron

cubiertas por glaciares durante el Pleistoceno.

Las arcillas rápidas han sido la causa subyacente de muchos corrimientos de

tierra mortales. Sólo en Canadá, se le ha asociado con más de 250 movimientos

de tierra identificados. Algunos de ellos son antiguos, y pudieron haber sido

confundidos con sismos.

Corrientes de turbidez

Los corrimientos de tierra submarinos son corrientes de turbidez y consisten del

desplazamiento de sedimentos saturados por el agua que fluyen hacia las

profundidades marinas. Un ejemplo de este fenómeno tuvo lugar durante el

Terremoto de Grand Banks de 1929 que ocurrió en la plataforma continental

cerca de la costa de Terranova. A los pocos minutos de ocurrido, varios cables

submarinos empezaron a romperse en secuencia, en puntos cada vez más

alejados a lo largo del talúd, y alejándose del epicentro. En total se partieron

doce cables en un total de 28 lugares. Los tiempos exactos y sitios en que se

produjo cada rotura fueron determinados con precisión. Los investigadores

sugirieron que un deslizamiento submarino o corriente de turbidez de sedimentos

saturados por el agua que se desplazó a una velocidad de 100 km/h y se propagó

hacia abajo por la plataforma continental a lo largo de un recorrido de 600 km,

partiendo los cables a su paso.

Page 43: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

42 FACULTAD DE INGENIERIA - UPLA

CAPITULO III

SISTEMA DE HIPOTESIS

3.1. HIPOTESIS

3.1.1. HIPOTESIS GENERAL

Las cimentaciones están afectadas directamente por suelos difíciles en las

edificaciones del Perú en el año 2013.

3.1.2. HIPOTESIS ESPECÍFICAS

Page 44: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

43 FACULTAD DE INGENIERIA - UPLA

Los agrietamientos de la estructura tienen incidencia por los suelos difíciles en

las edificaciones del Perú en el año 2013.

Los asentamientos se relacionan a los suelos difíciles en las edificaciones del

Perú en el año 2013.

3.1. INDICADORES DE LAS HIPOTESIS

3.1.1. CONSECUENCIAS DE LAS CIMENTACIONES SOBRE SUELOS DISPERSIVOS EN EL

PERU.

Es conocido que la acumulación de cationes dispersantes como el sodio

en la solución del suelo, afecta negativamente algunas propiedades físicas

del mismo, tales como la estabilidad estructural, la conductividad hidráulica

y la tasa de infiltración, causando una reducción de su capacidad productiva

y estabilizante

En las represas ocurren fallas por tubificación debidas a suelos dispersivos, se

presentan en el cuerpo de la presa: en sus paramentos, en contactos con la

fundación o con los conductos. Hay muy pocos casos por debajo de sus

cimientos. Aún el mismo peso de la presa puede cerrar las incipientes. Al

parecer las aguas subterráneas con altos contenidos de sales impiden el lavado

de los iones sodio en las arcillas dispersivas, y el reemplazo gradual por aguas

más limpias procedentes del reservorio permite que los suelos disminuyan su

contenido de sodio en el agua de poro.

Page 45: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

44 FACULTAD DE INGENIERIA - UPLA

Ya que los suelos dispersivos no son fácilmente detectables sin estudios de

laboratorio, puede ocurrir que al momento de realizar una carretera o hacer

taludes, éstos deslicen y colapsen bajo lluvias fuertes o filtraciones de agua si no

se refuerzan contra la erosión.

Las edificaciones, de cualquier envergadura, si no poseen el estudio adecuado

de suelos, podrían presentar problemas de asentamiento y/o colapsar debido a

la socavación de sus bases.

3.1.2. CONSECUENCIAS DE LAS CIMENTACIONES SOBRE SUELOS COLAPSABLES EN

EL PERU.

Los suelos colapsables son materiales cuyo volumen disminuye rápidamente al

contacto con el agua, lo que trae asociado una pérdida rápida de resistencia y

un desmoronamiento de su estructura interna.

El colapso es la disminución instantánea y espontánea de volumen que

experimenta un suelo no saturado y sometido a sobrecarga al alcanzar cierto

grado de humedad cercano a la saturación. El aumento de humedad en los

suelos podría deberse fundamentalmente a riego de jardines, lluvias,

inundaciones, ascenso de napa freática, filtraciones del sistema de agua potable

y roturas accidentales de ductos durante terremotos.

Los siguientes términos han sido aplicados a este fenómeno: colapso,

hidroconsolidación, hidrocompresión, hidrocompactación. La literatura

especializada ha denominado al fenómeno colapso y al suelo que lo sufre

colapsible o colapsable. Este fenómeno es de estudio reciente y aunque esta

situación fue reconocida tempranamente por Terzaghi, sólo después de la II

Guerra Mundial se comienza a mencionar este problema.

Los suelos colapsables son abundantes en muchas partes del mundo,

llegándose a la conclusión que este fenómeno ocurre en una gran variedad de

suelos de cimentación, incluso en terreno compactado y muy especialmente en

zonas áridas, en las cuales existen condiciones de desecación, debido a lo

prolongado de las sequías y a la profundidad que se encuentra el agua freática.

Se admite que hay suelos colapsables de formación eólica, coluvial, aluvial,

residual, ceniza volcánica y rellenos hechos por el hombre.

Page 46: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

45 FACULTAD DE INGENIERIA - UPLA

Investigaciones afirman que todos los problemas de colapso que se han

estudiado hasta el momento han ocurrido en suelos que presentaban

características fundamentales en común. Por un lado una estructura suelta

manifestada, por ejemplo, por una relación de vacíos relativamente alta y por otro

lado, un contenido de agua menor que el correspondiente a la saturación.

Pueden considerarse mecanismos de colapso que varían en función del tipo de

estructura, del contenido de las partículas y de sus enlaces, del tipo de

deposición del material y del contenido de humedad.

Una característica esencial de nuestros suelos colapsables es que tienen una

densidad baja y un grado de saturación también bajo, todo parece indicar que al

disminuir el grado de saturación la susceptibilidad al colapso es mayor, esta es

la razón por la que los problemas tienden a aparecer con mayor frecuencia en

las zonas de fuerte desecación, también exhiben una cohesión temporal como

resultado de la presencia de materiales cementantes tales como el yeso y el

carbonato de calcio. La cohesión aparente es el resultado de la resistencia

friccional al corte en la cual los esfuerzos normales efectivos provienen de la

presión de poro negativa que es la succión en el suelo. En todo caso la condición

de clima árido o de intensa evaporación superficial no es indispensable, ya que

han ocurrido casos de colapso cuando se humedecen suelos también en

regiones no áridas. En general, los cambios de los factores externos, la humedad

principalmente y la naturaleza del electrolito que interviene en el fenómeno, son

los que de una forma u otra, afectan la matriz succión del suelo (diferencia entre

la presión del aire y del agua), a los enlaces y pueden causar el cambio brusco

de volumen que se denomina colapso. La causa desencadenante del colapso es

la presencia de agua, conjuntamente con un esfuerzo significativo aplicado.

Los mecanismos de colapso pueden variar en función del contenido mineralógico

de las partículas y de sus enlaces, del tipo de estructura, del tipo de deposición

del material, del contenido de humedad y otros factores de naturaleza electro-

química.

En la mayoría de los casos de colapso investigados por nosotros hasta la fecha

son suelos con estructura panaloide y granos redondeados unidos entre si por

alguna clase de cementación. En todos los casos, esta cementación era

susceptible de ser disuelta cuando el suelo absorbía agua. El mecanismo de

colapso es lógicamente un derrumbe de los granos hacia los vacíos,

precisamente cuando desaparece la cementación entre ellos. Así hemos

Page 47: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

46 FACULTAD DE INGENIERIA - UPLA

detectado que los mecanismos de colapsos más frecuentes en suelos granulares

secos son la disolución de la cementación por sales solubles o la destrucción, de

un ordenamiento paralelo de agregados de arcilla residual que enlazaban a. los

granos. En suelos granulares semi-saturados es la pérdida de la resistencia al

corte temporal entre los granos dada por la tensión capilar negativa entre ellos.

En arcillas el mecanismo es la reorientación de las partículas desde una

estructura floculada hacia formas mas dispersas.

En nuestro país han ocurrido casos de fallas en suelos colapsables que los

hemos estudiado detenidamente en Pisco, La Joya, y últimamente en Ventanilla

entre otros numerosos, que nos han permitido verificar algunos métodos simples

de identificación de estos suelos, los mismos que se indican en la Tabla I y la

Figura 1. estableciéndose además una comparación entre la cantidad de sales

solubles en los suelos colapsables de Ventanilla, Pisco y La Joya con la

agresividad sulfática correspondiente, con el fin de probar que un suelo

altamente colapsable también puede presentar severa agresividad sulfática al

mismo tiempo que suelos con insignificantes cantidades de sales solubles (caso

de Ventanilla), no necesariamente tienen que ser altamente agresivos al

cemento y menos por esta causa originar asentamientos importantes como los

que se presentaron en este lugar, ya que de las investigaciones técnicamente

llevadas a cabo se determinó que en la mayoría de los casos los asentamientos,

en los suelos sueltos de origen coluvial de Ventanilla, se habían producido por

graves defectos constructivos tales como cimentación sobre rellenos no

compactos y conexiones domiciliarias de servicios de agua y desagüe con

graves defectos de instalación y calidad de sus materiales.

Page 48: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

47 FACULTAD DE INGENIERIA - UPLA

Page 49: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

48 FACULTAD DE INGENIERIA - UPLA

3.1.3. CONSECUENCIAS DE LAS CIMENTACIONES SOBRE SUELOS EXPANSIVOS EN EL

PERU.

Todos los suelos arcillosos se contraen durante el secado y se expanden cuando

son humedecidos, sin embargo los mayores problemas por cambio de volumen

son causados por suelos que contienen una cantidad significativa de mineral

montmorillonita y que normalmente exhiben limites líquidos superiores a 50%,

alto contenido de coloides é índices de plasticidad elevados.

Extensas áreas del norte de nuestro país están conformadas por suelos

arcillosos de alto poder expansivo, lo que ha dado lugar al desarrollo del estudio

Page 50: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

49 FACULTAD DE INGENIERIA - UPLA

de estos suelos en los últimos tiempos, principalmente en zonas que

comprometen áreas de expansión urbana y donde ha sido necesario construir

caminos, aeropuertos, proyectos de irrigación y edificaciones de todo tipo,

esencialmente livianas y de bajo costo.

Las arcillas son coloides con propiedades eléctricas tales que originan fuerzas

de interacción, o fuerzas físico-químicas, entre sus partículas o entre sus

partículas y el agua; considerándose que el proceso expansivo se debe a un

decrecimiento de los esfuerzo efectivos como una manifestación de las fuerzas

repulsivas que actúan entre las partículas del suelo, las mismas que son

originadas por los iones del componente difuso de la doble capa de agua que lo

rodea, la cual causa rechazo en las superficies coloides cargadas.

Desde el año 1965 se viene estudiando los problemas de las arcillas expansivas

del norte del Perú, donde aparentemente son los movimientos irreversibles los

que predominan en las arcillas y clima del lugar, levantamientos que son

similares a los ocurridos en otras partes del mundo, siendo menos

predominantes los debidos a cambios de clima seco a lluvioso y aún menos

importantes los movimientos anuales periódicos, hecho afortunado de nuestra

parte ya que estudios efectuados en diferentes países que sufren este mismo

fenómeno indican que los movimientos debidos a la variación estacional son

mucho más peligrosos que los movimientos irreversibles. Se ha establecido que

el grado de expansión de los suelos arcillosos expansivos del Perú fluctúa de

mediano a muy alto para hinchamiento libre medido en más de 2,000

especimenes de suelos típicos que varían de un mínimo de 5% a un máximo de

92% (caso excepcional de algunas arcillas de Talara), acusando la mayoría de

ellos pesos unitarios promedio de 1.90 gr/cm3 en estado seco y de 1.80 a 2.00

gr/cm3 en estado natural . Resultados de investigaciones efectuadas en este tipo

de suelos por el autor indican coincidencia con los presentados en el trabajo de

MARIN - NIETO, encontrando que para el caso de las arcillas peruanas el limite

de contracción evaluado tiene una variación de 13% a 22% para suelos

expansivos que han causado graves problemas en las edificaciones, datos que

no correlacionan con experiencias de otros lugares en los que se predicen

grandes cambios de volumen para limites de contracción menores de 10. Esta

misma situación ha sido también reportada por otros investigadores en USA y

posteriormente en Israel coincidiendo en que los suelos altamente expansivos

pueden sufrir también grandes contracciones.

