Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

54
Universidad Nacional de Misiones Ingeniería Electrónica Control Clásico y Moderno Informe de Trabajo Práctico N° 5 Lugar de las Raíces Autores: HOFF Romina A. KRUJOSKI Matías G. Grupo Nº 4 Profesores Responsables: Dr. Ing. Fernando Botterón Ing. Guillermo Fernández Oberá, Misiones, 30/06/2014

Transcript of Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Page 1: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Universidad Nacional de Misiones

Ingeniería Electrónica

Control Clásico y Moderno

Informe de Trabajo Práctico N° 5

Lugar de las Raíces

Autores:

HOFF Romina A.

KRUJOSKI Matías G.

Grupo Nº 4

Profesores Responsables:

Dr. Ing. Fernando Botterón

Ing. Guillermo Fernández

Oberá, Misiones, 30/06/2014

Page 2: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces
Page 3: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 3 de 54

Ejercicio 1)

Dado el sistema de tipo 1 representado por la siguiente función de transferencia:

2( )

( 1)( 5)pG s

s s s

(1.1)

Se requiere que las especificaciones de desempeño en lazo cerrado sean las

siguientes: error de posición, essp = 0; sobrepaso Mp ≤ 5%, tiempo de asentamiento

ts˂5s y tiempo de subida tr, menor posible.

A) Graficar la región deseada de polos de lazo cerrado.

B) Considerando el compensador proporcional de la Figura 1.1, plantear un conjunto

posible de ganancias que verifiquen las especificaciones de desempeño exigidas.

Simular el sistema provocando una variación de la referencia, en la mitad del tiempo de

simulación desde el 50% hasta el 100% del valor final, igual a 1. Tomar el recaudo de

que el sistema se establezca en régimen permanente antes de efectuar la variación de

referencia. Graficar las señales de referencia, salida y de error en un mismo gráfico, y

en otro gráfico, la acción de control resultante.

Figura 1.1: Diagrama en bloques del sistema con compensador proporcional

C). Justificar las ganancias seleccionadas a través del lugar de las raíces, el cual debe

ser trazado en base a los pasos presentados en la teoría.

D). Introducir un compensador PD como muestra la Figura 1.2 y proyectar la ganancia

Kd y la posición del cero utilizando las condiciones de fase y de módulo del lugar de las

raíces. Simular el sistema efectuando la misma variación de la referencia que en el

punto b. Graficar las mismas señales que en el punto b.

Figura 1.2: Diagrama en bloques del sistema con compensador proporcional derivativo

E). Con Matlab, trazar el lugar de las raíces resultante del sistema compensado de la

Fig. 2. Marcar en este gráfico, el punto si que pertenezca al lugar de raíces y que

cumple con el menor tiempo de subida. Trazar también con Matlab, y en un mismo

Page 4: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 4 de 54

gráfico, un diagrama de Nyquist de los sistemas de las Figura 1.1 y Figura 1.2; o sea,

del sistema sin compensación (Kp = 1) y luego de compensado con el PD. En base a

estos gráficos, realizar un análisis y conclusiones sobre los cambios resultantes en el

desempeño y la estabilidad relativa del sistema en lazo cerrado.

F). Para la misma planta, introducir ahora la acción derivativa proyectada en el punto d,

a partir de la salida del sistema (Figura 1.3) y simularlo utilizando PSIM o Simulink. En

esta simulación, efectuar la misma variación de referencia que en el punto d y graficar

las mismas señales que en el punto d. Compararlas con las señales obtenidas en el

punto d.

Figura 1.3: Diagrama en bloques del sistema con compensador proporcional derivativo

G). Proponer el circuito electrónico completo en base a amplificadores operacionales

para poder efectuar el control de los sistemas en lazo cerrado de la Figura 1.2 y de la

Figura 1.3. Diseñar los componentes pasivos asociados. Simular el sistema en lazo

cerrado con el circuito propuesto, utilizando PSIM y Pspice (Schematics) y

compararlos. Los resultados de simulación a presentar son los mismos que los

solicitados en los puntos d y f. Observar si existe saturación de la acción de control.

En caso afirmativo, reducir en la simulación los valores de referencia de entrada.

Desarrollo

A)

Para hallar la región deseada, es necesario definir los siguientes parámetros:

2

10,69

1ln( )Mp

(1.2)

Entonces se calcula el ángulo máximo de la ubicación de los polos como:

1 1

max cos ( ) cos (0,69) 46,36 (1.3)

Luego el valor de la parte real de los polos (σ) y el de la parte imaginaria (ωd) se hallan

como:

4,5 4,50,9

5st (1.4)

Page 5: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 5 de 54

0,91,3

0,69n

(1.5)

2 21 1,3 1 0,69 0,94d n (1.6)

Con los datos obtenidos, podemos trazar la región deseada de los polos, esto se

aprecia en la Figura 1.4

Figura 1.4: Región deseada de ubicación de los polos.

B)

De acuerdo con el diagrama de bloques de la Figura 1.1, la función de transferencia en

lazo cerrado resulta:

3 2

2( )

6 5 2

p

lc

p

KG s

s s s K

(1.7)

Figura 1.5: Señal de salida ante una referencia y señal de error del sistema en lazo cerrado con Kp=1

j

Región

deseada

0.9

Page 6: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 6 de 54

Figura 1.6: Señal de salida ante una referencia y señal de error del sistema en lazo cerrado con Kp=3

Graficando con el programa de simulación PSIM, para distintos valores de Kp, en las

Figura 1.5 y Figura 1.6, se aprecia que la respuesta al escalón no cumple las

especificaciones.

A continuación se expone la gráfica de las acciones de control para el sistema en lazo

cerrado, compensado proporcionalmente, con Kp=1 y Kp=3 y una entrada en escalón

unitario.

Figura 1.7: Acción de control para una referencia unitaria con Kp=1 y Kp=3

C) Figura 1.8En la Figura 1.8 se grafica con Matlab el lugar de las raíces de la función de

transferencia de la planta. En esta figura, se aprecia que no existe un valor de K que

haga que todos los polos se encuentren dentro de la región deseada.

