Redes

19
REDES ¿Qué es una Red Informática? Se puede definir una red informática como un sistema de comunicación que conecta ordenadores y otros equipos informáticos entre sí, con la finalidad de compartir información y recursos. La información que pueden intercambiar los ordenadores de una red puede ser de lo más variada: correos electrónicos, vídeos, imágenes, música en formato MP3, registros de una base de datos, páginas web, etc. La transmisión de estos datos se produce a través de un medio de transmisión o combinación de distintos medios: cables de fibra óptica, tecnología inalámbrica, enlaces vía satélite A través de la compartición de información y recursos en una red, los usuarios de los sistemas informáticos de una organización podrán hacer un mejor uso de los mismos, mejorando de este modo el rendimiento global de la organización. Entre las ventajas que supone el tener instalada una red, pueden citarse las siguientes: Mayor facilidad en la comunicación entre usuarios. Reducción en el presupuesto para software. Reducción en el presupuesto para hardware. Posibilidad de organizar grupos de trabajo. Mejoras en la administración de los equipos y programas Mejoras en la integridad de los datos. Mayor seguridad para acceder a la información. Clasificación según su tamaño: LAN, MAN y WAN Las redes LAN (Local Area Network, redes de área local) son las redes que todos conocemos, es decir, aquellas que se utilizan en una empresa. Son redes pequeñas, entendiendo como pequeñas las redes de una oficina, de un edificio… Debido a sus limitadas dimensiones, son redes muy rápidas

Transcript of Redes

Page 1: Redes

REDES

¿Qué es una Red Informática?

Se puede definir una red informática como un sistema de comunicación que conecta ordenadores y otros equipos informáticos entre sí, con la finalidad de compartir información y recursos.

La información que pueden intercambiar los ordenadores de una red puede ser de lo más variada: correos electrónicos, vídeos, imágenes, música en formato MP3, registros de una base de datos, páginas web, etc. La transmisión de estos datos se produce a través de un medio de transmisión o combinación de distintos medios: cables de fibra óptica, tecnología inalámbrica, enlaces vía satélite

A través de la compartición de información y recursos en una red, los usuarios de los sistemas informáticos de una organización podrán hacer un mejor uso de los mismos, mejorando de este modo el rendimiento global de la organización. Entre las ventajas que supone el tener instalada una red, pueden citarse las siguientes:

Mayor facilidad en la comunicación entre usuarios. Reducción en el presupuesto para software. Reducción en el presupuesto para hardware. Posibilidad de organizar grupos de trabajo. Mejoras en la administración de los equipos y programas Mejoras en la integridad de los datos. Mayor seguridad para acceder a la información.

Clasificación según su tamaño: LAN, MAN y WAN

Las redes LAN (Local Area Network, redes de área local) son las redes que todos conocemos, es decir, aquellas que se utilizan en una empresa. Son redes pequeñas, entendiendo como pequeñas las redes de una oficina, de un edificio… Debido a sus limitadas dimensiones, son redes muy rápidas en las cuales cada estación se puede comunicar con el resto.

Las redes WAN (Wide Area Network, redes de área extensa) son redes punto a punto que interconectan países y continentes. Por ejemplo, un cable submarino entre Europa y América, o bien una red troncal de fibra óptica para interconectar dos países. Al tener que recorrer una gran distancia sus velocidades son menores que en las LAN aunque son capaces de transportar una mayor cantidad de datos.

Como vemos, las redes LAN son pequeñas y las redes WAN, muy grandes: debe existir algún término para describir unas redes de

Page 2: Redes

tamaño intermedio. Esto es, las redes MAN (Metropolitan Area Network, redes de área metropolitana).

VENTAJAS Y DESVENTAJAS DE LOS TIPOS DE REDES

LAN

Ventajas: Una LAN da la posibilidad de que los PC's compartan entre ellos programas, información, recursos entre otros. La máquina conectada (PC) cambian continuamente, así que permite que sea innovador este proceso y que se incremente sus recursos y capacidades.

Desventajas: Para que ocurra el proceso de intercambiar la información los PC's deben estar cerca geográficamente. Solo pueden conectar PC's o microcomputadoras.