Page 51: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

50 FACULTAD DE INGENIERIA - UPLA

Por otro lado, resultados de ensayos efectuados para establecer la "actividad de

las arcillas", índice que se correlaciona con la mineralogía o historia geológica,

de las muestras , indican que tampoco pueden tomarse como validos para los

suelos expansivos de Perú. En las arcillas peruanas se ha evaluado la "actividad"

para un número importante de muestras de suelo, calculándose sus respectivos

índices de plasticidad y porcentaje de partículas de arcilla para compararlas con

las correspondientes curvas termodiferenciales de los ensayos mineralógicos,

encontrándose para suelos “activos" que la fracción arcilla consistía

predominantemente de caolinita. A parte del caolín los miembros típicos de este

grupo lo forman suelos derivados de erosión mecánica de rocas no arcillosas y

arcillas post-glaciales o de estuario que subsecuentemente han sido depositadas

en agua dulce. Algunos ensayos químicos efectuados en estos suelos denotan

la presencia de carbonatos con un pH de 8 que corresponde a suelos básicos y

con presencia en ellos del ion sulfato.

En otro grupo de suelos ensayado, que se presume han sido formados por

desecado normal y depositados en agua dulce, y que corresponden a arcillas

marinas y de estuario con predominancia de ilitas como mineral de arcilla, se

encontró muy poca coincidencia.

Por último, en un tercer grupo de muestras ensayadas que acusan actividad

mayor de 1.25 y provienen de depósitos que contienen apreciable cantidad de

coloides orgánicos y cuyo mineral predominante puede atribuirse a la

montmorillonita cálcica, una sola muestra resultó con "actividad" mayor de 2 y

procede de un lugar donde se detectaron daños importantes en las edificaciones

de uno y dos pisos apoyadas en este suelo expansivo Estas muestras pueden

corresponder a arcillas "bentoníticas" cuyo mineral predominante generalmente

es la montmorillonita sódica. Similarmente para algunas muestras que tienen

características parecidas y en las que fue posible realizar ensayos químicos mas

o menos completos, para actividades mayores de 2 se les puede considerar

como montmorillonita sódica muy activa dado a que han producido también

daños considerables, detectándose además la presencia de pequeños lentes de

sales, deduciéndose que se trata de cloruro de sodio presumiblemente por el

origen marino de la formación geológica de la zona. Sin embargo, las arcillas que

originaron mayores daños y que han presentado expansión libre excepcional

hasta de 92%, no acusaron actividad muy marcada, apenas 1.64 como máximo.

De igual manera muestras de suelo extraídas de un mismo depósito y aún de

lugares muy cercanos de un sondaje a otro, indicaron variaciones importantes

Page 52: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

51 FACULTAD DE INGENIERIA - UPLA

con respecto a su “actividad",.por lo que es posible concluir que para algunos

suelos expansivos de la región norte del Perú, el porcentaje de arcilla y los

valores de contracción no pueden considerarse como validos para un buen

diagnóstico de los minerales de arcilla constituyentes y consiguientemente de su

probable grado de expansión, sin embargo, hemos encontrado coincidencia con

el parámetro “gradiente mineral" propuesto por MARIN-NIETO tal como se

muestra en la figura 3, en la que se han ubicado diez valores típicos de arcillas

expansivas peruanas junto a los resultados de los suelos ensayados en el

Ecuador.

Para contrarrestar los efectos que el suelo expansivo origina al producirse un

cambio en su equilibrio de humedad, con el consiguiente aumento de volumen,

Page 53: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

52 FACULTAD DE INGENIERIA - UPLA

es necesario adoptar una serie de procedimientos de construcción eligiendo el

método más eficiente de acuerdo al medio ambiente y tipo de suelo, dándole el

tratamiento adecuado que permita la cimentación en cada caso; tratamiento que

dependerá no sólo de la forma y tipo de estructura o de la magnitud de la

expansión a esperarse, sino también de otros factores adicionales, tales como la

variación del rango de expansión en el área ocupada por la estructura, la

variación del esfuerzo rotacional aplicado a la edificación como resultado de una

expansión diferencial y por último la influencia de la práctica constructiva local o

procedimientos de construcción utilizados en cada lugar y su incidencia en la

magnitud de los daños originados por el proceso expansivo.

De igual manera y consecuente con nuestra experiencia en los suelos

expansivos del Perú y después de una evaluación de laboratorio muy numerosa

hemos llegado a establecer una manera práctica de hallar el grado de expansión

de las arcillas en función de sus constantes de identificación, tal como se muestra

en la Tabla II:

El proceso más inmediato a la construcción de un edificio que ocupa una parcela

(hasta ese momento libre), es la modificación de la humedad natural del terreno

situado inmediatamente bajo la cota de cimentación. El suelo que se sitúa a poco

menos de 1 m bajo la rasante de terreno natural (una cota habitual de

cimentación) inicialmente se encuentra sometido a variaciones estacionales de

humedad bajo la influencia del régimen climático y pluviométrico local. En este

estadio, durante la mayor parte del año se produce una migración ascendente

de agua por fenómeno de capilaridad (ascendente desde la zona saturada

Page 54: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

53 FACULTAD DE INGENIERIA - UPLA

permanentemente) que es compensada por las pérdidas debidas a la

evapotranspiración.

Al ocupar el terreno con una edificación, un terraplén o un firme se elimina casi

siempre la posibilidad de evapotranspiración de la capa superficial del terreno,

provocando en poco tiempo un aumento de humedad en la misma (pues el

gradiente ascendente por capilaridad desde la capa saturada se mantiene hasta

alcanzar un nuevo equilibrio.)

Este efecto es más notable en las cimentaciones situadas en el interior del

perímetro edificado, dando lugar a la aparición de daños en forma de grietas que

se distribuyen por los cerramientos y tabiques “a quebranto”.

En otros casos, las zonas ajardinadas o no pavimentadas del perímetro de la

vivienda contribuyen a una aportación continua de agua (para el riego de

plantaciones de césped, por ejemplo) que puede afectar al estado de humedad

del terreno sobre el que se apoyan cimentaciones del contorno del edificio. En

este caso los daños apreciados se corresponden con la aparición de grietas en

los cerramientos y tabiques en geometría “de arrufo”.

Page 55: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

54 FACULTAD DE INGENIERIA - UPLA

Existen otros procesos susceptibles de dar lugar al hinchamiento del terreno: la

helada de determinadas tipologías de suelos (sedimentos lacustres o “varvas”)

en zonas de climatología severa (frío intenso y en presencia de humedad alta),

las modificaciones en la estructura cristalina de minerales deshidratados al tomar

agua (anhidrita transformada en yeso), y de otros fenómenos más o menos

exóticos que en ocasiones pueden confundirse con procesos expansivos

(pavimentos hinchados y deformados por el crecimiento de raíces, p.e.).

3.1.4. CONSECUENCIAS DE LAS CIMENTACIONES SOBRE SUELOS LICUABLES EN EL

PERU.

Falla de flujo causada por licuación

Corrimiento Lateral: El corrimiento lateral involucra el desplazamiento de

grandes bloques de suelo como resultado de la licuación. El desplazamiento

ocurre en respuesta a la combinación de las fuerzas de la gravedad y las

inerciales generadas por el sismo. Los corrimientos laterales se presentan por lo

general en pendientes suaves (comúnmente menores a los 3 grados) y se

incrementan en las cercanías a un canal o un río, tal como lo indican las

dimensiones de las flechas. La magnitud de los desplazamientos horizontales

generalmente varía en el orden de los metros. Las capas de suelos desplazados

en general presentan fisuras, fracturas, escarpes y hundimientos de bloques

(graben). Los desplazamientos laterales generalmente afectan las fundaciones

de edificios, puentes y líneas vitales.

Corrimiento lateral debido a licuación

• Oscilaciones del Terreno: Donde el terreno es plano o la pendiente demasiado

suave para permitir corrimientos laterales, la licuación de estratos subyacentes

puede causar oscilaciones que no dependen de las capas superficiales, la cual

se manifiesta hacia los lados, arriba y abajo en la forma de ondas de terreno. En

general, dichas oscilaciones son acompañadas por la apertura y cerramiento de

fisuras en el suelo, y la fractura de estructuras rígidas como los pavimentos y

tuberías.

Oscilación horizontal del terreno causada por licuación

Page 56: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

55 FACULTAD DE INGENIERIA - UPLA

• Pérdida de la Resistencia del Suelo de Soporte: Cuando el suelo que soporta

un edificio u otra estructura se licua y pierde su resistencia, se pueden presentar

grandes deformaciones en su interior, las cuales hacen que las estructuras

superficiales se asienten y se inclinen.

Pérdida de la resistencia del suelo de soporte por licuación

Susceptibilidad a la licuefacción. ¿Por que se licuan los suelos?

Es importante reconocer que la licuación no ocurre de manera aleatoria y que

por el contrario se requieren ciertos ambientes geológicos e hidrológicos, y que

ocurre principalmente en depósitos recientes de arena y limo con altos niveles

freáticos.

Entre más reciente, suelto y saturado sea un depósito de suelos granulares, será

mucho más susceptible a la licuación. Son más susceptibles las arenas finas

relativamente uniformes. Son menos susceptibles los depósitos bien gradados

con tamaños hasta de gravas, aunque éstas últimas ocasionalmente se licuan.

Son más susceptibles los suelos con partículas redondeadas que aquellos con

partículas angulares.

La licuación se ha presentado con mayor frecuencia en áreas con niveles

freáticos superficiales, a profundidades menores que 10 m. En muy pocos casos

se han registrado fenómenos de licuación en zonas con niveles freáticos a

profundidades superiores a los 20 m. Igualmente los suelos densos, incluyendo

los rellenos bien compactados, tienen baja susceptibilidad a la licuación.

Efectos de licuefacción.

Las evidencias de la licuefacción en el pasado, han sido usadas para evaluar los

peligros sísmicos en áreas donde los registros sobre esta causa son escasos.

El tema de la licuefacción se ubicó en el primer plano de la ingeniería geotécnica

antisísmica con los terremotos del año 1964 en Niigata, Japón y en Alaska.

En Niigata, la licuefacción causó desplazamiento lateral y pérdida de la

capacidad de soporte de los suelos.

SISMO DEL 31 DE MAYO DE 1970

• Uno de los casos mejor documentados de licuación de suelos en el Perú.

• La ciudad de Chimbote se ubica a 400 km al norte de Lima.

Page 57: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

56 FACULTAD DE INGENIERIA - UPLA

• El sismo fue de subducción con magnitud Ms = 7.8, profundidad focal de 45 km

y ocurrió 50 km costa afuera al oeste de Chimbote.

• La máxima intensidad fue de IX grados en la escala de Mercalli Modificada

• Desplazamiento lateral del terreno por licuación de depósitos deltaicos y de

playa.

• Agrietamiento del terreno y compactación diferencial en el centro de Chimbote

• Volcanes de arena y eyección de agua debido a licuación.

SISMOS DEL 29 DE MAYO 1990 Y 4 DE ABRIL DE 1991

• Dos sismos moderados en el nororiente peruano.