Page 7: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 7 de 54

Figura 1.8: Señal de salida ante una referencia y señal de error del sistema en lazo cerrado con Kp=3

D)

La función de transferencia del controlador PD es la (1.8), que está compuesta por una

ganancia Kd y un cero en a= –Kp/Kd

( ) . ( / ) ( )c p d d p d dG s K s K K s K K K s a (1.8)

Para introducir un compensador PD como el indicado en la Figura 1.2 graficamos la

región de deseada de los polos en la Figura 1.9. En esta marcamos los polos de la

planta, ubicamos de forma genérica el cero del compensador y el polo deseado en las

coordenadas (-1,1). Allí mismo se trazan los vectores desde los polos y ceros, al polo

deseado

Figura 1.9: Constelación de polos y ceros dentro de la región deseada

Luego se plantea la condición de fase, esta es el ángulo entre el cero del compensador

y el polo deseado menos la suma de los ángulos entre los polos de la planta y el polo

deseado debe ser igual al ángulo de la ganancia del compensador (Kd)

Root Locus

Real Axis

Imagin

ary

Axis

-7 -6 -5 -4 -3 -2 -1 0 1

-15

-10

-5

0

5

10

0.69

0.69

j

1j

5 a

3 a 12

1

dP

Page 8: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 8 de 54

1 2 3( ) ( )la a dG s K (1.9)

1 1( ) (135 90 14,03) 180 59,03laG s (1.10)

Por lo que el ángulo del cero ubicado en a resulta θ1=59,03. Con este dato podemos

calcular la ubicación exacta del cero mediante la siguiente ecuación:

1

1 1( ) 1 1,6

1 (59,03)

opuestotg a

adyacente a tg

(1.11)

Entonces tenemos definida la ubicación del cero en a=-1,6, resta determinar el valor de

la ganancia del compensador. Para esto se plantea la condición de magnitud que es la

productoria del módulo de la distancia ente los ceros del compensador y de la planta al

polo deseado sobre la productoria del módulo de la distancia ente los polos del de la

planta al polo deseado, debe ser igual al modulo 1/Kd

1 1

1 2 3

( . ) 1( )

( . . )

p d c d

la

dp d p d p d

Z P Z PG s

KP P Z P Z P

(1.12)

2 2

2 2 2 2 2 2

2. (1,6 1) 1 1 2,33 1( ) 2,5

34(1) 1 (0) 1 (5 1) 1la d

d d

G s KK K

(1.13)

Dijimos que a=Kp/Kd como tenemos el valor de a y de Kd hallamos el valor de Kp

1,6.2,5 4p

p

d

Ka K

K (1.14)

Finalmente la función de transferencia en lazo abierto del sistema compensado es la

siguiente:

2(2,5. 4)( )

( 1)( 5)la

sG s

s s s

(1.15)

A continuación se presenta la gráfica de las señales de salida y de error ante una

referencia en escalón, de la planta en lazo cerrado compensada con el PD. Esta se

obtuvo mediante el programa de simulación PSIM. Con las herramientas del programa,

Page 9: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 9 de 54

se observo que el sistema compensado si cumple las especificaciones tanto de sobre

paso como de tiempo de establecimiento. Lo cual es muy satisfactorio y anhelado.

Figura 1.10: Señal de salida y señal de error del sistema en lazo cerrado compensado, ante una referencia en

escalón

En la Figura 1.11 se expone la señal resultante de la acción de control del sistema

compensado. Se puede ver que la acción de control es muy elevada en el primer

instante de tiempo y donde se da el cambio de la referencia. La acción de control tiende

a infinito en estos puntos dado que en la derivada de la referencia (control derivativo)

en esos puntos es infinita.

Figura 1.11: Acción de control del sistema en lazo cerrado compensado, ante una referencia en escalón

Realizando un zoom de la acción de control, se puede observar en forma más clara, el

comportamiento de la misma.

Page 10: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 10 de 54

Figura 1.12: Zoom de la acción de control del sistema en lazo cerrado compensado, ante una referencia en

escalón

E)

El lugar de las raíces para el sistema compensado en el punto anterior resulta el

graficado en la Figura 1.13, en esta también se grafica el punto Si que pertenece al

lugar de las raíces y posee el menor tiempo de subida.

Figura 1.13: Lugar de las raíces del sistema compensado con PD

El análisis de la estabilidad relativa del sistema compensado y de la planta sin

compensar, se realiza mediante el diagrama de Nyquist que se presenta a

continuación. En este se observa que ambos sistemas son estables. En el caso de la

compensación proporcional derivativa, se mejoró el margen de fase, lo cual es

característico de este compensador y se ha mejorado la respuesta del sistema.

14.9994 14.9996 14.9998 15 15.0002 15.0004 15.0006 15.0008 15.001

Time (s)

0

5000

10000

refer accion_de_controol

Root Locus

Real Axis

Imagin

ary

Axis

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

-10

-8

-6

-4

-2

0

2

4

6

8

System: untitled1

Gain: 0.834

Pole: -0.907 + 0.878i

Damping: 0.718

Overshoot (%): 3.9

Frequency (rad/sec): 1.26

0.69

0.69

Page 11: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 11 de 54

Figura 1.14: Diagrama de Nyquist del sistema compensado con PD y del sistema sin compensador

Para compara el desempeño del sistema compensado con el sistema sin

compensador, en las Figura 1.15 y Figura 1.16 se ha graficado la respuesta al escalón

en lazo cerrado. Se observa que el sistema compensado presenta mejoras en la

respuesta del sistema, además de cumplir con las especificaciones.

Figura 1.15: Respuesta al escalón del sistema sin compensador, en lazo cerrado

Nyquist Diagram

Real Axis

Imagin

ary

Axis

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0-10

-8

-6

-4

-2

0

2

4

6

8

10

System: sistema compensado

Phase Margin (deg): 62.8

Delay Margin (sec): 0.887

At frequency (rad/sec): 1.23

Closed Loop Stable? Yes

System: planta

Phase Margin (deg): 65.2

Delay Margin (sec): 3.05

At frequency (rad/sec): 0.374

Closed Loop Stable? Yes

sistema compensado

planta

Step Response

Time (sec)

Am

plit

ude

0 5 10 150

0.2

0.4

0.6

0.8

1

1.2

1.4

System: Glcp

Rise Time (sec): 3.53

System: Glcp

Peak amplitude: 1.04

Overshoot (%): 3.75

At time (sec): 7.43

System: Glcp

Settling Time (sec): 9.64

Glcp

Page 12: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 12 de 54

Figura 1.16: Respuesta al escalón del sistema compensado, en lazo cerrado

F)

Tomando la misma planta, con las mismas especificaciones, se procede a implementar

un controlador PD con las características halladas anteriormente pero, tomando la

acción derivativa de la salida del sistema como se ve en la Figura 1.17

Figura 1.17: diagrama de bloques del sistema compensado, tomando la acción derivativa de la salida

Para este caso la señal de salida y la de error se observan en la Figura 1.18. si la

comparamos con la obtenida en la Figura 1.10, para el caso anterior, no se observan

diferencias en cuanto a las respuestas.