 

WAN

Ventajas: Las WAN pueden utilizar un software especializado para incluir mini y macrocomputadoras como elementos de red. Las WAN no esta limitada a espacio geográfico para establecer comunicación entre PC's o mini o macrocomputadoras. Puede llegar a utilizar enlaces de satélites, fibra óptica, aparatos de rayos infrarrojos y de enlaces

Desventajas: Los equipos deben poseer gran capacidad de memoria, si se quiere que el acceso sea rápido. Poca seguridad en las computadoras (infección de virus, eliminación de programas, entre otros).

Clasificación según su distribución lógica

Todos los ordenadores tienen un lado cliente y otro servidor: una máquina puede ser servidora de un determinado servicio pero cliente de otro servicio.

Servidor. Máquina que ofrece información o servicios al resto de los puestos de la red. La clase de información o servicios que ofrezca determina el tipo de servidor que es: servidor de impresión, de archivos, de páginas Web, de correo, de usuarios, de IRC (charlas en Internet), de base de datos...

Cliente. Máquina que accede a la información de los servidores o utiliza sus servicios. Ejemplos: Cada vez que estamos viendo una página Web (almacenada en un servidor remoto) nos estamos comportando como clientes. También seremos clientes

Page 3: Redes

si utilizamos el servicio de impresión de un ordenador remoto en la red (el servidor que tiene la impresora conectada).

Dependiendo de si existe una función predominante o no para cada puesto de la red, las redes se clasifican en: 

Redes cliente/servidor . Los papeles de cada puesto están bien definidos: uno o más ordenadores actúan como servidores y el resto como clientes. Los servidores suelen coincidir con las máquinas más potentes de la red. No se utilizan como puestos de trabajo. En ocasiones, ni siquiera tienen monitor puesto que se administran de forma remota: toda su potencia está destinada a ofrecer algún servicio a los ordenadores de la red. Internet es una red basada en la arquitectura cliente/servidor.

Redes entre iguales . No existe una jerarquía en la red: todos los ordenadores pueden actuar como clientes (accediendo a los recursos de otros puestos) o como servidores (ofreciendo recursos). Son las redes que utilizan las pequeñas oficinas, de no más de 10 ordenadores.

COMPONENTES DE REDES

Una red de computadoras está conectada tanto por hardware como por software. El hardware incluye tanto las tarjetas de interfaz de red como los cables que las unen, y el software incluye los controladores (programas que se utilizan para gestionar los dispositivos y el sistema operativo de red que gestiona la red. A continuación se listan los componentes.

- Estaciones de trabajo

- Placas de interfaz

- Recursos periféricos y compartidos

TARJETASDispositivo integrado  por circuitos  electrónicos  que dentro sus funciones es  manejo de  datos o la  conversión de registros analógicos u otro tipo a señales digitales

Page 4: Redes

CABLESEs un conjunto de hilos de material de cobre o fibra ópticas entre otros, protegidos por aislantes   que sirven para trasmitir entre  computadores y componentes de red  energía, datos, voz y vídeo  con características propias dependiendo de la utilidad o red que sea usado.

CONECTORES   Dispositivo que sirve para enlazar o interconectar uno o  más ordenadores o computadoras  a una red o redes entre otros.

CONCENTRADORES *Un concentrador (hub) sirve como una ubicación central para conectar ordenadores y otros dispositivos (como impresoras) entre sí. Un concentrador es llamado a veces "repetidor multipuerto", porque pasa, o repite, todos los paquetes que recibe a todos sus puertos

EQUIPOS EN LA REDEl Hardware  como estructura física  son el elemento tangible en las tecnologías de la información y comunicación  que consta de unidades centrales constituidos en servidores y estaciones de trabajo.

Page 5: Redes

MODEMS * MOdulador-DEModulador. Es un dispositivo que adapta la señal digital de un ordenador en frecuencias de sonido (análógicas) para transmitir a través de una línea de teléfono, y las adapta de nuevo a digitales. Las velocidades de transmisión de los módems se sitúan generalmente entre los 2.400bps (2.4Kbps) a los 56.000bps (56Kbps). estos puede ser internos o externos

MEDIOS DE TRANSMISIÓNSon los medios por el cual se transmiten los datos. Estos medios de transmisión se clasifican en guiados y no guiados. Los primeros son aquellos que utilizan un medio sólido (un cable) para la transmisión. Los medios no guiados utilizan el aire para transportar los datos: son los medios inalámbricos.