• El sismo del 29 de Mayo de 1990 tuvo una magnitud de mb= 6.0 y una máxima

intensidad sísmica de VII MM en Rioja.

• El sismo del 4 de Abril de 1991 tuvo una magnitud de mb= 6.5 y una máxima

intensidad de VII MM en Moyobamba.

• Los efectos en el terreno fueron: licuación de suelos, inestabilidad y erosión de

suelos en los taludes, asentamientos diferenciales y amplificación de suelos y

deslizamientos.

• Los sismos fueron producidos por fallas activas.

Page 58: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

57 FACULTAD DE INGENIERIA - UPLA

CAPITULO IV

DISEÑO METODOLOGICO

4.1. DECISIONES METODOLOGICAS

La Metodología a utilizar en esta investigación es cualitativa, ya que así lo requiere

el tema, porque al investigar teóricamente debemos poner en práctica esos

conocimientos, para ver si nuestros resultados dieron éxito, pero requeriría de mucho

más presupuesto para hacerlo. El estudio cualitativo, fue el indagar en libros y

revistas científicas; además de observar la práctica de las hipótesis en una

estructura.

4.2. MUESTRA DE ORGANIZACIÓN A ESTUDIAR

Se ha evaluado las técnicas de mejoramiento de estos suelos problemáticos,

mediante el enfoque cuantitativo materia primordial de la investigación que será

referida en la Propuesta de Análisis.

Aborde además investigar sobre las cimentaciones en suelos del Perú, para ver

si realizaron un estudio previo de su suelo y como este influencio en el tipo de

cimentación que se uso para esa estructura.

4.3. FORMAS DE ABORDAR LA INVESTIGACIÓN

Estos son los pasos en los que abordé la investigación.

• Definición del problema de investigación

• Construcción del marco teórico provisional

• Formulación de soluciones provisionales

• Recolección de datos

• Análisis de datos e interpretación de los resultados

• Desarrollo de conclusiones, recomendaciones e implicaciones basadas en lo

que se ha investigado

Page 59: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

58 FACULTAD DE INGENIERIA - UPLA

4.4. REVISIÓN LITERARIA.

Es en este paso donde se define el problema a investigar, se construye en marco

teórico preliminar y se formulan las hipótesis.

4.5. RECOLECCIÓN DE DATOS.

Se usaron diversas técnicas para la recolección de datos; tales como, la

observación, investigaciones en libros, internet, conferencias, videocintas e

investigación hechas por otras personas.

4.6. INDICADORES A OBSERVAR

A lo largo de la investigación observare con minuciosamente las diferencias de

un suelo a otro sus propiedades físicas relevantes para mi estudio, los diámetros

de las cimentaciones, así como su estructura y como se fabrican. Cuáles son los

materiales utilizados en el diseño de la cimentación de cierta estructura.

4.7. PROPUESTA DE ANALISIS

4.7.1. TECNICAS DE MEJORAMIENTO DE UN SUELO DISPERSIVO

A continuación se mencionarán las diversas soluciones para mitificar el problema

de los suelos dispersivos para la construcción y la agricultura.

Este tipo de suelos padece una destrucción de su estructura, y por tanto

al disminuir su porosidad, utilizar el lavado para su corrección no es muy

aconsejable, debido a la deficiencia de su drenaje. La recuperación, por

tanto, tiene que ser abordada mediante la eliminación de sodio de cambio

(rebajar el pH) aplicando yeso, cal viva, entre otros productos, que

reaccionarían con el carbonato sódico, formando carbonato cálcico y

sulfato sódico (álcali blanco).

Es necesario implantar cultivos, a ser posible de regadío y resistentes a

las sales, así como la incorporación de enmiendas orgánicas.

La enmienda con yeso representa una alternativa adecuada para corregir

problemas de suelos dispersivos. La adición de yeso, mediante la

disminución del Na intercambiable, produce una recuperación en las

Page 60: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

59 FACULTAD DE INGENIERIA - UPLA

condiciones físicas del suelo, repercutiendo en un incremento de la

productividad de forraje y posibilitando una mejor utilización del

fertilizante por parte del cultivo.

En la agricultura la solución más factible es hacer cruzamientos con

plantas tolerantes a la salinidad o utilizar el pasto vetiver para estabilizar

las zonas dispersivas en conjunción con unas obras menores y la siembra

de pastos estolonìferos entre filas de pasto vetiver. Las barreras de pasto

vetiver se siembran en ángulos rectos al flujo del agua y a lo largo de la

curva de nivel extendiéndose a la profundidad máxima del flujo del agua

en la hondonada para detener el impacto que tendría el agua que fluyese

alrededor de los extremos. Debe tenerse en cuenta que la profundidad

del flujo aumentaría en la hondonada con barreras de pasto vetiver

debido al retardamiento ocasionado por el fluir del agua a través del pasto

vetiver.

Asimismo, en la agricultura, se utilizan fertilizantes de bajo contenido

sódico y mayor contenido de calcio a fin de abonar el suelo y reducir su

salinidad. Si el agua de riego es de baja calidad, se recomienda utilizar

bajas dosis de fertilizante pero aplicarlo frecuentemente.

Cuando se ha identificado la extensión y la profundidad de la zona

dispersiva se puede proceder a la remoción del suelo erosionable,

siempre que este procedimiento sea económicamente factible.

Para las carreteras se utiliza una combinación de drenajes, sub-drenajes,

pavimentos impermeables y reglamentos para el uso de agua con el fin

de crear una restricción severa del humedecimiento.

En un terraplén debidamente gradado se puede realizar un

“recubrimiento impermeable” este recubrimiento se realiza colocando una

capa doble geotextil impermeable debajo, y geotextil no tejido encima.

En las laderas con una pendiente <20% se realiza un recubrimiento

vegetativo que consiste en sembrar especies vegetales sobre geomalla,

diseñada para el efecto, con restricciones laterales en maderas o cañas

colocadas paralelamente a la curva de nivel.

Los suelos dispersivos pueden mejorarse si se mezclan con cal. Sin

embargo, factores económicos en ocasiones no justifican tal mejoramiento

para todos los materiales por emplear. En estos casos, se pueden

seleccionar zonas críticas del sitio en proyecto para colocar materiales

mejorados. Estas zonas son aquéllas en donde se concentra el flujo de agua,

Page 61: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

60 FACULTAD DE INGENIERIA - UPLA

tal como alrededor del portal de salida de conductos, superficie de contacto

entre la cimentación rocosa y estructuras rígidas, zonas de esfuerzos de

tensión y agrietamiento potencial, aguas abajo de un corazón impermeable,

o zonas inmediatamente aguas arriba de los filtros que son colocados aguas

abajo.

TIPOS DE MEJORAMIENTO DE SUELOS.

Mejoramiento física.

Se utiliza para mejorar el suelo produciendo cambios físicos en el mismo.

Hay varios métodos como lo son:

Mezclas de Suelos: este tipo de estabilización es de amplio uso pero por si

sola no logra producir los efectos deseados, necesitándose siempre de por

lo menos la compactación como complemento.

Las arcillas, por lo contrario, tienen una gran cohesión y muy poca fricción lo

que provoca que pierdan estabilidad cuando hay mucha humedad.

La mezcla adecuada de estos dos tipos de suelo puede dar como resultado

un material estable en el que se puede aprovechar la gran fricción interna de

uno y la cohesión del otro para que las partículas se mantengan unidas.

Geo textiles

Vibro flotación (Mecánica de Suelos)

Consolidación Previa

Mejoramiento química.

Se refiere principalmente a la utilización de ciertas sustancias químicas

patentizadas y cuyo uso involucra la sustitución de iones metálicos y cambios

en la constitución de los suelos involucrados en el proceso. Dentro de este

grupo de estabilización, las sustancias química más común son: el cal.

Cal: disminuye la plasticidad de los suelos arcillosos y es muy económica.

Otros productos también utilizados son:

Productos Asfálticos: es una emulsión muy usada para material triturado sin

cohesión.

Page 62: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

61 FACULTAD DE INGENIERIA - UPLA

Cloruro de sodio: impermeabilizan y disminuyen los polvos en el suelo,

principalmente para arcillas y limos.

Cloruro de calcio: impermeabilizan y disminuyen los polvos en el suelo,

principalmente para arcillas y limos.

Mejoramiento mecánica.

Es aquella con la que se logra mejorar considerablemente un suelo sin que

se produzcan reacciones químicas de importancia.

Compactación: esta mejora generalmente se hace en la sub-base, base y en

las carpetas asfálticas.

4.7.2. TECNICAS DE MEJORAMIENTO DE UN SUELO COLAPSABLES

La primera cuestión que debe analizarse cuando se diseñan cimentaciones en

suelos susceptibles al colapso, es la probabilidad que el agente desencadenante

del fenómeno, el agua, pueda o no introducirse en el terreno y por ende

"sensibilizar" al suelo en donde se apoyarán las estructuras. Por definición, sin la

presencia del agua, el suelo no colapsa. Esta cuestión es significativa, puesto que

pueden existir numerosos casos en donde la probabilidad que el agua se infiltre

en el suelo sea lo suficientemente baja como para analizar la posibilidad de fundar

la estructura, considerando el comportamiento del suelo en su estado natural. Por

lo tanto cuando se hable de suelos potencialmente colapsables por

humedecimiento, no debe pensarse unívocamente en las soluciones ingenieriles

que se utilizan en suelos colapsables.

Hecha esta aclaración, a continuación, se tratará de ofrecer un panorama de las

distintas soluciones ingenieriles que se adoptan en suelos colapsables por

humedecimiento, cuando las probabilidades de que se produzca el fenómeno son

altas.

El objetivo central de todas estas soluciones es prevenir las fallas estructurales o

de servicio que pueden sobrevenir sobre las estructuras construidas sobre

estratos de suelos colapsables.

Aitchison (1973) divide a estas soluciones en:

a) Tratamiento del suelo colapsable con vista a eliminar la tendencia al colapso a

lo largo de todo el estrato de suelos desmoronables.

Page 63: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

62 FACULTAD DE INGENIERIA - UPLA

b) Diseño de elementos constructivos que eliminen o disminuyan a límites

razonables la posibilidad que se inicie el colapso.

c) Diseño de estructuras y/o cimentaciones insensibles a los asentamientos

provocados por el colapso, por ejemplo, fundaciones profundas apoyadas sobre

un manto profundo no sujeto a los asentamientos por humedecimiento.

El primer grupo de soluciones comprende los métodos de mejoramiento de suelo,

por medio de los cuales la susceptibilidad al colapso es eliminada, modificando

las propiedades resistentes del suelo mediante la compactación o la cementación

de los vínculos entre partículas. El segundo grupo incluye la adopción de medidas

constructivas tendientes a aislar el agua, de manera de evitar o disminuir la

presencia de condiciones favorables al colapso, admitiendo no obstante ciertos

riesgos. Finalmente, el tercer grupo engloba tanto las soluciones tradicionales por

medio de fundaciones profundas, como el diseño de estructuras con fundaciones

directas insensibles a los asentamientos diferenciales provocados por el colapso

del suelo. En resumen, en el primer grupo de soluciones se interviene

directamente en el suelo, evitando así el colapso; en el segundo grupo se intenta

evitar que se produzca el colapso, sin modificar el suelo; y en el último grupo se

construyen estructuras y/o fundaciones que admitan y resistan los fenómenos

provocados por el colapso del suelo.

Evstatiev (1988) señala que los mejores resultados han sido alcanzados con una

óptima combinación de las ventajas que individualmente tiene cada uno de los tres

grupos. La experiencia ha probado que las medidas constructivas y las medidas

de aislación del agua por sí solas no pueden resolver todos los problemas de

inestabilidad que provoca el colapso del suelo. Así, la adopción de soluciones

exclusivamente para la superestructura (por ejemplo: fundaciones profundas), sin

un adecuado diseño que eviten daños en los otros elementos de la construcción,

como pisos, desagües, etc., han provocado serios daños en estas partes de la

construcción, que podrían haber sido evitados aplicando medidas tendientes a

evitar el ingreso del agua en el terreno.