Figura 1.18: Señal de salida y señal de error del sistema en lazo cerrado compensado, ante una referencia

Step Response

Time (sec)

Am

plit

ude

0 1 2 3 4 5 60

0.2

0.4

0.6

0.8

1

1.2

1.4

System: Glccomp

Settling Time (sec): 3.91

System: Glccomp

Peak amplitude: 1.08

Overshoot (%): 8.09

At time (sec): 2.42

System: Glccomp

Rise Time (sec): 1.11

Glccomp

Page 13: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 13 de 54

en escalón

En la Figura 1.19 se ha graficado la acción de control resultante de esta nueva

disposición del sistema. Se observa que se logrado reducir la acción de control. Ésta ya

no tiende a infinito (no es una acción de control muy elevada) cuando se produce un

cambio en la referencia. Esto muy interesante dado que en la práctica esta acción de

control posible implementar con componentes reales.

Figura 1.19: Acción de control del sistema en lazo cerrado compensado, ante una referencia en escalón

G)

Para el caso del derivativo tenemos que sKd=sRdC de lo cual conocemos qué Kd=2,5.

Adoptando un capacitor cuyo valor sea C=1 µF, la resistencia Rd= 2,5 MΩ. Luego se

tiene que la ganancia del proporcional esta dado como Kp=R2/ R1. Como Kp=4 se

adopta R1=2,7 KΩ por lo que R2=10,8 KΩ. Una vez calculado los valores de los

componentes, se implementa el circuito en el simulador PSIM

En la Figura 1.20 se presenta el esquema circuital del compensador PD tomando la

señal de error como señal de entrada al proporcional.

Figura 1.20: Circuito electrónico con amplificadores operacionales

Page 14: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 14 de 54

En la Figura 1.21 se aprecia la señal de salida y de error para una variación en escalón.

Se aprecia que el sistema cumple con las especificaciones.

Figura 1.21: Respuesta al escalón del circuito electrónico con amplificadores operacionales

En la Figura 1.22 se aprecia la acción de control para una variación en escalón. Se

aprecia que el sistema posee saturación, la cual permanece al modificar el valor de

referencia por las características y principio de funcionamiento del controlador

dispuesto en la Figura 1.20.

Figura 1.22: Acción de control del circuito electrónico con amplificadores operacionales

En la Figura 1.23 se presenta el circuito electrónico, en el cual se toma como señal de

entrada al proporcional, la señal de salida del sistema

Page 15: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 15 de 54

Figura 1.23: Circuito electrónico con amplificadores operacionales

En la Figura 1.24 se presenta las señales de salida y de error para el nuevo circuito. Se

observa que las respuestas son similares a las obtenidas con la disposición circuital

anterior, cumpliendo también con las especificaciones.

Figura 1.24: Respuesta al escalón del circuito electrónico con amplificadores operacionales

Finalmente en la Figura 1.25 se presenta la acción de control resultante del circuito de

la Figura 1.23. Se observa que en este caso la acción de control no se satura y es de

un valor pequeño por lo que esta tipología ha mejorado la respuesta y el desempeño

del sistema.

Figura 1.25: Acción de control del circuito electrónico con amplificadores operacionales

Page 16: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 16 de 54

Como conclusión se puede decir que a la hora de implementar un controlador

PD con amplificadores operacionales, es conveniente tomar como entrada de la acción

proporcional, la señal de salida del sistema. De esta forma se evita la saturación de los

operacionales y se obtiene un buen control del sistema.

(Resuelto por Hoff Romina)

Ejercicio 2)

Considere el sistema en lazo cerrado de la Figura 2.1.

Figura 2.1: Planta más compensador a diseñar.

Las especificaciones de desempeño de este sistema en régimen transitorio y

permanente deben ser las detalladas en la Tabla 2.1.

Tabla 2.1: Especificaciones de desempeño con compensador

Parámetro Valor

essp 0 essv ≤ 24 % Mp ≤ 14 % ts 2 seg

Proyectar, con el fin de cumplir dichas especificaciones, un controlador PID cuya

función de transferencia está dada por la ecuación (2.1).

𝐺𝑐(𝑠) = 𝐾𝑃𝐼𝐷(𝑠 + 𝑎)(𝑠 + 𝑏)

𝑎𝑏𝑠 (2.1)

a. Fijar uno de los ceros del PID en s=-3. Calcular la posición del cero restante y el

valor de KPID para que se cumplan las condiciones de sobrepaso y tiempo de

asentamiento dados. Simular el sistema y obtener en un mismo gráfico, las

respuestas del mismo con compensación y sin compensación para entrada en

escalón. En la simulación, provocar una variación de la referencia, en la mitad

del tiempo de simulación, desde 50% hasta el 100% del valor final, igual a 1.

Page 17: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 17 de 54

Tomar el recaudo de que el sistema se establezca en régimen permanente antes

de efectuar la variación de referencia. Graficar las señales de referencia y de

salida en un mismo gráfico, en otro gráfico las señales del error, y en un tercero,

las acciones de control resultantes.

b. Trazar utilizando MATLAB®, y en gráficos diferentes, el lugar de raíces del

sistema sin compensar y del sistema compensado.

c. Simular el sistema y obtener las respuestas del mismo con compensación y sin

compensación para una entrada en rampa.

d. Fijar ahora uno de los ceros en s=-2 y obtener el cero restante y la ganancia KPID

para que se cumplan las condiciones de desempeño dadas. Obtener los mismos

gráficos que los obtenidos en el punto a.

e. Trazar utilizando MATLAB®, y en gráficos diferentes, el lugar de raíces del

sistema sin compensar y del sistema compensado.

f. Efectuar un análisis y obtener conclusiones sobre los cambios en el desempeño

entre un caso y otro. Justificar las respuestas.

g. Proponer el circuito electrónico completo en base a amplificadores operacionales

(para el caso d) para poder efectuar el control del sistema en lazo cerrado de la

Figura 2.1 y diseñar los componentes pasivos asociados a cada etapa. Simular

el sistema en lazo cerrado con el circuito propuesto, utilizando PSIM y PSpiece

(Schematics). Los resultados de simulación a presentar son los mismos que los

solicitados en los puntos a y d.