Entre los medios no guiados se encuentran:

Ondas de radio. Son capaces de recorrer grandes distancias, atravesando edificios incluso. Son ondas omnidireccionales: se propagan en todas las direcciones. Su mayor problema son las interferencias entre usuarios.

Microondas. Estas ondas viajan en línea recta, por lo que emisor y receptor deben estar alineados cuidadosamente. Tienen dificultades para atravesar edificios. Debido a la propia curvatura de la tierra, la distancia entre dos repetidores no debe exceder de unos 80 Kms. de distancia. Es una forma económica para comunicar dos zonas geográficas mediante dos torres suficientemente altas para que sus extremos sean visibles.

Infrarrojos. Son ondas direccionales incapaces de atravesar objetos sólidos (paredes, por ejemplo) que están indicadas para transmisiones de corta distancia.

Ondas de luz. Las ondas láser son unidireccionales. Se pueden utilizar para comunicar dos edificios próximos instalando en cada uno de ellos un emisor láser y un fotodetector.

Entre los medios guiados se encuentran:

Cable coaxial

El cable coaxial es similar al cable utilizado en las antenas de televisión: un hilo de cobre en la parte central rodeado por una malla y separados ambos elementos conductores por un cilindro de plástico. Las redes que utilizan este cable requieren que los

Page 6: Redes

adaptadores tengan un conector apropiado: los ordenadores forman una fila y se coloca un segmento de cable entre cada ordenador y el siguiente. En los extremos hay que colocar un terminador, que no es más que una resistencia de 50 ohmios. La velocidad máxima que se puede alcanzar es de 10Mbps.

Cable par trenzado

El par trenzado es similar al cable telefónico, sin embargo consta de 8 hilos y utiliza unos conectores un poco más anchos. Dependiendo del número de trenzas por unidad de longitud, los cables de par trenzado se clasifican en categorías. A mayor número de trenzas, se obtiene una mayor velocidad de transferencia.

Categoría 3, hasta 16 Mbps Categoría 4, hasta 20 Mbps  Categoría 5 y Categoría 5e, hasta 1 Gbps Categoría 6, hasta 1 Gbps y más

Los cables par trenzado pueden ser a su vez de dos tipos:

UTP (Unshielded Twisted Pair, par trenzado no apantallado) STP (Shielded Twisted Pair, par trenzado apantallado)

Los cables UTP son los más utilizados debido a su bajo coste y facilidad de instalación. Los cables STP están embutidos en una malla metálica que reduce las interferencias y mejora las características de la transmisión. Sin embargo, tienen un coste elevado y al ser más gruesos son más complicados de instalar.

El cableado que se utiliza en la actualidad es UTP CAT5. El cableado CAT6 es demasiado nuevo y es difícil encontrarlo en el mercado. Los cables STP se utilizan únicamente para instalaciones muy puntuales que requieran una calidad de transmisión muy alta.

Los segmentos de cable van desde cada una de las estaciones hasta un aparato denominado hub o concentrador, formando una topología de estrella.

Cable de fibra óptica

En los cables de fibra óptica la información se transmite en forma de pulsos de luz. En un extremo del cable se coloca un diodo luminoso (LED) o bien un láser, que puede emitir luz. Y en el otro extremo se sitúa un detector de luz.

Curiosamente y a pesar de este sencillo funcionamiento, mediante los cables de fibra óptica se llegan a alcanzar velocidades de varios Gbps. Sin embargo, su instalación y mantenimiento tiene un coste

Page 7: Redes

elevado y solamente son utilizados para redes troncales con mucho tráfico.

Los cables de fibra óptica son el medio de transmisión elegido para las redes de cable que ya están funcionando en algunas zonas de España. Se pretende que este cable pueda transmitir televisión, radio, Internet y teléfono.

Topologías de red

La disposición de los diferentes componentes de una red se conoce con el nombre de topología de la red. La topología idónea para una red concreta va a depender de diferentes factores, como el número de máquinas a interconectar, el tipo de acceso al medio físico que deseemos, etc.