La eficacia del diseño adoptado en cada caso depende en gran medida de la

calidad de las investigaciones geotécnicas realizadas. La información básica que

éstas deben suministrar son: el espesor del manto de suelos colapsables y la

magnitud del colapso bajo peso propio o bajo carga de todos los estratos del perfil.

Una incorrecta estimación de estos parámetros puede llevar a proponer y construir

soluciones ingenieriles totalmente opuestas a las correctas. La confección de

Page 64: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

63 FACULTAD DE INGENIERIA - UPLA

perfiles de colapsabilidad como los presentados permiten establecer la existencia

o no de suelos autocolapsables, sus espesores aproximados y la profundidad a la

que se encuentran. Esta metodología de análisis es de gran ayuda, por ejemplo

en la elección del procedimiento idóneo para estabilizar el terreno.

A continuación se presenta una descripción de las distintas soluciones ingenieriles

más utilizadas en este tipo de suelos. En primer lugar se analizan el primer grupo

de soluciones que se ha englobado bajo el nombre de: Mejoramiento de suelos;

continuando luego con los otros dos grupos: Medidas para evitar la iniciación del

colapso y fundaciones y/o estructuras insensibles a los fenómenos del colapso.

Mejoramiento de suelos colapsables

Consideraciones previas

El objetivo principal de estas soluciones es eliminar o disminuir apreciablemente

la susceptibilidad al colapso del suelo, bien disminuyendo la porosidad del suelo

(compactación) o bien aumentando la resistencia estructural entre las partículas

del suelo (métodos físico-químicos). Una de las formas de clasificar los métodos

de mejoramiento o estabilización, ha sido precisamente ésta, o sea teniendo en

cuenta la acción resultante sobre el suelo (Aitchison,1973; Rocca,1985). Sin

embargo, para el desarrollo y explicación de los diferentes métodos se ha elegido

la clasificación propuesta por Evstatiev(1988), que tiene en cuenta el medio usado

para realizar la estabilización y el objeto de la misma. Evstatiev (1988) propone la

siguiente clasificación de los métodos de estabilización de suelos loéssicos, la cual

puede hacerse extensiva a suelos colapsables:

a) Métodos de mejoramiento de las propiedades del suelo por compactación.

b) Métodos de mejoramiento de las propiedades del suelo por modificación de su

granulometría.

c) Métodos de mejoramiento de las propiedades del suelo por la creación de

nuevos contactos cohesivos.

d) Métodos de mejoramiento por medio del reemplazo del suelo colapsable por

suelo no colapsable.

e) Métodos de mejoramiento que incorporan elementos resistentes a la tracción

dentro del suelo.

f) Geomembranas.

Page 65: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

64 FACULTAD DE INGENIERIA - UPLA

g) Métodos de mejoramiento de las propiedades del suelo por drenaje.

h) Corrección de taludes y terraplenes.

A continuación, siguiendo la clasificación antes expuesta, se desarrollaran

aquellas metodologías de mejoramientos de suelos colapsables más extendidas.

Desarrollándose principalmente los grupos a,b,c y d, puesto que incluyen una

serie de acciones particulares frente al fenómeno del colapso. En cuanto a los

restantes grupos (e, f, g y h), las técnicas de mejoramiento del terreno utilizadas,

persiguen los mismos objetivos buscados en otros tipos de suelos, y en general la

técnica empleada es prácticamente la misma. Por tal motivo, y puesto que se

apartan un tanto del objeto de estas notas, se estima conveniente no abundar

sobre ellas.

Métodos de mejoramiento de las propiedades del suelo por compactación

Este grupo comprende varias de las metodologías usadas en suelos colapsables

para reducir los vacíos, de modo de eliminar la colapsabilidad, reducir la

permeabilidad y aumentar la capacidad de carga. Esto se realiza utilizando fuerzas

estáticas o dinámicas, o bien a través de la inyección de lechadas

Compactación dinámica: Este método es adecuado para compactar mantos de

suelos colapsables superficiales con espesores menores a 3,50 metros. El método

consiste en dejar caer en caída libre desde una altura de 4 a 8 metros, pilones de

3 a 8 Tn. sobre la superficie del terreno, a razón de 10 a 16 impactos en cada lugar

(Abelev y Abelev, 1979). El impacto genera una rotura de la estructura del suelo,

un aumento de la presión de poros y una compresión del aire presente en los

poros, produciendo un reacomodamiento de las partículas, dando como resultado

una estructura más compacta. Según Malyshev et al (1983) el contenido de

humedad del suelo juega un papel importante, lográndose la máxima eficiencia

con un contenido de humedad cercano al Límite Plástico. Si el contenido de

humedad es menor a éste, es necesario humedecer el espesor de suelo de modo

de alcanzar una mejor eficacia. Varios son los factores que controlan los

resultados del método, así por ejemplo el espesor compactado es función

principalmente del peso y del diámetro del pilón. En tanto el grado de

compactación está controlado por el número de impactos y la humedad del suelo.

El grado de compactación no es uniforme a lo largo de todo el espesor

compactado, lográndose la máxima densificación a 1,2 a 1,5 veces el diámetro del

pilón. Sin embargo, se pueden obtener Pesos Unitarios secos superiores a 1,6

t/m3 en espesores de 2,5 a 3,5 m., lo cual en la mayoría de los casos es suficiente

Page 66: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

65 FACULTAD DE INGENIERIA - UPLA

para disminuir o anular la susceptibilidad al colapso del suelo. Una variante a este

método es realizar la compactación solamente en los lugares donde actúan las

cargas y no en toda el área de la construcción. Por ejemplo, en casos de

fundaciones de muros de carga o fundación de columnas, el mejoramiento del

suelo se logra densificando la zona de influencia del bulbo de presiones, o sea la

zona donde los incrementos de presión pueden hacer colapsar el suelo.

Compactación por medio de pequeños pilotes piramidales: En cierta forma este

método es una variante del método anterior. Consiste en hincar un pilote piramidal

de 3 a 4 metros de longitud, con una sección transversal superior de 60 x 60 a 70

x 70 cm., y una sección transversal inferior de 10 x 10 cm. Una vez retirado el

pilote la cavidad se rellena con hormigón. Este tipo de metodología da excelentes

resultados en áreas en donde existe un espesor de suelos potencialmente

colapsables (no autocolapsables) de 3,0 o 4,0 m de profundidad, pero que

colapsarán si están sometidos a los incrementos de carga transmitidos por las

construcciones. Una de las ventajas del método es la completa mecanización de

todas las operaciones. Una variante a este método consiste en realizar la hinca

sobre una capa de piedra partida, dando como resultado un bulbo de suelo

compactado alrededor de la capa de piedra, mejorando la capacidad de carga por

la punta del pilote así construido.

Compactación por pilotes de suelo: Este es uno de los métodos más usuales

para compactar espesores importantes (18 a 20 m.) de suelos loéssicos

susceptibles al colapso. El procedimiento consta de dos partes: primero se realiza

la perforación y segundo se llena la cavidad con suelo compactado. La perforación

se realiza usualmente mediante la hinca de un pilote metálico con base

ensanchada (1,5 veces). En otra metodología de reciente uso, la excavación se

hace de la siguiente forma: se perfora hasta la profundidad deseada un hoyo de 8

cm. de diámetro dentro del cual se coloca una columna de explosivos, que luego

de estallar crea una perforación de aproximadamente 0,80 m de diámetro.

Después de efectuada esta perforación dinámica" la cavidad se rellena con suelo

local, introducido en tongadas de 100 a 200 Kg, que luego son compactadas

dinámicamente por medio de un útil especial. Concluidas ambas etapas quedan

formadas columnas de suelo compactado con un diámetro aproximado igual a dos

veces el de la perforación. El grado de compactación va decreciendo a medida

que se aleja del centro de la columna, por tal motivo es importante conocer esta

ley de decrecimiento para diseñar correctamente la cuadrícula de pilotes de suelo.

Al igual que en los otros métodos, la eficiencia del sistema aumenta en la medida

Page 67: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

66 FACULTAD DE INGENIERIA - UPLA

que la humedad del suelo natural y compactado se encuentre a una humedad

cercana al Limite Plástico. Por tal motivo es usual que previo a la perforación se

realice una del orden de 1,70 a 1,80 t/m3, que son suficientes para evitar el

colapso por peso propio y permiten el use del espesor compactado como manto

de fundación.

Compactación por explosiones de gas: Esta relativamente nueva metodología

de compactar espesores de suelos colapsables consiste en introducir, a través de

una lanza de agua a presión, una cámara de compresión que contiene una mezcla

de gas propano y oxígeno, la cual se va elevando a medida que se producen una

serie de explosiones de la mezcla. De este modo se va generando una columna

1,20 1,40 m de suelo compactado (Densidad de 1,50 t/cm3) (Martemyanov et al,

1979).

Compactación por humedecimiento (Hidrocompactación): En este caso se

utiliza la propia susceptibilidad del suelo a colapsar bajo peso propio. El método

más frecuente de realizar la humectación o saturación del terreno, es a través de

infiltración del agua desde la superficie del terreno, para lo cual se efectúan

excavaciones poco profundas (0,40 a 0,80 m) o bien se construyen grandes

estanques. En muchos casos a efectos de acelerar el ingreso del agua al terreno

se construyen dentro del estanque, drenes de arena convenientemente

espaciados. Este sistema ha sido empleado ampliamente en varias partes del

mundo, por ejemplo en EE.UU. por Gibbs y Bara (1967) y Clevenger (1956); en

Rumania por Bally et al (1965,1969); en la URSS por Lomize (1968) y Mustafaef

(1967); en China por Lin y Liang (1982); y en Argentina por Moll et al (1979). A

pesar de su amplia utilización y su bajo costo, el método presenta una serie de

inconvenientes: aparición de grietas de tracción en el contorno del área inundada;

existencia de importantes deformaciones posteriores al colapso; necesidad de

recompactar los 4 ó 5 primeros metros utilizando otro tipo de metodología. La

efectividad de este método se mejora sustancialmente si al mismo se lo combina

con otro método de compactación dinámica.

Compactación por humedecimiento previo y por explosiones profundas:

Este método fue desarrollado en la Unión Soviética por Livinov (1976) en la

década de los 60. El espesor de suelos a compactar es previamente humedecido

a través de un sistema de drenes (cuadrícula de 3 x 3 a 5 x 5 m). Las cargas

explosivas (5 a 7 Kg.) son colocadas en el fondo de los mismos drenes o bien en

tubos metálicos colocados en perforaciones adicionales. La cuadrícula con las

Page 68: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

67 FACULTAD DE INGENIERIA - UPLA

cargas es aproximadamente de 4 x 4 m. En este procedimiento no es necesario

la completa saturación del suelo, que por ejemplo necesita el método anterior.

Posterior al humedecimiento se hacen estallar las cargas de toda un área (2.000

a 50.000 m2). La explosión generan una onda de choque que hace licuar la

estructura del suelo, lo cual permite un reacomodamiento de las partículas y un

crecimiento de la densidad del suelo. En ciertos casos es aconsejable la

construcción de trincheras alrededor de la zona a compactar a efectos de evitar la

propagación de grietas fuera de ella. La explosión produce un importante a

inmediato asentamiento de la superficie del terreno. Los asentamientos en general

se estabilizan al cabo de 3 ó 4 semanas. Este tipo de método es aconsejable

cuando se desea compact grandes volúmenes de suelo, particularmente en

grandes complejos industriales o bien en obras hidroeléctricas.