Resolución

Valiéndose de las especificaciones de desempeño dadas en la Tabla 2.1 se puede

obtener el coeficiente de amortiguamiento relativo como en la ecuación (2.2).

𝜉 =−ln (𝑀𝑝)

√ln(𝑀𝑝)2+ 𝜋2

=−ln (0,14)

√ln(0,14)2 + 𝜋2= 0,53

(2.2)

En tanto que el tiempo de asentamiento permite obtener la parte real del polo deseado,

dado por la ecuación (2.3).

𝜎𝑑 =4

𝑡𝑠=4

𝑠= 2 (2.3)

Page 18: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 18 de 54

De modo que la frecuencia angular natural del sistema resulta de la ecuación (2.4).

𝜔𝑛 =𝜎

𝜉=

2

0,53= 3,77

𝑟𝑎𝑑

𝑠𝑒𝑔 (2.4)

El coeficiente de amortiguamiento relativo define el ángulo de apertura de la región

deseada de los polos, según la expresión (2.5).

𝜃𝑚𝑥 = cos−1(𝜉) = 58° (2.5)

Con el diagrama de la Figura 2.1 se puede obtener la función transferencia a lazo

abierto del conjunto planta-compensador; que resulta como en la expresión (2.6).

𝐺𝑐𝑝𝑙𝑎 = 𝐾 ∙(𝑠 + 𝑎)(𝑠 + 𝑏)

𝑎𝑏𝑠∙

50

(𝑠 + 2)(𝑠 + 3) (2.6)

a)

En primera instancia se sitúa uno de los ceros del compensador en s=-3 para hacer

una cancelación con uno de los polos de la planta; de modo que la función

transferencia a lazo abierto de la planta más compensador de la expresión (2.6) resulta

como en (2.7).

𝐺𝑐𝑝𝑙𝑎 = 𝐾 ∙(𝑠 + 3)(𝑠 + 𝑏)

3𝑏𝑠∙

50

(𝑠 + 2)(𝑠 + 3) (2.7)

Operando la (2.7) resulta en la forma de la (2.8).

𝐺𝑐𝑝𝑙𝑎 = 𝐾 ∙50(𝑠 + 𝑏)

3𝑏𝑠2 + 6𝑏𝑠 (2.8)

Con la expresión en lazo abierto del conjunto compensador-planta, más las

especificaciones para le región deseada de los polos, dados por las ecuaciones (2.3) y

(2.5), se genera el diagrama de polos y ceros presentado en la Figura 2.2.

Page 19: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 19 de 54

Figura 2.2: Diagrama de Polos y Ceros

Para el diagrama presentado en la Figura 2.2 se debe verificar la condición de fase

dada por la ecuación (2.9).

±180 = 𝜃1 + 𝜃2 − 𝜃𝑑 (2.9)

La expresión (2.9) puede reescribirse en función de los parámetros conocidos,

resultando como en (2.10).

±180° = (180° − 58°) + 90 − 𝜃𝑑 (2.10)

Despejando la fase para el cero que incorpora el compensador, como en (2.11).

𝜃𝑑 = 212° − 180° = 32° (2.11)

Por trigonometría, se puede obtener la posición del cero que incorporó el compensador

mediante la ecuación (2.12).

𝜃𝑑 = 𝑡𝑔−1 (

𝜔𝑑−𝜎𝑑 + 𝑏

) = 32° (2.12)

Finalmente, el cero del compensador resulta en la posición dada en (2.13).

𝑏 = 𝜎𝑑 +𝜔𝑑

𝑡𝑔(𝜃𝑑)= 7,11 (2.13)

σ

σd

Ɵ2

Ɵd

Ɵ1

b

Page 20: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 20 de 54

De modo que para completar el diseño del compensador propuesto sólo falta

dimensionar la ganancia que éste aplica, esto se hace mediante la condición de error

de velocidad dada en la Tabla 2.1; de modo que debe verificarse la ecuación (2.14).

𝑒𝑠𝑠𝑣 =1

lim𝑠→0

𝑠 ∙ 𝐺𝑐𝑝𝑙𝑎≤ 0,24 (2.14)

𝑒𝑠𝑠𝑣 =1

lim𝑠→0

𝑠 ∙ 𝐾 ∙50(𝑠+7,11)

21,33∙𝑠2+42,66∙𝑠

≤ 0,24 (2.15)

Despejando la ganancia estática del compensador, resulta como en (2.16).

𝐾 =3

25 ∙ 0,24= 0,5 (2.16)

De modo que el compensador proyectado queda como en la ecuación (2.17).

𝐺𝑐 = 0,5 ∙(𝑠 + 3)(𝑠 + 7,11)

21,33 ∙ 𝑠 (2.17)

Por lo tanto la expresión del sistema compensado, en lazo cerrado resulta como (2.18).

𝐺𝑐𝑝𝑙𝑐 =25 ∙ 𝑠2 + 252,9 ∙ 𝑠 + 533,6

21,34 ∙ 𝑠3 + 131,7 ∙ 𝑠2 + 380,9 ∙ 𝑠 + 533,6 (2.18)

Recurriendo al software MATLAB® se genera la gráfica de comparación para la

respuesta en lazo cerrado de la planta sin compensar y con el compensador diseñado;

como se presenta en la Figura 2.3.

Page 21: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 21 de 54

Figura 2.3: Respuesta en lazo cerrado de la planta y la planta compensada

En la Figura 2.4 se presenta el error de la planta sin compensar y del sistema

compensado.

Figura 2.4: Error de la planta y la planta compensada

0 1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1

1.2

t [seg]

Am

plit

ud

Planta

Planta+Compensador

Referencia

Sobrepaso Mp = 14 %Tiempo de Pico= 1,12 segTiempo de Establecimiento= 1,86 seg

0 1 2 3 4 5 6 7 8-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Tiempo [seg]

Am

plit

ud

Errorsin compensar

Errorcompensado

Referencia

Page 22: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 22 de 54

b)

Recurriendo al software MATLAB® se genera el diagrama del lugar de las raíces para

la planta sin compensar y compensada respectivamente; como puede apreciarse en la

Figura 2.5.

Figura 2.5: Diagrama del Lugar de la raíces de la planta y la planta compensada

La notable diferencia que se aprecia entre el lugar de las raíces para el sistema

compensado y sin compensar se deben al cambio en la dinámica del mismo que se

produce con la incorporación del compensador.

c)

Mediante simulación se puede obtener la respuesta del sistema compensado y sin

compensar ante una entrada en rampa, lo que permite verificar el error de velocidad,

como se presenta en la Figura 2.6.