Podemos distinguir tres aspectos diferentes a la hora de considerar una topología:

1. La topología física, que es la disposición real de las máquinas, dispositivos de red y cableado (los medios) en la red.

2. La topología lógica, que es la forma en que las máquinas se comunican a través del medio físico. Los dos tipos más comunes de topologías lógicas son broadcast (Ethernet) y transmisión de tokens (Token Ring).

Modelos de topología Las principales modelos de topología son:

Topología de bus

La topología de bus tiene todos sus nodos conectados directamente a un enlace y no tiene ninguna otra conexión entre nodos. Físicamente cada host está conectado a un cable común, por lo que se pueden comunicar directamente, aunque la ruptura del cable hace que los hosts queden desconectados.

Page 8: Redes

La topología de bus permite que todos los dispositivos de la red puedan ver todas las señales de todos los demás dispositivos, lo que puede ser ventajoso si desea que todos los dispositivos obtengan esta información. Sin embargo, puede representar una desventaja, ya que es común que se produzcan problemas de tráfico y colisiones, que se pueden paliar segmentando la red en varias partes. Es la topología más común en pequeñas LAN, con hub o switch final en uno de los extremos.

Topología de anilloUna topología de anillo se compone de un solo anillo cerrado formado por nodos y enlaces, en el que cada nodo está conectado solamente con los dos nodos adyacentes. .

Los dispositivos se conectan directamente entre sí por medio de cables en lo que se denomina una cadena margarita. Para que la información pueda circular, cada estación debe transferir la información a la estación adyacente.

Topología de anillo doble Una topología en anillo doble consta de dos anillos concéntricos, donde cada host de la red está conectado a ambos anillos, aunque los dos anillos no están conectados directamente entre sí. Es análoga a la topología de anillo, con la diferencia de que, para incrementar la confiabilidad y flexibilidad de la red, hay un segundo anillo redundante que conecta los mismos dispositivos. La topología de anillo doble actúa como si fueran dos anillos independientes, de los cuales se usa solamente uno por vez.

Topología en estrella La topología en estrella tiene un nodo central

Page 9: Redes

desde el que se irradian todos los enlaces hacia los demás nodos. Por el nodo central, generalmente ocupado por un hub, pasa toda la información que circula por la red. .

La ventaja principal es que permite que todos los nodos se comuniquen entre sí de manera conveniente. La desventaja principal es que si el nodo central falla, toda la red se desconecta.

Topología en estrella extendida La topología en estrella extendida es igual a la topología en estrella, con la diferencia de que cada nodo que se conecta con el nodo central también es el centro de otra estrella. Generalmente el nodo central está ocupado por un hub o un switch, y los nodos secundarios por hubs. La ventaja de esto es que el cableado es más corto y limita la cantidad de dispositivos que se deben interconectar con cualquier nodo central. La topología en estrella extendida es sumamente jerárquica, y busca que la información se mantenga local. Esta es la forma de conexión utilizada actualmente por el sistema telefónico.

Topología en árbol La topología en árbol es similar a la topología en estrella extendida, salvo en que no tiene un nodo central. En cambio, un nodo de enlace troncal, generalmente ocupado por un hub o switch, desde el que se ramifican los demás nodos.

Page 10: Redes

El enlace troncal es un cable con varias capas de ramificaciones, y el flujo de información es jerárquico. Conectado en el otro extremo al enlace troncal generalmente se encuentra un host servidor.

Topología en malla completa En una topología de malla completa, cada nodo se enlaza directamente con los demás nodos. Las ventajas son que, como cada todo se conecta físicamente a los demás, creando una conexión redundante, si algún enlace deja de funcionar la información puede circular a través de cualquier cantidad de enlaces hasta llegar a destino. Además, esta topología permite que la información circule por varias rutas a través de la red.

Page 11: Redes

La desventaja física principal es que sólo funciona con una pequeña cantidad de nodos, ya que de lo contrario la cantidad de medios necesarios para los enlaces, y la cantidad de conexiones con los enlaces se torna abrumadora.