Métodos de mejoramiento de las propiedades del suelo por modificación de su

granulometría

En este apartado se incluyen aquellos métodos de estabilización consistentes en

la mezcla y posterior compactación de suelo colapsable con otros materiales

(arena, gravas) a efectos de conseguir mayor resistencia y mayor rigidez. Este tipo

de estabilización es de amplio use en la ingeniería vial, en la construcción de

bases y de sub-bases.

Métodos de mejoramiento de las propiedades del suelo por la creación de

nuevos contactos cohesivos

Este grupo incluye a aquellas metodologías en las cuales el mejoramiento de las

propiedades resistentes del suelo se consiguen con la creación de vínculos más

sólidos y estables en la estructura del suelo. En algunas de ellas, la inyección de

agentes cementantes provoca la rotura de la estructura original del suelo. En otras,

por el contrario, la inyección de agentes químicos actuan directamente sobre los

vínculos, sin modificar la estructura del suelo. Los métodos se pueden dividir en

métodos superficiales y métodos profundos, dependiendo en donde se realice la

estabilización. En los métodos de estabilización superficiales, el mejoramiento en

general se consigue mediante la mezcla y posterior compactación del suelo con

agentes químicos o cementantes, tales como: cemento, cal, emulsiones asfálticas,

sales (NaCl, Nat C03, NaPO3), etc. Estos métodos de estabilización son también

usuales en otros tipos de suelos y son de amplia utilización en todo tipo de obras

de ingeniería civil, por tal motivo no insistiremos en ellos. Por el contrario los

métodos de estabilización profunda, aunque también se han utilizado en otros

Page 69: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

68 FACULTAD DE INGENIERIA - UPLA

tipos de suelos, muchos de ellos se han desarrollado y usado específicamente

para eliminar o disminuir la susceptibilidad al colapso en espesores importantes

de suelo. A continuación se presentan algunos de ellos:

Inyecciones de agentes químicos: Las investigaciones y las realizaciones en

este tipo de estabilizaciones se ha desarrollado principalmente en la Unión

Soviética. Según Mitchell (1981) la razón principal por la cual estos métodos no

se han extendido universalmente se debe principalmente a los altos costos, frente

a otros tipos de estabilizaciones. Sin embargo, Esvtatiev (1988) da cuenta de la

existencia, en la URSS, de más de 800 proyectos en donde se han utilizado

satisfactoriamente p. ej. el método de silicatización). Esto ha permitido un continuo

mejoramiento de la tecnología, una reducción de los costos y una abundante

normativa en la regulación de su uso. El agente químico más utilizado, por su bajo

costo frente a otros agentes químicos, es el Silicato de Sodio. El método consiste

en inyectar en todo el espesor de suelo a tratar, una solución de silicato de sodio

(Densidad = 1 ,10 a 1 ,04 g/cm3) a través de un tubo inyector de 42 mm de

diámetro con perforaciones de 3 mm protegidas por un manguito de goma. La

inyección se realiza a una presión de 2,0 a 4,0 Kg/cm2 y una descarga de 48 litros

por minuto (Zvyagin et al, 1978). La silicatización del suelo es sólo posible en un

medio fuertemente alcalino. Según Sokolovic (1973) se logra una mejor eficiencia

mediante una pre y post gasificación con carbonato de calcio. Luego de la

inyección, tres son los cambios que se observan en el suelo: un aumento

significativo de la resistencia a la compresión (superior a 20 Kg/cm2 ), una

eliminación de la susceptibilidad al colapso y una disminución de la permeabilidad.

Otro de los tratamientos con agentes químicos es la inyección de amoníaco. La

mejora en el suelo es inferior al tratamiento por silicatización, además presenta la

desventaja de ser un elemento tóxico y su utilización requiere medidas especiales

de protección (Sokolovic, 1973).

Estabilización térmica: Esta técnica comenzó a desarroIlarse en la URSS en la

década de los años 50, y ha sido utilizada exitosamente en un importante número

de emprendimientos. Según Esvtatiev (1988) la aplicación de este método es

técnica y económicamente aconsejable en los siguientes casos: a) en la

estabilización de fundaciones existentes de estructuras altas como chimeneas,

tanques de agua; b) en la paralización de los asentamientos en construcciones

existentes, provocados por el colapso del suelo. Las propiedades de los minerales

arcillosos cambian cuando éstos son sometidos a altas temperaturas, lo cual

genera un aumento importante de la resistencia y por ende la eliminación de la

Page 70: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

69 FACULTAD DE INGENIERIA - UPLA

susceptibilidad al colapso del suelo. La tecnología ha ido variando y mejorando su

eficiencia a lo largo de estas décadas. No obstante la variedad de métodos, casi

todos ellos consisten en la introducción de un quemador de fuel o gas dentro de

un pre pozo de 0,20 metros de diámetro, con una presión de aire de 2,0 a 3,0

Kg/cm2. De esta forma al cabo de 10 a 15 días se consigue una columna

estabilizada de suelo de 2,0 a 3,0 metros y una profundidad de 10 a 15 metros

(Beles y Stanculescu, 1958).

Estabilización mediante mezclado mecánico con agentes cementantes: El

objetivo de este tipo de estabílización es la creación de columnas o pilotes de

suelo con alta resistencia y rigidez, que permitan la transferencia de las cargas a

mantos más profundos y estables. Varios son los métodos constructivos que

pueden agruparse dentro de este grupo. Los subdividiremos en los siguientes

subgrupos, dependiendo del lugar en donde se realiza la mezcla del suelo con el

agente cementante.

1. La mezcla del suelo y el agente cementante se realiza en superficie. En este

caso la excavación se puede realizar bien utilizando la técnica constructiva

empleada en los pilotes de suelo (hinca), o bien usar técnicas usuales de

perforación. La mezcla de¡ suelo con el agente cementante (preferentemente

Cemento Portland) puede ser fluida (suelo cemento plástico) a introducirse dentro

de la excavación en forma de pastones; o bien mezclar el suelo y elcemento con

porcentaje de humedad óptimo a introducirlos en la perforación en tongadas (100

a 200 Kg) las cuales posteriormente son compactadas dentro de la misma

excavación. Por lo tanto existen cuatro variantes según sea el tipo de excavación

y el tipo de mezcla.

2. La mezcla del suelo y el cemento se realiza en el mismo proceso de perforación.

En este caso la mezcla del agente cementante se realiza con el propio suelo. La

mezcla puede realizarse mediante útiles especiales que van mezclando el suelo

con una lechada de cemento o bien usar la técnica del jet grouting mediante un

chorro de lechada a alta presión.

Métodos de mejoramiento por medio del reemplazo del suelo colapsable por suelo

no colapsable

Este tipo de estabilización se realiza principalmente en terrenos con suelos

potencialmente colapsables, en los cuales la presencia de cargas adicionales en

superficie puede generar asentamientos adicionales ante un incremento de la

humedad del suelo. Así, una parte del suelo colapsable superficial, ubicado

Page 71: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

70 FACULTAD DE INGENIERIA - UPLA

directamente debajo de las fundaciones, es excavado, extraído y reemplazado por

otro material más competente. Los materiales generalmente utilizados son los

siguientes: el mismo suelo extraído, compactado y eventualmente estabilizado

granulométricamente; arena compactada o suelo cemento compactado. La

elección del tipo de material está condicionado generalmente por variables técnico

económicas. Los espesores de estos mantos son variables (1 a 4 m) dependiendo

del tipo de cargas y de las características del proyecto. Por ejemplo en algunos

proyectos, los condicionantes pueden ser los asentamientos diferenciales

(edificios), en cambio en otros (canales), no sólo importa disminuir la probabilidad

que se produzca el colapso, sino también lograr una capa de suelo más

impermeable. Este tipo de metodología ha sido utilizada con éxito en numerosos

países y en innumerables tipos de obras. También es frecuente el empleo de esta

metodología en forma conjunta con otro tipo de estabilización profunda, cuando

se presentan mantos de suelos colapsables profundos y con espesores muy

dispares.

Medidas conducentes a evitar la iniciación del colapso:

Arriba, se señalaron los tipos de humedecimientos, que según Goldstein (1969),

pueden presentarse en una masa de suelo:

a) humedecimiento localizado por rotura de conducciones hidráulicas o

infiltraciones de aguas de lluvia;

b) humedecimiento extenso causado por roturas de canales o efluentes

industriales;

c) ascenso del nivel freático;

d) aumento gradual y lento del contenido de humedad, por condensación del vapor

de agua, provocados por condiciones ambientales.

Muchos de estos tipos de humedecimientos pueden ser prevenidos,

principalmente los primeros, pues en general éstos son debidos a fallas o roturas

de las instalaciones de la misma construcción. En cambio los otros tipos de

humedecimientos están condicionados por factores externos al proyecto, como

ejemplo puede ser el ascenso del nivel freático o la rotura de un canal cercano y

ajeno al proyecto. La acción del proyectista debe estar encaminada principalmente

a impedir, dentro de los límites del proyecto, la generación de estos

humedecimientos provocados por elementos de la propia construcción. Robinson

Page 72: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

71 FACULTAD DE INGENIERIA - UPLA

y Narkiewicz (1982) sugieren las siguientes medidas de protección contra el

humedecimiento de edificios:

a) Pendientes adecuadas en la superficie del terreno que rodea a la construcción,

de modo que no se produzcan embalsamientos de agua en las cercanías de las

fundaciones y que cualquier pérdida de agua pueda ser eliminada con rapidez.

b) Canalización de todos los desagues de techos y patios hacia el exterior de la

construcción.

c) Instalación de membranas impermeables o pavimentación de la superase que

rodea a la construcción, de modo de limitar la infiltración de agua en el suelo

adyacente a las construcciones.

d) Encerrar las conducciones de agua o efluentes cloacales dentro de conductos

de fácil acceso, a efectos de detectar posibles pérdidas.

Algunas de estas medidas requiere una serie de medidas de control y

mantenimiento durante la vida útil de la obra, de manera que periódicamente se

realicen inspecciones a las instalaciones y puedan detectarse pérdidas o daños

en las mismas. También es aconsejable que los propietarios de la obra conozcan

perfectamente los riegos a que está expuesta la misma, de modo que su actividad

y/o descuidos no inicie procesos de humedecimiento del terreno.

Las medidas de protección, en otros tipos de obras civiles (canales o caminos),

tienen la misma filosofía, es decir, elementos de protección que impidan o

dificulten la entrada del agua en el terreno de fundación. Así por ejemplo, en las

obras lineales se debe prestar una especial atención al diseño del sistema de

alcantarillado y de desagües. En algunos casos, estas obras suelen seguir

parcialmente las curvas de nivel del terreno, convirtiéndose en verdaderas presas

que impiden el natural escurrimiento de las aguas, provocando la acumulación de

agua en su entorno, lo que genera un humedecimiento generalizado del terreno

de fundación con los consecuentes daños en la obra.

Es frecuente que en ciertos tipos de obras, como viviendas unifamiliares de una

planta o incluso caminos y canales, las únicas medidas a adoptar sean las

presentadas en este apartado, ya que la utilización de técnicas de mejoramiento

o fundaciones profundas resultan prohibitivas. En realidad la mayoría de las obras

aludidas se construyen admitiendo el riesgo de un posible colapso del terreno. El

buen comportamiento que han tenido la mayoría de ellas se debe

fundamentalmente a que no se ha producido ningún tipo de humedecimiento. En

Page 73: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

72 FACULTAD DE INGENIERIA - UPLA

contraste, los daños son serios en aquellas obras que los han sufrido. Por todo

ello, es un deber de los investigadores a ingenieros buscar nuevas soluciones

económicas que permitan disminuir los riesgos, y por ende los daños en este tipo

de obras. Uno de los caminos en tal sentido, es el estudio de estructuras que

absorban o minimicen los posibles asentamientos diferenciales provocados por el

humedecimiento localizado del suelo sin un aumento excesivo de los costos.