-16 -14 -12 -10 -8 -6 -4 -2 0 2

-6

-4

-2

0

2

4

60.53

0.53

Planta

Planta+Compensador

σ

Page 23: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 23 de 54

Figura 2.6: Respuesta para entrada en Rampa

En la respuesta a la rampa presentada previamente se aprecia la mejora que presenta

el sistema al incorporar el compensador, lográndose la consigna para el error de

velocidad dad en la Tabla 2.1.

d)

Disponiendo uno de los ceros del compensador en s=-2; la expresión en lazo abierto

de la planta más el compensador resulta como en (2.19).

𝐺𝑐𝑝𝑙𝑎2 = 𝐾 ∙(𝑠 + 2)(𝑠 + 𝑏)

2𝑏𝑠∙

50

(𝑠 + 2)(𝑠 + 3)= 𝐾 ∙

50(𝑠 + 𝑏)

2𝑏𝑠2 + 6𝑏𝑠 (2.19)

Tomando la expresión en lazo abierto se puede generar el diagrama de polos y ceros

del sistema compensado, y valiéndose de las especificaciones de desempeño que

definen le región deseada de los polos resulta como la Figura 2.7.

0 0.5 1 1.50

0.5

1

1.5

Tiempo [seg]

Am

plit

ud

Referencia

Planta

Planta+Compensador

Error

Errorplanta

planta+compensador

Page 24: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 24 de 54

Figura 2.7: Diagrama de Polos y Ceros

Para el diagrama presentado se debe verificar la condición de fase expresada en

(2.20).

±180 = 𝜃1 + 𝜃2 − 𝜃𝑑 (2.20)

Operando con los ángulos trigonométricos, se encuentra el valor que debe aportar el

cero del compensador; como exhibe (2.21).

𝜃𝑑 = 𝑡𝑔−1 (𝜔𝑑

−𝜎𝑑 + 𝑏) = 14,62° (2.21)

En tanto que la posición del cero se obtiene de (2.22).

𝑏 = 𝜎𝑑 +𝜔𝑑

𝑡𝑔(𝜃𝑑)= 14,25 (2.22)

Así, para completar el diseño del compensador propuesto se dimensiona la ganancia,

mediante la condición de error de velocidad dada en la Tabla 2.1; entonces, debe

verificarse la ecuación (2.24).

𝑒𝑠𝑠𝑣 =1

lim𝑠→0

𝑠 ∙ 𝐺𝑐𝑝𝑙𝑎≤ 0,24 (2.23)

𝑒𝑠𝑠𝑣 =1

lim𝑠→0

𝑠 ∙ 𝐾 ∙50(𝑠+14,25)

28,5∙𝑠2+85,5∙𝑠

≤ 0,24 (2.24)

σ

σd

Ɵ2

Ɵd

Ɵ1

b

Page 25: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 25 de 54

Despejando la ganancia estática del compensador, resulta como en (2.25).

𝐾 =6

50 ∙ 0,24= 0,5 (2.25)

De modo que el compensador proyectado queda como en la ecuación (2.26).

𝐺𝑐2 = 0,5 ∙(𝑠 + 2)(𝑠 + 14,25)

28,5 ∙ 𝑠 (2.26)

Por lo tanto la expresión del sistema compensado, en lazo cerrado resulta como (2.27).

𝐺𝑐2𝑝𝑙𝑐 =25 ∙ 𝑠2 + 403,6 ∙ 𝑠 + 712,5

28,5 ∙ 𝑠3 + 167,5 ∙ 𝑠2 + 577,3 ∙ 𝑠 + 712,5 (2.27)

Recurriendo al software MATLAB® se genera la gráfica de comparación para la

respuesta en lazo cerrado de la planta sin compensar y con el compensador diseñado;

como se presenta en la Figura 2.8.

Figura 2.8: Respuesta en lazo cerrado de la planta y la planta compensada

0 1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1

1.2

t [seg]

Am

plit

ud

Sobrepaso Mp = 13,2 %Tiempo de Pico= 0,974 segTiempo de Establecimiento= 1,57 seg2

Planta+Compensador

Planta

Referencia

Page 26: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 26 de 54

Comparando los parámetros característicos de la respuesta transitoria obtenida con

este segundo compensador con el de la Figura 2.3 se la mejora producida por éste

compensador al disponer uno de sus ceros en mayor proximidad del origen; dándole

así mayor dominancia al cero. Esto último implica que el sistema compensado con la

segunda alternativa tenga un tiempo de subida menor, que se aprecia a través de un

tiempo de pico menor; además, de una reducción en el sobrepaso.

En la Figura 2.9 se presenta el error de la planta sin compensar y del sistema

compensado. Donde queda evidenciado que el sistema cumple con la especificación

de lograr un error de posición nulo una vez alcanzado el período permanente.

Figura 2.9: Error de la planta y la planta compensada

e)

En la Figura 2.10 se presenta el diagrama del lugar de las raíces para el sistema

compensado; comparando ésta con la Figura 2.5 obtenida para el compensador

diseñado en el ítem a; se evidencia que para el nuevo compensador algunos de los

polos pueden quedar fuera de la región deseada, según sea el valor de ganancia que el

mismo adopte. Mientras que para el primer compensador propuesto esto no ocurría.

0 1 2 3 4 5 6 7 8-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Tiempo [seg]

Am

plit

ud

Errorplanta

Errorplanta+compensador2

Referencia

Page 27: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 27 de 54

Figura 2.10: Diagrama del Lugar de la raíces de la planta y la planta compensada

f)

En términos generales se puede concluir que el compensador diseñado en el ítem d

presenta un mejor desempeño que el diseñado en el ítem a; ya que el mismo permite

que el sistema alcance en menor tiempo el valor de consigna y lo hace con un

sobrepaso menor, logrando así, también, un menor tiempo de establecimiento respecto

del primero. Estas diferencias en la dinámica del sistema compensado se deben a que

el primer diseño se basaba en cancelar el polo menos dominante de la planta, en

cambio el segundo diseño cancela el polo más dominante de la planta con lo que logra

mayor estabilidad del sistema.

g)

Operando algebraicamente la expresión del compensador a implementar dada en

(2.26) puede reescribirse en la forma típica de un compensador PID como en (2.28).

-30 -25 -20 -15 -10 -5 0 5-15

-10

-5

0

5

10

150.53

0.53

Planta

Planta+Compensador2

σ

Page 28: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 28 de 54

𝐺𝑐2 = 0,285 +𝑠

57+0,5

𝑠 (2.28)

De la expresión estándar para el compensador PID dadas en (2.28) se pueden leer los

coeficientes característicos de éste, que se presentan en (2.29).

