Reactancia e impedancia ( imprimir)

7
Circuitos RLC en corriente alterna. En este laboratorio se hará un repaso de los circuitos, formados por resistencias (R), condensadores (C) y bobinas (L), cuando se alimentan por una fuente de tensión alterna senoidal. En corriente alterna aparecen dos nuevos conceptos relacionados con la oposición al paso de la corriente eléctrica. Se trata de la reactancia y la impedancia. Un circuito presentará reactancia si incluye condensadores y/o bobinas. La naturaleza de la reactancia es diferente a la de la resistencia eléctrica. En cuanto a la impedancia decir que es un concepto totalizador de los de resistencia y reactancia, ya que es la suma de ambos. Es por tanto un concepto más general que la simple resistencia o reactancia. La resistencia en corriente alterna: Empezaremos con un circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal: La tensión vg tendrá un valor instantáneo que vendrá dado en todo momento por: En corriente alterna la oposición al paso de la corriente eléctrica tiene dos componentes, una real y otra imaginaria. Dicha oposición ya no se llama resistencia sino impedancia, Z. La impedancia se expresa mediante un número complejo, por ejemplo de la forma a + jb, siendo a la parte real del número complejo y b su parte imaginaria. Pues bien, una resistencia presenta una impedancia que sólo tiene componente real, ya que la su componente imaginaria es de valor cero. Tendremos entonces que en el caso que nos ocupa la impedancia total del circuito será igual al valor que presente la resistencia R, ya que no existe ningún otro elemento en el circuito. Así pues: Tras lo visto, podemos calcular el valor de la corriente i que circula por el circuito aplicando la Ley de Ohm:

Transcript of Reactancia e impedancia ( imprimir)

Page 1: Reactancia  e  impedancia  ( imprimir)

Circuitos RLC en corriente alterna.

En este laboratorio se hará un repaso de los circuitos, formados por resistencias (R), condensadores (C) y bobinas (L), cuando se alimentan por una fuente de tensión alterna senoidal. En corriente alterna aparecen dos nuevos conceptos relacionados con la oposición al paso de la corriente eléctrica. Se trata de la reactancia y la impedancia. Un circuito presentará reactancia si incluye condensadores y/o bobinas. La naturaleza de la reactancia es diferente a la de la resistencia eléctrica. En cuanto a la impedancia decir que es un concepto totalizador de los de resistencia y reactancia, ya que es la suma de ambos. Es por tanto un concepto más general que la simple resistencia o reactancia.

La resistencia en corriente alterna: Empezaremos con un circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal:

La tensión vg tendrá un valor instantáneo que vendrá dado en todo momento por:

En corriente alterna la oposición al paso de la corriente eléctrica tiene dos componentes, una real y otra imaginaria. Dicha oposición ya no se llama resistencia sino impedancia, Z. La impedancia se expresa mediante un número complejo, por ejemplo de la forma a + jb, siendo a la parte real del número complejo y b su parte imaginaria. Pues bien, una resistencia presenta una impedancia que sólo tiene componente real, ya que la su componente imaginaria es de valor cero. Tendremos entonces que en el caso que nos ocupa la impedancia total del circuito será igual al valor que presente la resistencia R, ya que no existe ningún otro elemento en el circuito. Así pues:

Tras lo visto, podemos calcular el valor de la corriente i que circula por el circuito aplicando la Ley de Ohm:

Page 2: Reactancia  e  impedancia  ( imprimir)

Tenemos pues que i será, al igual que la tensión vg, de tipo alterna senoidal. Además, como el argumento de la función seno es el mismo en ambos casos, la corriente i estará en fase con la tensión vg:

El condensador en corriente alterna : El circuito base para el estudio del condensador en corriente alterna es el siguiente:

En este circuito el condensador presentará una oposición al paso de la corriente alterna. Dicha oposición se llama reactancia capacitiva.Este tipo de oposición al paso de la corriente eléctrica es de carácter reactivo, entendiendo tal cosa como una "reacción" que introduce el condensador cuando la tensión que se le aplica tiende a variar lentamente o nada. Cuando el condensador está totalmente descargado se comporta como un cortocircuito. Cuando está totalmente cargado como una resistencia de valor infinito. Para valores intermedios de carga se comportará como una resistencia de valor intermedio, limitando la corriente a un determinado valor. Como en corriente alterna el condensador está continuamente cargandose y descargandose, mientras más lentamente varíe la tensión (frecuencia baja) más tiempo estará el condensador en estado de casi carga que en estado de casi descarga, con lo que presentará de media una oposición alta al paso de la corriente. Para variaciones rápidas de la tensión (frecuencias altas) el efecto será el contrario y por tanto presentará una oposición baja al paso de la corriente. Podemos decir, por tanto, que la naturaleza de este tipo de oposición es de carácter electrostático: la carga almacenada en el condensador se opone a que éste siga cargándose y esta oposición será mayor cuanto más carga acumule el condensador.