Estructuras y/o fundaciones que admiten y resisten los fenómenos

provocados por el colapso:

El análisis de este apartado se centrará principalmente en el estudio de las

fundaciones superficiales en suelos potencialmente colapsables, ya que el otro

gran grupo de soluciones: fundaciones profundas mediante pilotes, será objeto de

un examen detallado en los apartados siguientes.

La lista de estructuras que se asientan directamente sobre mantos de suelos

potencialmente colapsables es amplia, entre ellas pueden señalarse: viviendas

unifamiliares, construcciones transitorias, galpones, ductos enterrados, canales,

caminos, etc.

Las fundaciones directas sobre suelos colapsables pueden ser divididas en dos

grupos:

a) Fundaciones rígidas, utilizadas principalmente en estructuras livianas y con

cargas puntuales, por ejemplo, torres de líneas de alta tensión, columnas de naves

industriales o depósitos. En general, este tipo de estructuras tienen algunos

rasgos comunes, como son por ejemplo: cargas verticales bajas, cargas

horizontales importantes, y en general suelen aceptar asentamientos admisibles

mayores.

b) Fundaciones de baja rigidez longitudinal, en este caso se trata de

estructuras con cargas lineales (muros de carga, canales, etc.) con baja rigidez en

el sentido de las cargas. Este tipo de estructuras son sensibles a humedecimientos

localizados del terreno que generan asientos diferenciales importantes. En

general, las medidas que suelen tomarse para disminuir los efectos de los asientos

diferenciales son las siguientes: diseño de elementos que rigidicen la estructura

(Clemence Y Finbarr, 1981), y el diseño de elementos constructivos que eviten la

introducción del agua en el terreno, señalados anteriormente.

Page 74: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

73 FACULTAD DE INGENIERIA - UPLA

4.7.3. TECNICAS DE MEJORAMIENTO DE UN SUELO EXPANSIVO

Ante la presencia de un suelo potencialmente expansivo, las dos grandes líneas

de acción serían:

Actuar en el sentido de reducir o eliminar la expansión del suelo.

Las diferentes formas de acción sobre el suelo se pueden agrupar en:

Inundar el suelo en el sitio de manera que se produzca una expansión

antes de la construcción.

Reducir la densidad del suelo mediante un adecuado control de la

compactación.

Remplazar el suelo expansivo por uno que no lo sea.

Modificar las propiedades expansivas del suelo mediante diversos

procedimientos: estabilización mediante cal, cemento, inyecciones, etc.

Aislar el suelo de manera que no sufra modificaciones en su contenido de

humedad.

Actuar sobre la estructura y a través de la selección de un diseño de

cimentación apropiado

En líneas generales se actúa en el sentido de rigidizar o flexibilizar de tal forma la

estructura que sea capaz de absorber o adaptarse a las deformaciones

resultantes. En el diseño del cimiento se tiende a una concentración de cargas de

manera que la presión trasmitida al suelo sea capaz de controlar la deformación.

Este punto es ampliado más adelante.

Actuación sobre el suelo

“PreHumectación” del Suelo: la teoría de “prehumectar” el suelo antes de la

construcción está basada en el hecho de que si al suelo se le permite que se

expanda antes de la construcción y si luego la humedad del suelo es mantenida,

no es de esperar cambios volumétricos y por lo tanto no es esperable daños sobre

la estructura.

La experiencia indica que en las áreas cubiertas por una losa, contrapiso,

pavimento, etc., el contenido de humedad del suelo rara vez decrece. Si uno

“inunda el suelo”, una vez que el suelo se hinche hasta su máximo potencial, la

migración del contenido de humedad hacia la parte de suelo subyacente que se

encuentra menos húmeda induce nuevas expansiones del suelo diferidas en el

tiempo. Este proceso puede continuar durante cerca de 10 años.

Page 75: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

74 FACULTAD DE INGENIERIA - UPLA

El tiempo requerido para lograr una adecuada humectación del suelo, aunque no

sea necesario llegar a la saturación, es de al menos uno o dos meses, lo que

puede ser considerado como demasiado largo.

Además es muy cuestionable el hecho de que se obtenga una variación uniforme

en el contenido de humedad del suelo en las áreas “prehumectadas”. Los suelos

arcillosos, que son los potencialmente expansivos, son muy difíciles de

“prehumectar” siendo lo más factible que el agua penetre a través de fisuras, etc.,

no lográndose una humectación pareja del suelo.

Este método de “inundación previa” puede resultar útil para la cimentación

mediante losas, construcción de pavimentos, canales, etc., pero no es adecuado

para cimentaciones aisladas (tipo patín)

La razón es que el prehumectar el suelo conlleva a reducir en una forma muy

significativa los parámetros resistentes del suelo, lo que lo hace inadecuado para

el apoyo de cimientos aislados.

Reducción de la Densidad del Suelo: este método es naturalmente válido

cuando la cimentación se debe hacer sobre un material a terraplenar, o en

aquellos casos en que se procede a la sustitución del suelo.

La magnitud del asentamiento en un relleno depende de la densidad alcanzada

en la compactación, el contenido de humedad de la compactación, el método de

compactación y la carga que se aplique sobre el relleno

Estos dos últimos están impuestos por el equipo usualmente disponible en la obra

durante la compactación y la sobrecarga impuesta por la obra, de manera que

sobre lo que podemos actuar es fundamentalmente sobre los dos primeros.

En el gráfico siguiente Holtz and Gibbs muestran la influencia de la densidad y la

humedad en la compactación de una arcilla expansiva.

Se puede apreciar el hecho de que las arcillas expansivas expanden poco cuando

son compactadas a densidades bajas y alto contenido de humedad, pero

expanden mucho cuando son compactadas a densidades altas y bajos contenidos

de humedad.

La principal razón de que el contenido de humedad es importante durante la

compactación es que el contenido de humedad es un controlador del grado de

densidad alcanzado, y no tanto por el hecho de que un alto contenido de humedad

Page 76: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

75 FACULTAD DE INGENIERIA - UPLA

haga reducir sensiblemente la expansión. El elemento fundamental para controlar

la expansión es el grado de densidad alcanzado.

Ya en el año 1959 Dawson aconsejaba que en suelos expansivos se debía

controlar no sólo el alcanzar un grado de compactación mínimo, sino también un

valor máximo.

Como se muestran en la tabla siguiente, un decremento de la densidad seca de

una arcilla expansiva desde 109 a 100 pcf, la presión de hinchamiento decrece de

13 a 5 psf y el potencial de hinchamiento desde 6.7 a 4.2 %. Esto sin variar el

contenido de humedad del suelo.

Efecto de la variación de la densidad en el cambio volumétrico y en la presión de

hinchamiento para muestras de contenido de humedad constante:

Page 77: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

76 FACULTAD DE INGENIERIA - UPLA

La principal ventaja de controlar la densidad de compactación es que se puede

reducir el potencial expansivo del suelo, sin necesidad de agregar agua por

encima de la óptima, con las desventajas económicas que esto trae aparejado y

los problemas analizados en el método anterior.

Sustitución del Suelo Expansivo: una alternativa simple de cimentar una losa o

un patín en un material expansivo es remplazar el material expansivo por otro que

no lo sea.

La experiencia indica que si el suelo natural sobre el que estamos apoyando

nuestro cimiento consiste en más de 5 pies (aprox. 1.50 mts) de suelo granular del

tipo ( SCSP), que a su vez se apoya en un suelo altamente expansivo no existe

riesgo de movimiento en la fundación cuando apoyamos la misma sobre este

material granular.

¿Por qué motivo se afirma esto?

No está claro si es debido a que el agua superficial no llegará al material

expansivo, o si existe un reacomodamiento del material granular que hace que los

eventuales movimientos sean prácticamente inexistentes, o se debe a una

combinación de ambos efectos...

La afirmación anterior no es necesariamente cierta cuando el material sobre el que

se apoya se trata de un relleno especialmente seleccionado a nuestros efectos.

¿Qué requerimientos le haríamos a ese relleno granular?

Nos podemos hacer aquí tres preguntas:

Page 78: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

77 FACULTAD DE INGENIERIA - UPLA

1º ¿Que tipo de material debemos colocar?

2º ¿Que espesor tendría ese relleno (o sea que profundidad de sustitución)?

3º ¿En que área debajo de la fundación extenderíamos la sustitución?

El primer requerimiento es, obviamente, que el material no sea expansivo, eso lo

cumplen los suelos cuya clasificación varía desde los materiales del tipo GW a los

del tipo SC.

Los materiales granulares que podemos considerarlos “limpios”, es decir con

escasa cantidad de finos, aquellos cuya clasificación de acuerdo al S.U.C.S. varía

del tipo GW a SP, tiene una permeabilidad tal que el agua podría llegar hasta los

materiales subyacentes arcillosos y expansibles.

Desde el punto de vista antes señalado sería preferible que los materiales del

relleno sean menos permeables, con cierto contenido de finos (del tipo SM o SC),

aunque estos tiene la contra de que los finos de estos materiales pueden a su vez

presentar cierto grado de expansión.

Uno de los criterios usuales es el planteo de la siguiente condición:

No es tan fácil que un suelo cumpla con las condiciones antes planteadas. En caso

de dudas razonables, para poder determinar realmente el potencial expansivo del

suelo hay que proceder a las metodologías habituales a tales efectos.

Una alternativa para mejorar el potencial expansivo del suelo sería el poder

mezclar el material granular con el suelo emplazado en sitio. Si bien dicho método

es teóricamente razonable, en la práctica se hace muy dificultoso la mezcla de

material granular con arcillas de bajo contenido de humedad. Se necesita

maquinaria especial, sobretodo por la dificultad de disgregar los “terrones“ de

arcilla a tamaños adecuados, lo que lleva a costos tan caros como otros

procedimientos en los que se obtienen mejores resultados como la estabilización

con suelo cal o suelo cemento.

Page 79: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

78 FACULTAD DE INGENIERIA - UPLA

La principal razón por la cual un relleno artificial de un material seleccionado no

es tan efectiva como el apoyar sobre una masa de suelo granular en estado

natural, es por la extensión del mismo debajo de la fundación en uno y otro caso.

Cuánto mayor sea el área en que efectuamos el reemplazo, más efectivo resulta

el relleno.

En las figuras siguientes se muestran consejos de extensiones de material a

sustituir en caso de diferentes condiciones de cimentación.

La tecnología disponible en la actualidad para la acción sobre los suelos

expansivos, la sustitución de suelos puede ser considerada como una de las

mejores opciones para la estabilización de estos suelos.

Dentro de las ventajas de este método está el hecho de que se pueda compactar

el material sustituido a elevados porcentajes de manera de poder soportar cargas

importantes.

Con el método de “prehumectado” o de “control del grado de la compactación”, la

capacidad resistente del suelo se ve disminuida.

Page 80: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

79 FACULTAD DE INGENIERIA - UPLA

El costo de esta alternativa no es caro si la comparamos con la de cualquier otra

forma de tratamiento químico, etc.

Con la excepción de la cimentación del tipo “losas flotantes” el método de

reemplazo del material expansivo constituye el método más seguro para una

fundación directa sobre este tipo de materiales.

Cuando se procede a la sustitución de suelo, es conveniente tener la precaución

adicional de realizar los drenajes superficiales en forma adecuada alrededor de la

construcción de manera de evitar la infiltración de agua por debajo de los niveles

del relleno.

Algunas de las recomendaciones para la construcción de caminos propuesta por

la Federal Higway Administration son las siguientes:

• Profundidad mínima de reemplazo de material de 2 pies (60 cm).

• Material de reemplazo que no sea granular, sino materiales limosos, o arcillas

limosas, que no sean expansivas.

• El material de relleno a ser utilizado debe ser compactado a una densidad entre

92 a 95% de la densidad máxima y a una humedad no menor a la óptima de la

correspondiente al Proctor AASHTO T99.