𝑘𝑝 = 0,285

𝑘𝑖 = 0,5____

𝑘𝑑 =1

57____

(2.29)

El compensador PID implementado con un único operacional, como etapa

independiente toma la forma presentada en la Figura 2.11.

Figura 2.11: Etapa PID con Amplificador Operacional

Para el circuito presentado deben verificarse las relaciones dadas en (2.30).

𝑘𝑝 =

𝐶1𝐶2+𝑅2𝑅1

𝑘𝑖 =1

𝑅1𝐶2____

𝑘𝑑 = 𝑅2𝐶1____

(2.30)

De modo que fijando el capacitor 𝐶1 = 1 𝜇𝐹 y valiéndose de las ecuaciones en (2.30) y

los valores de las constante para el compensador que se requiere implementar, dados

-

+R1

C1

e(t)u(t)

C2R2

R3

Page 29: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 29 de 54

en (2.29); se revuelven los demás componentes pasivos a incorporar en el circuito,

cuyos valores comerciales más próximos se detallan en la Tabla 2.2.

Tabla 2.2: Componentes pasivos

R1 470 kΩ R2 18 kΩ C2 4,7 µF

Con estos componentes dimensionados, y recurriendo al software PSIM se genera el

diagrama del compensador completo, presentado en la Figura 2.12.

Figura 2.12: Compensador PID con Amplificadores Operacionales

Valiéndose del esquema de simulación presentado se genera el diagrama exhibido en

la Figura 2.13.

Figura 2.13: Simulación del circuito para la salida del sistema

0 2 4 6 8

Tiempo [seg]

0

0.2

0.4

0.6

0.8

1

1.2

Referencia Compensado Plantasc

CompensadoPlantasc

Page 30: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 30 de 54

Comparando los resultados de la simulación del circuito con los obtenidos en forma

teórica con el MATLAB®, en la Figura 2.8 , se aprecia qué el compensador propuesto

responde según lo esperado. Esto también es visible en la señal de error, presentada

en la Figura 2.14.

Figura 2.14: Error obtenido con la simulación del circuito

En tanto que en la Figura 2.15 se presenta la acción de control que el circuito

compensador diseñado aplica al sistema.

Figura 2.15: Acción de Control obtenida con la simulación del circuito

Como puede apreciarse en el resultado de simulación, dónde la alimentación de los

amplificadores operacionales fue contemplada como ± 15V, la acción de control que el

circuito intenta aplicar al sistema supera los límites físicos cuando la referencia pasa a

0 2 4 6 8

Tiempo [seg]

0

-0.2

0.2

0.4

0.6

0.8

1

Referencia Error Errorsc

Errorsc

Error

0 2 4 6 8

Tiempo [seg]

0

-1

-2

1

2

AccControl Referencia

Page 31: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 31 de 54

su valor final al 100%. Esto indica que las especificaciones de diseño con que se

proyectó el compensador son muy exigentes y será imposible implementar en la

práctica este esquema bajo dichas condiciones.

Conclusiones

El desarrollo de este ejercicio permitió demostrar que en el método gráfico de

reubicación de polos siempre es conveniente cancelar aquellos polos más dominantes

del sistema, es decir, los más próximos al origen en el plano S; para obtener una mejor

respuesta, que satisfaga las condiciones impuestas en el proyecto.

(Resuelto por: Krujoski Matías G.)

Ejercicio 3)

Sea la función transferencia a lazo abierto dada en (3.1), con 𝐾𝑝 = 192.

𝐺𝑝(𝑠) =𝐾𝑝

𝑠(𝑠 + 6)(𝑠 + 10) (3.1)

a) Determinar a partir de la respuesta transitoria para una entrada en escalón, el

tiempo de pico, el sobrepaso, el tiempo de asentamiento y el tiempo de subida

del sistema en lazo cerrado.

b) Calcular el error porcentual (essv) de estado estacionario de velocidad.

c) Para mejorar aún más la respuesta transitoria del sistema, se sustituye el

controlador proporcional Kp por un compensador de adelanto de fase, cuya

función de transferencia está dada por (3.2). En este compensador, el cero debe

obtenerse por cancelación polo-cero. Esta cancelación debe realizarse con el

criterio de poder incrementar la estabilidad del sistema en lazo cerrado.

Determinar a continuación los parámetros K y b para obtener un tiempo de pico

tp=0,5 seg y un sobrepaso Mp=10%.

𝐺𝑐(𝑠) = 𝐾𝑠 + 𝑎

𝑠 + 𝑏 (3.2)

Page 32: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 32 de 54

d) Calcular el error porcentual (essv) de estado estacionario de velocidad para el

sistema compensado en el ítem c. Trazar una respuesta de este sistema para

una entrada en rampa a fin de verificar el error calculado.

e) Simular el sistema en lazo cerrado y obtener en un mismo gráfico las respuestas

del sistema para una entrada en escalón, con el compensador proporcional y

con el compensador proyectado en el ítem c. En la misma simulación, provocar

una variación de la referencia en escalón, en la mitad del tiempo de simulación,

desde el 50% hasta el 100% del valor final. Tomar el recaudo de aguardar hasta

que la respuesta sea estable. Graficar las señales de referencia y de salida en

un mismo gráfico, en otro gráfico las señales de error, y en un tercero, la acción

de control resultante.

f) Trazar el lugar de raíces con MATLAB® y comentar las mejoras introducidas por

este tipo de controlador respecto de la acción proporcional. Analizar sí los polos

de lazo cerrado dominantes obtenidos con Kp, se encuentran dentro de la región

deseada de polos de lazo cerrado definida por las especificaciones dadas en el

ítem c.

g) Se desea disminuir a una décima parte el error en estado estacionario de

velocidad que se tenía con el control proporcional al inicio del problema –

calculado en el ítem b-. Para esto se agrega una etapa de atraso de fase para

lograr una red de compensación adelanto-atraso, cuya función de transferencia

resulta como (3.3); dónde K y b1 son los calculados en el ítem c.