El modelo OSI

Antecedentes

Durante los años 60 y 70 se crearon muchas tecnologías de redes. Cada una basada en un diseño específico de hardware. Estos sistemas eran construidos de una sola pieza; lo que podríamos llamar una arquitectura monolítica.  Esto significa que los diseñadores debían ocuparse de todos los elementos involucrados en el proceso.  Podemos suponer que estos elementos forman una cadena de transmisión que tiene diversas partes: los dispositivos físicos de conexión;  los protocolos software y hardware usados en la comunicación; los programas de aplicación que realizaban la comunicación, y la interfaz hombre-máquina que permiten al humano utilizar la red. 

OSI(Open Systems Interconectiòn, Interconexión de sistemas abiertos). El cual es usado para describir el uso de datos entre la conexión física de la red y la aplicación del usuario final. Este modelo es el mejor conocido y el más usado para describir los entornos de red.

Como se muestra en la figura, las capas OSI están numeradas de abajo hacia arriba. Las funciones más básicas, como el poner los bits

Page 12: Redes

de datos en el cable de la red están en la parte de abajo, mientras las funciones que atienden los detalles de las aplicaciones del usuario están arriba.

Nivel de Aplicación

 

Es el nivel mas cercano al usuario y a diferencia de los demás niveles, por ser el más alto o el último, no proporciona un servicio a ningún otro nivel.

Cuando se habla de aplicaciones lo primero que viene a la mente son las aplicaciones que procesamos, es decir, nuestra base de datos, una hoja de cálculo, un archivo de texto, etc., lo cual tiene sentido ya que son las aplicaciones que finalmente deseamos transmitir. Sin embargo, en el contexto del Modelo de Referencia de Interconexión de Sistemas Abiertos, al hablar del nivel de Aplicación no nos estamos refiriendo a las aplicaciones que acabamos de citar. En OSI el nivel de aplicación se refiere a las aplicaciones de red que vamos a utilizar para transportar las aplicaciones del usuario.

FTP (File Transfer Protocol), Mail, Rlogin, Telnet, son entre otras las aplicaciones incluidas

en el nivel 7 del modelo OSI y sólo cobran vida al momento de requerir una comunicación entre dos entidades. Es por eso que al principio se citó que el modelo OSI tiene relevancia

en el momento de surgir la necesidad de intercomunicar dos dispositivos disímiles, aunque OSI vive potencialmente en todo dispositivo de cómputo y de telecomunicaciones.

En Resumen se puede decir que la capa de Aplicación se dice que es una sesión específico de aplicación (API),es decir, son los programas que ve el usuario.

 

Nivel de Presentación

Se refiere a la forma en que los datos son representados en una computadora. Proporciona conversión de códigos y reformateo de datos de la aplicación del usuario. Es sabido que la información es procesada en forma binaria y en este nivel se llevan a cabo las adaptaciones necesarias para que pueda ser presentada de una manera mas accesible.Códigos como ASCII (American Standard Code for Information Interchange) y EBCDIC (Extended Binary Coded Decimal Interchange Code), que permiten interpretar los datos binarios en caracteres que

Page 13: Redes

puedan ser fácilmente manejados, tienen su posicionamiento en el nivel de presentación del modelo OSI.

Los sistemas operativos como DOS y UNIX también se ubican en este nivel, al igual que los códigos de comprensión y encriptamiento de datos. El nivel de Presentación negocia la sintaxis de la transferencia de datos hacia el nivel de aplicación.

En Resumen se dice que la capa de Presentación es aquella que provee representación de datos, es decir, mantener la integridad y valor de los datos independientemente de la representación.

 

Nivel de Sesión

 Este nivel es el encargado de proveer servicios de conexión entre las aplicaciones, tales como iniciar, mantener y finalizar una sesión. Establece, mantiene, sincroniza y administra el diálogo entre aplicaciones remotas.

 Cuando establecemos una comunicación y que se nos solicita un comando como login, estamos iniciando una sesión con un host remoto y podemos referenciar esta función con el nivel de sesión del modelo OSI. Del mismo modo, cuando se nos notifica de una suspensión en el proceso de impresión por falta de papel en la impresora, es el nivel de sesión el encargado de notificarnos de esto y de todo lo relacionado con la administración de la sesión. Cuando deseamos finalizar una sesión, quizá mediante un logout, es el nivel de sesión el que se encargará de sincronizar y atender nuestra petición a fin de liberar los recursos de procesos y canales (lógicos y físicos) que se hayan estado utilizando.