Recomienda profundidades mínimas de reemplazo según se trate de rutas

principales o secundarias:

Modificación de propiedades expansivas del suelo por diversos

procedimientos: dentro de estas técnicas podemos citar a la estabilización del

suelo mediante el agregado de cal, cemento, inyecciones.

El agregado de cal, y de cemento al suelo como elementos controladores de la

expansión se utilizan desde hace muchos años, preferentemente dentro del

Page 81: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

80 FACULTAD DE INGENIERIA - UPLA

campo de la ingeniería vial, como estabilización de subrasantes de carreteras ,

etc., teniendo un uso casi nulo en la construcción de edificios.

La acción, tanto de la cal, como la del cemento consisten en modificar las

características plásticas del suelo, reduciendo el límite líquido, el Índice de

Plasticidad e incrementado el límite de contracción.

Las cantidades a agregar de cal y de cemento varían de 2 a 6 % en peso de la

mezcla, dependiendo de los objetivos de la estabilización, la cual tiene la ventaja

adicional (sobretodo en el caso de uso de cemento) de que mejoran el poder

soporte del suelo (CBR).

Una forma de modificación de las propiedades expansivas del suelo utilizadas en

fundaciones de estructuras la constituye la realización de inyecciones químicas en

el suelo, de manera de modificar las características plásticas del suelo, a la vez

que disminuyen la permeabilidad del mismo. Estas técnicas resultan en general

de alto costo, tanto por el costo del elemento químico a utilizar, así como de la

técnica empleada para su aplicación.

Aislación del suelo de variaciones importantes en el contenido de humedad:

si se pudiera lograr que el suelo no sufriera variaciones importantes en su

contenido de humedad, entonces, por mayor que sea el potencial expansivo de la

arcilla no habrá cambios volumétricos.

La variación de contenido de humedad puede provenir de dos fuentes

básicamente:

a ) la infiltración al terreno de aguas superficiales ó,b) la variación de niveles de

agua subterránea.

Si bien es relativamente sencillo sacar el agua libre que se ha introducido en la

obra para la construcción de una fundación, realizando los drenajes adecuados ya

sean superficiales o subterráneos a tales efectos, pero sin embargo no es tan

sencillo el impedir la migración de la humedad desde el exterior de un local hacia

el interior de un área cubierta.

Para impedir la infiltración de aguas superficiales se puede disponer de:

• Barreras horizontales contra la humectación del suelo alrededor de la

construcción a través de: membranas, construcción de veredas perimetrales,

pavimentos asfálticos, drenaje adecuado.

Page 82: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

81 FACULTAD DE INGENIERIA - UPLA

• Barreras verticales alrededor de la construcción para impedir las variaciones

estacionales en el contenido de humedad del suelo también mediante el uso de

membranas, hormigón, etc.

Las “barreras verticales” usualmente están unidas a una horizontal para prevenir

la humectación del suelo entre la barrera vertical y la construcción, ya que las

barreras verticales deben construirse al menos 70 a 100 cm alejadas del perímetro

de la construcción.

Si bien las barreras verticales son más efectivas que las horizontales, las mismas

resultan mucho más costosas.

Para evitar la variación del contenido de humedad por variación del nivel de agua

subterránea la alternativa más adecuada la constituye la construcción de drenajes

subterráneos.

El proyecto de drenes deberá tener presente el tipo de acuífero de que se trate, si

es confinado o no, el caudal de agua que escurre por el mismo, profundidad a la

que se instala el dren, capacidad del sistema de drenaje , etc

Actuación sobre la estructura y el sistema de cimentación

Fundaciones Superficiales en Suelos Expansivos.

Esta clase de fundaciones, más comúnmente denominadas como zapatas o

patines, pueden ser implementadas con éxito sobre subsuelos conformados por

materiales expansivos, siempre que se cumpla al menos uno de los siguientes

requisitos:

• La presión aplicada, debido a las cargas permanentes, resulte suficiente como

para contrarrestar la presión de expansión.

• La superestructura tenga el grado de rigidez necesario como para que una

expansión diferencial no cause fisuras o grietas en los elementos resistentes.

• El efecto expansivo pueda ser eliminado o al menos reducido de manera de

evitar o mitigar los desórdenes (ya sean éstos de carácter resistente, funcional o

ambos).

Page 83: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

82 FACULTAD DE INGENIERIA - UPLA

El Caso De Las Zapatas Corridas.

Como se sabe, es la tipología más común de fundación superficial para estructuras

livianas. Es claro, en consecuencia, que para prevenir el efecto de la expansión

se vuelve necesario concentrar la presión aplicada, lo que deriva en minimizar el

ancho de la zapata.

Por lo tanto el uso de zapatas corridas debería limitarse a suelos de bajo grado de

expansión, por ejemplo en general inferior al 1%, medido en el ensayo de

expansión libre.

Sin embargo, el uso de fundaciones alternativas, al caso pilotes, puede ser

antieconómico y por ello en muchas situaciones se aceptan daños menores (como

fisuras en paredes y techos), cuyos costos de reparación resultan inferiores a los

de un sistema de fundación diferente.

Una variante, cuando no es factible cambiar el sistema de fundación, es implantar

las zapatas a profundidades mayores, esto es a salvo de la capa de suelo donde

las variaciones en el contenido de humedad son mayores (al menos 1,50 a 2,00

m por debajo del nivel del terreno natural). Esta ubicación reduce y limita además

los desplazamientos diferenciales.

En general, se sugiere a las zapatas corridas como una alternativa en principio

válida cuando:

• El subsuelo no es altamente expansivo (básicamente illita en vez de

montmorillonita)

• Es poco probable que se verifique un ascenso del nivel freático.

• No hay disponibilidad de fundar con pilotes.

• La superestructura está conformada por madera.

Una variante a veces empleada es la fundación en “cajón”, esto es una estructura

de hormigón fuertemente armada, cuya altura media es del orden de 2,00 m. Es

notorio que este tipo de fundación protege a la estructura de eventuales

fisuraciones derivadas de expansiones diferenciales. En estos casos, no deben

existir discontinuidades a nivel de la superestructura, que introduzcan puntos

débiles. En especial, en estructuras complejas, se sugiere agregar juntas para

separarlas en dos o más módulos. Cada módulo actuará entonces en forma

independiente y los desplazamientos diferenciales podrán absorberse en las

juntas.

Page 84: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

83 FACULTAD DE INGENIERIA - UPLA

El Caso De Las Zapatas Aisladas.

Como es sabido, este sistema consiste en una serie de zapatas apoyadas sobre

las capas superiores del subsuelo, conectadas entre sí por vigas de fundación.

Como en el caso de las fundaciones indirectas o profundas, la carga de la

estructura es trasmitida al suelo en forma concentrada en diferentes puntos; la

diferencia es que naturalmente en este caso la descarga se realiza en las capas

superiores del terreno y no se involucra la resistencia lateral por fricción.

El uso de este sistema puede ser ventajoso cuando:

• El techo de roca o el estrato resistente es profundo y no puede ser

económicamente alcanzado por pilotes.

• Las capas superiores del suelo poseen un potencial expansivo moderado.

• La capacidad portante de las capas superiores es relativamente alta.

• Existe napa freática o capas blandas que impiden el uso de pilotes trabajando

por fricción.

En el caso de un suelo expansivo, si la presión aplicada es mayor que la presión

de expansión (para cambio de volumen nulo) no deberían observarse

desplazamientos debidos a esta causa.

En general puede decirse que la magnitud de la presión aplicada está limitada por

la capacidad portante del suelo de fundación y es función del coeficiente de

seguridad adoptado (usualmente entre 2 y 3). Por lo tanto, considerando los

valores habituales de tensiones admisibles para suelos arcillosos de Formación

Libertad (1,0 a 2.0 kg/ cm2), este sistema de fundación sólo podrá aplicarse en

suelos con potenciales expansivos medios (1 a 5% de expansión libre y presión

de expansión en el rango de 1 a 2 kg/cm2).

Para permitir en estos casos la concentración de tensiones aplicadas en las

zapatas individuales se requiere descalzar las vigas de fundación, esto es dejar

un espacio vacío bajo éstas.

De todas formas, algunos investigadores como Peck entre otros, han señalado

además que la expansión del suelo sólo se puede impedir en una zona localizada

bajo la zapata donde se concentran las tensiones inducidas por la fundación.

Page 85: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

84 FACULTAD DE INGENIERIA - UPLA

El Caso De Las Losas De Fundación.

El comportamiento de las losas de fundación (o plateas) construidas sobre suelos

expansivos, puede considerarse un problema de difícil control y aún no resuelto

para todos los casos.

En esta categoría están comprendidas las losas de piso interiores, las exteriores,

los pavimentos, etc.

En general estas losas no soportan una carga aplicada importante y los pesos

propios son también bajos. En consecuencia, es esperable que se produzcan

movimientos cuando aumenta el contenido de humedad en el subsuelo bajo la

losa y por lo tanto, esta consideración debiera ser un requisito de diseño.

Además los movimientos de estas losas no sólo pueden traducirse en fisuras sino

que en muchos casos pueden afectar la estabilidad general de la estructura.

En general, las losas van directamente apoyadas sobre el subsuelo y se

construyen incorporando algún tipo de armadura, dependiendo de las cargas

aplicadas.

Más que nada la disposición de estas armaduras tiende a prevenir las fisuraciones

de origen térmico, pero no así las causadas por la expansión del suelo.

De allí las dificultades que se presentan cuando son implantadas sobre subsuelos

con potencial expansivo entre moderado y alto.

El desarrollo de sistemas de pisos económicos capaces de revertir el problema de

la expansión ha sido desde siempre un objetivo común de ingenieros estructurales

y de suelos.

Lamentablemente no es aún posible dar una respuesta totalmente eficaz a este

tema.

Algunas de las alternativas actuales incluyen los sistemas de pisos nervados y los

pisos con cavidades. Comentaremos brevemente a continuación sus principales

características.

Page 86: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

85 FACULTAD DE INGENIERIA - UPLA

4.7.4. TECNICAS DE MEJORAMIENTO DE UN SUELO LICUABLE

Métodos para contrarrestar la licuación

1. Pilotes de desplazamiento

2. Estabilización por inyecciones

3. Micropilotes

4. Muro de micropilotes en forma de retícula

5. Compactación dinámica

6. Vibratorio

Pilotes de desplazamiento. Se utilizan para lograr la densificación por medio

del desplazamiento lateral durante la instalación; se han utilizado de madera,

concreto y acero. Otro tipo de desplazamientos es hincar un ademe con punta

perdida y rellenarlo de arena

Estabilización por inyecciones. Se utiliza cemento micro-fino o silicato de

sodio y se penetra en los poros del suelo. En general el D15 del suelo debe de

ser mayor al Dxs de la mezcla. Es difícil penetrar suelos que tengan de un 15-20

% de finos.

El método consiste en hincar tubería de 5 cm. de diámetro hasta la profundidad

deseada y en cuanto se llega al punto óptimo se retrae el ademe 30 cm. y se

forma un bulbo de mortero sucesivamente hasta formar un columna. Los puntos

se pueden instalar en una cuadricula de 1.5-2.75 m; cuando los suelos están

muy sueltos se puede hacer puntos secundarios y terciarios. Se puede llegar a

tener volúmenes de inyección que oscilan entre 5 y 15 % del volumen total del

suelo tratado.

Productos químicos. Esta se hace bajo presión de lechadas de baja viscosidad

en suelos granulares, se produce una masa cementada de suelo, con resistencia

similar a las areniscas. Se pueden utilizar activamente para prevenir pérdida de

soporte en excavaciones y túneles; o para minimizar asentamientos de

estructuras y tuberías cercanas a la construcción de excavaciones o túneles.