𝐺𝑐(𝑠) = 𝐾 (𝑠 + 𝑎1𝑠 + 𝑏1

) (𝑠 + 𝑎2𝑠 + 0,01

) (3.3)

Se debe calcular entonces el parámetro a2 para satisfacer el requerimiento de

error essv.

h) Graficar la respuesta de este proceso con el controlador de adelanto-atraso para

una entrada en rampa y verificar sí se satisface la especificación de error exigida

en el punto anterior.

i) Obtener los gráficos de este proceso para una entrada en escalón, de la misma

forma en que se realizó en el ítem e, pero comparando ahora las tres

compensaciones efectuadas. Analizar qué mejoras introdujo el compensador

adelanto-atraso respecto del proyectado en el ítem c. Para esto, trazar en

diferentes gráficos, el lugar de raíces del proceso con la estructura de

Page 33: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 33 de 54

compensación del ítem g y también los diagramas de Nyquist de éste último y el

del proceso compensado en el ítem c.

j) Presentar el circuito electrónico final con amplificadores operacionales para

poder efectuar el control en lazo cerrado del proceso dado, con el compensador

del ítem g. Diseñar todos los componentes pasivos adoptando

C1=C2=C3=C4=10µF. Simular el sistema en lazo cerrado utilizando PSIM o

Schematics. Los resultados de simulación a presentar son los mismos que los

solicitados en el ítem c.

Resolución

a)

Recurriendo al software MATLAB® se puede analizar con facilidad los parámetros

requeridos, a través de la gráfica presentada en la Figura 3.1.

Tiempo [seg]

Am

plit

ud

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

1.4

Mp= 18,8%tp= 0,983 seg

tr= 0,423 seg

ts= 2,19 seg

G (s)plc

Figura 3.1: Respuesta de la planta en lazo cerrado

Los parámetros característicos en la respuesta de la planta, se resumen en la Tabla

3.1.

Tabla 3.1: Parámetro característicos

Parámetro Valor

Tiempo Subida (tr) 0,423 seg Sobrepaso (Mp) 18,8 % Tiempo Pico (tp) 0,983 seg

Tiempo Establecimiento (ts) 2,19 seg

Page 34: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 34 de 54

b)

El error de velocidad, en estado estacionario, para el sistema se puede obtener

mediante la ecuación (3.4).

𝑒𝑠𝑠𝑣 =1

lim𝑠→0

𝑠𝐺𝑝(𝑠)=

1

lim𝑠→0

𝑠 ∙ (192

𝑠(𝑠+6)(𝑠+10))= 0,3125 ≡ 31,25% (3.4)

c)

Mediante la incorporación del compensador de adelanto de fase dado en la ecuación

(3.5); el valor de a queda definido de modo que cancele al polo en s=-6 por ser este el

más dominante; así se mejora la estabilidad del sistema en lazo cerrado.

𝐺𝑐(𝑠) = 𝐾𝑠 + 𝑎

𝑠 + 𝑏 (3.5)

De modo que contemplando las consideraciones indicadas previamente, la (3.5) resulta

en la ecuación (3.6).

𝐺𝑐(𝑠) = 𝐾𝑠 + 6

𝑠 + 𝑏 (3.6)

En función de las especificaciones de diseño, se puede establecer la región deseada

de los polos en lazo cerrado para el sistema compensado; de modo que con el

sobrepaso estipulado se obtiene el amortiguamiento relativo; como en (3.7).

𝜉 =− ln(𝑀𝑝)

√ln(𝑀𝑝)2+ 𝜋2

= 0,59 (3.7)

Así, el ángulo que forman las rectas de ξ constante en el plano s se obtiene a partir del

amortiguamiento; como se indica en (3.8).

𝜃 = cos−1(𝜉) = 53,76° (3.8)

Por su parte, la frecuencia del sistema compensado se obtiene en (3.9).

𝜔𝑑 =𝜋

𝑡𝑝= 6,28 𝑟𝑎𝑑 𝑠⁄ (3.9)

Page 35: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 35 de 54

Entonces, se puede obtener la componente real de los polos deseados, mediante la

ecuación (3.10).

𝜎𝑑 = 𝜉𝜔𝑛 =𝜉𝜔𝑑

√1 − 𝜉2= 4,6 (3.10)

De modo que, el lugar geométrico de los polos deseados, con las especificaciones

dadas, resulta como se exhibe en la Figura 3.2.

σ

σdξ=0,59

Figura 3.2: Lugar deseado de las Raíces

De este modo, se define el polo deseado como se presenta en la expresión (3.11).

𝑝𝑑 = −4,6 ± 𝑗 6,28 (3.11)

Así, el diagrama de polos y ceros del sistema en lazo abierto, contemplando al polo

aportado por el compensador en el punto s=-b, resulta como se exhibe en la Figura 3.3.

σ

σdσd

Ɵ3

Ɵ1Ɵ

d

Figura 3.3: Diagrama de Polos y Ceros en lazo abierto, con lugar de las raíces

Page 36: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 36 de 54

Por condición de fase, se puede escribir la expresión dada en (3.12).

−𝜃1 − 𝜃𝑏 − 𝜃3 = ±180 (3.12)

El polo aportado por el compensador, dado en s=-b, es el que debe fijarse; por lo tanto

se despeja la fase de la expresión dada previamente; resulta como se indica en (3.13).

−𝜃𝑏 = ±180 + 𝜃1 + 𝜃3 = −180 + 𝑡𝑔−1 (𝜔𝑑

10 − 𝜎𝑑) + 126,24° (3.13)

Por trigonometría, la fase para el polo en b queda determinada por la expresión (3.14).

−𝜃𝑏 = 𝑡𝑔−1 (𝜔𝑑

𝑏 − 𝜎𝑑) = −4,4° (3.14)

Operando con la expresión (3.13) y (3.14) se obtiene la posición del polo que aporta el

compensador; como lo indica (3.15).

𝑏 =𝜔𝑑

𝑡𝑔(4,4)+ 𝜎𝑑 = 86,07 (3.15)

Para completar el diseño del controlador de adelanto de fase propuesto es necesario

dimensionar la ganancia que éste deberá aplicar; así, se plantea la condición de

magnitud para este esquema como se da en la ecuación (3.16).

|𝐺𝑝𝑐𝑙𝑐| =|𝐾|

|𝑠| |𝑠 + 10| |𝑠 + 𝑏|= 1 (3.16)

De la expresión (3.16) se puede despejar directamente el módulo de la ganancia que

incorpora el compensador como en (3.17).

|𝐾| = |𝑠| |𝑠 + 10| |𝑠 + 𝑏| = |−𝜎𝑑𝜔𝑑

| ∙ |−𝜎𝑑 + 10

𝜔𝑑| ∙ |−𝜎𝑑 + 𝑏𝜔𝑑

| = 5271,6 (3.17)

Cabe destacar que los módulos considerados en el cálculo de la ganancia,

corresponden al módulo de los radio-vectores dados entre los respectivos polos y el

polo deseado; como se aprecia en la Figura 3.3.