El circuito presentará una impedancia al paso de la corriente alterna dada por:

donde Xc es la reactancia capacitiva que se calcula así:

Page 3: Reactancia  e  impedancia  ( imprimir)

Para el condensador:

La tensión en extremos del condensador será vg, con lo que podemos poner que:

Si ahora derivamos respecto al tiempo la expresión anterior, resulta que

Reordenando términos, y teniendo en cuenta que cos a = sen ( a + 90º ), obtenemos finalmente que :

La expresión anterior supone un desfase de 90º en adelanto de la corriente que circula por el circuito respecto de la tensión en extremos del condensador.

La bobina en corriente alterna: Al igual que en los casos anteriores, el circuito sobre el que se estudia el comportamiento básico de la bobina en corriente alterna es el siguiente:

Page 4: Reactancia  e  impedancia  ( imprimir)

La bobina presentará oposición al paso de la corriente eléctrica y ésta será reactiva, de manera similar al caso capacitivo. Sin embargo, la naturaleza de la reactancia inductiva no es de carácter electrostático, sino de carácter electromagnético. Una bobina inducirá en sus extremos (debido a su autoinducción) una tensión que se opondrá a la tensión que se le aplique, al menos durante unos instantes. Ello provoca que no pueda circular corriente libremente. Cuanto mayor sea la velocidad de variación de la tensión aplicada mayor valor tendrá la tensión inducida en la bobina y, consecuentemente, menor corriente podrá circular por ella. Así, a mayor frecuencia de la tensión aplicada mayor será la reactancia de la bobina y, a la inversa, a menor frecuencia de la tensión aplicada menor será la reactancia de la bobina.

La impedancia que presenta la bobina, y por ende el circuito, será la siguiente:

siendo Xl la reactancia inductiva de la bobina (que viene a ser la oposición que ésta presenta al paso de la corriente alterna) que se calcula así:

Vemos ahora qué valor tendrá la corriente que circula por el circuito. Igual que en el caso del condensador, partiremos de una expresión que debiera ser conocida, la que se suele usar para definir la autoinducción:

Como vg es la tensión en extremos de la bobina podemos poner lo siguiente:

Integrando los dos miembros de la igualdad resulta que

Page 5: Reactancia  e  impedancia  ( imprimir)

Por tanto, la bobina en corriente alterna atrasa la corriente 90º respecto a la tensión presente en sus extremos.

El circuito RLC serie en corriente alterna:

El valor de la impedancia que presenta el circuito será:

O sea, además de la parte real formada por el valor de la resistencia, tendrá una parte reactiva (imaginaria) que vendrá dada por la diferencia de reactancias inductiva y capacitiva. Llamemos X a esa resta de reactancias. Pues bien, si X es negativa quiere decir que predomina en el circuito el efecto capacitivo. Por el contrario, si X es positiva será la bobina la que predomine sobre el condensador. En el primer caso la corriente presentará un adelanto sobre la tensión de alimentación. Si el caso es el segundo entonces la corriente estará atrasada respecto a vg. Conocida Zt, la corriente se puede calcular mediante la Ley de Ohm y su descomposición en módulo y ángulo de desfase no debería suponer mayor problema a estas alturas. Así,

Page 6: Reactancia  e  impedancia  ( imprimir)

También por Ley de Ohm se calculan los módulos de las tensiones de los diferentes elementos (las fases respecto a i son siempre las mismas: 0º para vr, 90º para vl y -90º para vc).

Resonancia en circuitos serie RLC :

Como se comentaba más arriba, existe un caso especial en un circuito serie RLC. Éste se produce cuando Xc=Xl y por lo tanto X=0. En un circuito de este tipo dicha circunstancia siempre se podrá dar y ello ocurre a una frecuencia muy determinada (recordemos la dependencia de Xc y Xl respecto de la frecuencia f de la tensión de alimentación). Cuando tal ocurre decimos que el circuito está en resonancia, y la frecuencia para la que ello ocurre se llamará frecuencia de resonancia. Igualando Xc y Xl podremos conocer su valor:

A la frecuencia de resonancia el circuito se comportará como resistivo puro, ya que los efectos capacitivos e inductivos se anulan mutuamente.

Page 7: Reactancia  e  impedancia  ( imprimir)

Una representación gráfica del fenómeno de la resonancia es la siguiente:

Lo aquí representado es el valor del módulo de la corriente que recorre el circuito según sea la frecuencia de la tensión de alimentación. Si se calcula la frecuencia de resonancia se verá que para los valores de la gráfica ésta es de 5033Hz, lo que corresponde con el máximo de la curva de la gráfica. Para frecuencia inferiores y superiores a la de resonancia el valor de la corriente será menor, lo cual es lógico ya que sólo para la frecuencia de resonancia la resta de reactancias será cero. Para frecuencias inferiores a la de resonancia predomina la reactancia capacitiva, siendo la inductiva la que predomina para frecuencias superiores a la de resonancia.