 

NetBIOS (Network Basic Input/Output System) es un protocolo que se referencia en el nivel de sesión del modelo OSI, al igual que el RPC (Remote Procedure Call) utilizado en el modelo cliente-servidor.

En Resumen se puede decir que la capa de Sesión es un espacio en tiempo que se asigna al acceder al sistema por medio de un login en el cual obtenemos acceso a los recursos del mismo servidor conocido como "circuitos virtuales".La información que utiliza nodos intermedios que puede seguir una trayectoria no lineal se conoce como "sin conexión".

 

Nivel de Transporte

Page 14: Redes

 En este nivel se realiza y se garantiza la calidad de la comunicación, ya que asegura la integridad de los datos. Es aquí donde se realizan las retransmisiones cuando la información fue corrompida o porque alguna trama (del nivel 2) detectó errores en el formato y se requiere volver a enviar el paquete o datagrama.

 El nivel de transporte notifica a las capas superiores si se está logrando la calidad requerida. Este nivel utiliza reconocimientos, números de secuencia y control de flujo.

 Los protocolos TCP (Transmission Control Protocol) y UDP (User Datagram Protocol) son característicos del nivel del transporte del modelo OSI, al igual que SPX (Sequenced Packet Exchange) de Novell.

 En Resumen se dice que la capa de Transporte es la integridad de datos de extremo a extremo o sea que se encarga el flujo de datos del transmisor al receptor verificando la integridad de los mismos por medio de algoritmos de detección y corrección de errores, la capa de Red es la encargada de la información de enrutador e interceptores y aquella que maneja el Hardware(HW), ruteadores, puentes, multiplexores para mejorar el enrutamiento de los paquetes.

Enlace de Datos

 

Conocido también como nivel de Trama (Frame) o Marco, es el encargado de preparar la información codificada en forma binaria en formatos previamente definidos por el protocolo a utilizar.

 Tiene su aplicación en el contexto de redes WAN y LAN ya que como se estableció previamente la transmisión de datos no es mas que el envió en forma ordenada de bits de información. Podríamos de hecho concebir a ésta como una cadena de bits que marchan en una fila inmensa (para el caso de transmisiones seriales), cadena que carece de significado hasta el momento en que las señales binarias se agrupan bajo reglas, a fin de permitir su interpretación en el lado receptor de una manera constante.

Este nivel ensambla los datos en tramas y las transmite a través del medio (LAN o WAN). Es el encargado de ofrecer un control de flujo entre tramas, así como un sencillo mecanismo para detectar errores. Es en este nivel y mediante algoritmos como CRC(Cyclic Redundancy Check), donde se podrá validar la integridad física de la trama; mas no será corregida a este nivel sino que se le notificará al transmisor para s retransmisión.

 En el nivel de enlace de datos se lleva a cabo el direccionamiento físico de la información; es decir, se leerán los encabezados que definen las direcciones de los nodos (para el caso WAN) o de los

Page 15: Redes

segmentos (para el caso LAN) por donde viajarán las tramas. Decimos que son direcciones físicas ya que las direcciones lógicas o de la aplicación que pretendemos transmitir serán direccionadas o enrutadas en un nivel superior llamado nivel de red. En este nivel de enlace sólo se da tratamiento a las direcciones MAC (Media Access Control) para el caso de LAN y a las direcciones de las tramas síncronas como HDLC (High-Level Data Link Control), SDLC (Synchronous Data Link Control , de IBM), LAP B (Link Access Procedure Balance) por citar algunos para el caso WAN.

Protocolos de red

Un protocolo de red es una norma standard -conjunto de normas standard- que especifica el método para enviar y recibir datos entre varios ordenadores.

No existe un único protocolo de red, y es posible que en un mismo ordenador coexistan instalados varios protocolos, pues es posible que un ordenador pertenezca a redes distintas.

Esta variedad de protocolos puede suponer un riesgo de seguridad: cada protocolo de red que instalamos en un sistema Windows queda disponible para todos los adaptadores de red existentes en el sistema, físicos (tarjetas de red o módem) o lógicos (adaptadores VPN). Si los dispositivos de red o protocolos no están correctamente configurados, podemos estar dando acceso no deseado a nuestros recursos.