Compactación. Utiliza un mortero de cemento y arena de bajo revenimiento,

formando bulbos de mortero que desplazan y densifican el suelo. Dada la

existencia de equipo compacto, esta técnica es ideal para corregir asentamientos

Page 87: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

86 FACULTAD DE INGENIERIA - UPLA

de estructuras existentes causados por suelos o rellenos granulares sueltos o

terrenos cársticos.

Encapsulamiento. ("soilfrac Groutings"). La misma lechada de cemento induce

fracturas en la masa del suelo de manera controlada Se requiere de un monitoreo

constante de las presiones y volúmenes inyectados para asegurar que las

fracturas inducidas sean locales y que quedan totalmente llenas de lechada El

proceso se repite varias veces para lograr reforzar arcillas blandas. Se utiliza un

barreno helicoidal hueco para bombear lechadas de cemento y agua, y

mezclarlas con el suelo logrando resistencias de aproximadamente 15Kg/cm2.

Los barrenos tienen Im de diámetro y alcanzan una profundidad de 35m.

Para suelos expansivos. Los métodos con cal o potasio son efectivos para

contrarrestar bufamientos en arcillas expansivas. Dichas técnicas son utilizadas

para estabilizar cimentaciones, terraplenes y carreteras.

Materiales. Bajo esta técnica se forman cilindros o paneles de suelo-cemento

de baja permeabilidad y geometrías diversas; para remplazar los suelos

licuables, problemas de asentamientos o flujo de aguas subterráneas. Se utiliza

chorro de agua a presión (500 kg/cm2) para cortar el suelo y mezclarlo con

cemento, con una resistencia de hasta 175 kg/cm . Este método se utiliza en

estructuras existentes de difícil acceso.

Micropilotes. Se utilizan en estructuras ya construidas, como en puentes y

edificios que han sido modificadas sus estructuras o han sufrido daños por

sismos o asentamientos, llegan a tener diámetros de 8-25 cm. y pueden ser

instalados en lugares de acceso restringido y en el interior de estructuras. Las

cargas se transmiten por fricción y por punta, los valores máximos en las pruebas

son de hasta 350 Tm.

Muro de micropilotes en forma de retícula. Sirven para evitar la inclinación de

suelos y rocas se empotran en los muros, resisten cargas, trabajan a tensión y a

compresión, también en combinación con anclas en los suelos, y sirven para

reforzar construcciones como si fueran vigas y quedan enterrados.

Compactación dinámica. Se utiliza para densificar suelos licuables en áreas

con accesos libres dejando caer pesos de 10-30 Tm, desde una altura de 15-35

m usando grúas modificadas. La profundidad máxima puede oscilar entre 10-15

m. Para poder obtener valores del 70-80 % aplicando fuerzas de 200-700 Tm/m^.

Page 88: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

87 FACULTAD DE INGENIERIA - UPLA

Para calcular la energía total de impacto se utilizan los siguientes parámetros:

peso, altura de caída, número de caídas en cada punto y espaciamiento entre

puntos de compactación.

Vibratorio. Son los que más se utilizan para prevenir la licuación y mejorar el

comportamiento sísmico de los suelos. Los vibradores tienen de 30-45 cm. de

diámetro y de 3-5 m de longitud.

Las vibraciones son generadas cerca de la punta del vibrador y son producidas

mediante la rotación de pesos excéntricos alrededor de un eje, alimentados por

un motor eléctrico o hidráulico. Los vibradores alcanzan los 165 Hp, más de 20

Tm de fuerza centrifuga y operan con frecuencias de 20-50 Hertz. Para alcanzar

mayores longitudes, se le añaden tubos de extensión y han llegado hasta 40 m.

Los métodos vibratorios se dividen en:

Vibro-compactación Se lleva a cabo en arenas limpias que contienen menos

de 10 % de finos. Se hace con el fin de incrementar la densidad del suelo en sitio

y se logra por medio de espaciamientos de 2.3-3.5 m. Para la densificación se

puede utilizar arena de relleno u otro material. El suelo vibro-compactado

presenta asentamientos menores, incremento en la capacidad de carga y

disminución del riesgo de licuefacción en áreas sísmicas.

Vibro-dotación Es cuando se utiliza en los primeros 10-15 m.

Vibro-sustitución. Se utiliza en arenas limosas, limos licuables o depósitos de

arenas con capas de arcilla intercaladas. Se utiliza grava como material de

relleno y se forman columnas que compactan y refuerzan el suelo. Además las

columnas actúan como drenes verticales que disipan las presiones de poros

causadas por daños estructurales o sísmicos.

Page 89: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

88 FACULTAD DE INGENIERIA - UPLA

CONCLUSIONES

Al final de esta investigación llegue a identificar los tipos de cimentaciones y de suelos, así como las propiedades de estos y como actúa el suelo como elemento portante de las cimentaciones. Pude analizar las cargas que transmite la cimentación a las capas de terreno, causando tensiones y a su vez deformaciones. Por lo tanto identifique porque se ve afectado la conducta del suelo bajo las cargas de tensión. Aprendí las funciones de las cimentaciones y como estas constituidas. Conocí la diversidad de suelo en Perú, y los métodos para identificarlos.

También estudie las propiedades más relevantes del suelo para la ingeniería. Podre concluir porque interviene el tipo de suelo al construír una cimentación, y los pasos para el diseño de estas. Examine el hundimiento del suelo debido a la cimentación, y cuáles son las fuerzas que actúan en él. La capacidad de carga o apoyo es una característica de cada sistema de suelo-cimentación, y no sólo una cualidad intrínseca del suelo. Los distintos tipos de suelo difieren en capacidad de carga, pero también ocurre que en un suelo específico dicha capacidad varía con el tipo, forma, tamaño y profundidad del elemento de cimentación que aplica la presión.

A menudo cuando ocurre un desastre, los problemas en cimentaciones coloca a los propietarios, proyectistas y constructores en la posición de adversarios. Casi siempre cualquier esfuerzo de solución es orientado hacia la protección de intereses económicos o prácticos lo que no siempre conduce a una buena determinación de las causas reales de la falla y menos a su adecuada solución, más aún cuando existe la influencia política, que en nuestro medio muchas veces se ha dado, orientando a la opinión pública hacia causas o hechos que justifican una mala ejecución de la obra o que enmascaran vicios de construcción.

Las fallas en estas cimentaciones de suelos difíciles se esconden o no son divulgadas técnicamente por temores inherentes a posiciones administrativas o políticas de los funcionarios responsables, evitando tomar en cuenta el antecedente para el diseño y construcción de obras futuras similares, aumentando enormemente la posibilidad de una repetición catastrófica de errores previos.

Nosotros los Ingenieros Civiles podemos prevenir las fallas que ocurren en las cimentaciones si nos comprometemos a un formal acercamiento al problema y si podemos comprender bajo que circunstancias fallan los suelos permitiendo que se desarrollen condiciones de riesgo que resultan muchas veces después de catástrofes.

Esto ha sido el principal objetivo de este trabajo tomando en consideración además que los análisis de confiabilidad y riesgo geotécnico son potencialmente más valiosos durante las primeras etapas de un proyecto de ingeniería, dado a que la decisión de proceder o no, ayudando a establecer criterios de diseño adecuados en los casos de apoyo en los suelos críticos del país.

Siempre será útil mantener la continuidad entre el planeamiento, el diseño y la construcción que deben formar un solo proceso ya que algunas debilidades que existieran durante el diseño pueden hacerse latentes durante la construcción y las hipótesis de trabajo pueden modificarse para amoldarse mejor a la realidad del comportamiento del suelo, sea colapsable, expansivo o de cualquier otra tipo.

Page 90: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

89 FACULTAD DE INGENIERIA - UPLA

Hacer uso de la observación y la comprobación de las predicciones, utilizando las experiencias pasadas y los métodos probados de solución que vienen a ser una necesidad en la práctica de la ingeniería del futuro, dado a que las ingenieros civiles debemos proyectar obras estables y económicas, considerando las necesidades interactuantes del medio ambiente y los limitados recursos económicos que disminuyen actualmente, todo lo cual impone a nuestra profesión la obligación de ejecutar buenos proyectos apoyados en estudios técnicamente bien ejecutados, por profesionales idóneos y con la experiencia necesaria para re

Los problemas que se presentan en estructuras de suelos en el Perú debido a la erosión de suelos dificiles, datan de los inicios de las edificaciones; desde entonces los estudios se han enfocado en la estabilización de este fenómeno, por medio de técnicas de mejoramiento de estos tipos de suelos.

Page 91: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

90 FACULTAD DE INGENIERIA - UPLA

Recomendaciones

Sugerimos, además, que dentro de la temática de las materias que tratan sobre los suelos, sean abarcados los fenómenos de erosión de suelos difíciles, y así, ampliar el perfil profesional de los próximos ingenieros civiles.

El comportamiento mecánico de los suelos peruanos es complejo y dar un concepto adecuado sobre el tipo de cimentación a implementar en cualquier proyecto ingenieril debe tener un minucioso estudio que garantice la seguridad de la estructura, por ende se recomienda que tanto comprender la funcionalidad del elemento de fundación con base en una completa exploración geotécnica, como hacer un buen análisis de resultados por distintas metodologías de pruebas de carga, permitirá determinar una capacidad última o admisible acertada que brinde en el ejercicio del diseño una mejor precisión.

Para realizar la evaluación del potencial de licuación es necesario disponer de toda la información posible acerca de las características de los suelos estudiados, para lo cual es necesario recopilar los estudios existentes realizados por instituciones públicas y empresas privadas y además realizar sondajes de exploración de campo en aquellos lugares donde se carezca de información.

Page 92: Proyecto de Investigacion Suelos

CIMENTACIONES EN SUELOS DIFICILES EN LAS EDIFICACIONES DEL PERÚ

91 FACULTAD DE INGENIERIA - UPLA

BIBLIOGRAFIA

Juárez Badillo y otros. Mecánica de Suelos. Ed.Limusa

Diseño de Cimentaciones ING Jorge E. Alva hurtado

“Geotecnia y Cimientos” Jiménez Salas. T I, II y III. Ed. Rueda. Madrid. 1975.

Bermeo Tierradentro, D.A.; Gaitán Jiménez, D.A. y Cantor Velasco, J.A.

Evaluación de los suelos dispersivos encontrados en un sector de Usme. Bogotá

2005. Tesis (Ingeniero Civil). Universidad de la Salle. Facultad de Ingeniería Civil.

Parra M. D. (1991), “Evaluación del Potencial de Licuación de Suelos de la

Ciudad de Chimbote”, Tesis de Grado, Facultad de Ingeniería Civil, Universidad

Nacional de Ingeniería. Lima, Perú.

Das, B. J; 2001. Principios de Ingeniería de Cimentaciones. 4ª edición. California

State: Internacional Thomson Editores.

Ibáñez, L.O. ed; 2007. Monografía sobre el análisis de las cimentaciones sobre

pilotes. Cuba: Universidad Central de las Villas.

“Mecánica de Suelos en la Ingeniería Práctica” Terzaghi y Peck. Ed. “El Ateneo”.

Bs.As. Segunda Edición 1978.

A. CARRILLO S. A . 1971- "Estudio y Evaluación de Suelos áreas Criticas en

Pampa de Coris" Informe Técnico # 1,538, Perú.

CARRILLO GIL, A., "Evaluación Histórica de la Mecánica de Suelos en la

Práctica de la Ingeniería", Discurso de Orden Bodas de Plata del Comité Peruano

de Mecánica de Suelos, Lima, Perú.

CARRILLO GIL. A., J. Portocarrero, L. Lora.,J. Cárdenas 1991.- Elementos

Naturales y Riesgo Geotécnico VI Congreso Nacional de Mecánica de Suelos,

Lima, Perú.

REGLAMENTO NACIONAL DE EDIFICACIONES NORMA E050 SUELOS Y

CIMENTACIONES.