Page 37: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 37 de 54

Obsérvese que la ganancia obtenida para el compensador es relativamente elevada;

esto se debe a que las especificaciones para el diseño del compensador son muy

exigentes en cuanto a la respuesta que se pretende respecto del sistema sin

compensar.

Esta ganancia que debe aportar el controlador es notablemente elevada para

implementarlo en forma práctica; esto podría causar inconvenientes por lo que

probablemente se deba recurrir a una estructura diferente, por ejemplo incorporando

dos compensadores en cascada para repartir la carga en el conjunto compensador.

Finalmente, la expresión del compensador de adelanto de fase, diseñado por

reubicación de polos y ceros resulta como el presentado en la ecuación (3.18).

𝐾𝑐 = 5271,6 ∙𝑠 + 6

𝑠 + 86,07 (3.18)

Así, la expresión en lazo abierto de la planta más el compensador incorporado resulta

como en la ecuación (3.19).

𝐺𝑐𝑝𝑙𝑎 =5271,6

𝑠(𝑠 + 86,07)(𝑠 + 10) (3.19)

d)

El error estacionario de velocidad para el sistema compensado puede obtenerse

mediante la aplicación del teorema del valor final, según se indica en (3.20).

𝑒𝑠𝑠𝑣 =1

lim𝑠→0

𝑠𝐺𝑐𝑝𝑙𝑎(𝑠)=

1

lim𝑠→0

𝑠 ∙ (5271,6

𝑠(𝑠+86,07)(𝑠+10))= 0,1632 ≡ 16,32% (3.20)

Comparando el error de velocidad obtenido para el sistema con el compensador

proporcional en (3.4) y el error del sistema con el compensador de adelanto de fase

(3.20), es evidente la mejora producida.

En forma gráfica, el error de velocidad puede apreciarse claramente en la respuesta a

la rampa; como se exhibe a modo de comparación en la Figura 3.4.

Page 38: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 38 de 54

Figura 3.4: Respuesta a la rampa

e)

Valiéndose del software MATLAB® se genera la comparación entre la respuesta que

ofrecía el sistema simplemente compensado con el proporcional, dado por la ecuación

(3.1), y el sistema compensado con el controlador de adelanto de fase incorporado en

el ítem c, según la expresión (3.19). Cabe destacar que la simulación se efectúa para

una referencia en escalón que varía entre el 50% y el 100%; la gráfica obtenida se

presenta en la Figura 3.5.

Figura 3.5: Respuesta al escalón

0 0.5 1 1.50

0.5

1

1.5

Tiempo [seg]

Am

plit

ud

Referencia

Gp+G c

Error

0 1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1

1.2

1.4

Tiempo [seg]

Am

plit

ud

tp: 0,99 segMp: 9%

Gp + KpGp + GcReferencia tp: 0,51 seg

Mp: 5%

Page 39: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 39 de 54

En la Figura 3.5 se evidencia que el sistema con el compensador diseñado en el ítem c

posee un tiempo de subida y sobrepaso menor que el sistema que incorporaba

únicamente el compensador proporcional. Además, es apreciable que la incorporación

del compensador, llevó al sistema a cumplir con las especificaciones que se tomaron

para el diseño.

Figura 3.6: Error con compensador proporcional y de adelanto de fase

Por su parte, la acción de control aplicada a la planta, queda definida por la expresión

dada en (3.21).

𝑈(𝑠) = 𝑅(𝑠) ∙𝐺𝑐

1 + 𝐺𝑐 ∙ 𝐺𝑝 (3.21)

De este modo, en forma gráfica la acción de control se presenta en la Figura 3.7.

Obsérvese que la acción de control resultante es muy elevada, dejando ver que el

compensador va a saturarse. Esto concuerda con las observaciones hechas respecto

de la ganancia del compensador, realizadas en el ítem c.

0 1 2 3 4 5 6 7 8-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Tiempo [seg]

Am

plit

ud

Ecp

Ref

EKp

Page 40: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 40 de 54

Figura 3.7: Acción del compensador proporcional y de adelanto de fase

f)

Recurriendo al software MATLAB® se genera la Figura 3.8 donde es exhibido el lugar

de las raíces para la planta simplemente compensada con el proporcional y para la

planta con el compensador de adelanto de la ecuación (3.19).

Figura 3.8: Lugar de las raíces

En la Figura 3.9 se presenta un detalle del lugar de las raíces.

0 1 2 3 4 5 6 7 8-500

0

500

1000

1500

2000

2500

3000

Tiempo [seg]

Am

plit

ud

UK p

Uc

σ-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10

-40

-30

-20

-10

0

10

20

30

400.59

0.59

GKp

Gc

Page 41: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 41 de 54

Figura 3.9: Detalle del lugar de las raíces

En el gráfico del lugar de las raíces obtenido puede apreciarse que los polos del

sistema compensado se encuentran dentro de la región deseada de los polos; no así

los del sistema simplemente compensado con el proporcional.

g)

Retomando el error en régimen estacionario de velocidad, obtenido en la ecuación

(3.4); según las especificaciones se determina que éste debe reducirse a una décima

parte. En consecuencia, contemplando el compensador de adelanto de fase

incorporado en el ítem c y contemplando la red de atraso que debe incorporarse, se

pude escribir la ecuación (3.22).

𝑒𝑠𝑠𝑣 =1

lim𝑠→0

𝑠 ∙ (𝐾 ∙1

𝑠(𝑠+6)(𝑠+10)∙

𝑠+6

𝑠+86,07∙𝑠+𝑎2

𝑠+0,01)=0,3125

10 (3.22)

Resolviendo el límite de la (3.22) se puede obtener directamente el valor de a2 en

(3.24).

𝑒𝑠𝑠𝑣 =1

𝐾

10∙86,07∙0,01∙ 𝑎2

= 0,03125 (3.23)

𝑎2 =8,607

𝐾 ∙ 0,03125= 0,05224 (3.24)

De modo que la planta más el compensador de atraso-adelanto diseñado queda

determinada por la expresión (3.25).

-12 -10 -8 -6 -4 -2 0

-1

-0.5

0

0.5

1

0.59

0.59

GKp

Gc

σ

Page 42: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 42 de 54

𝐺𝑐𝑝𝑙𝑎2 =5271,6 ∙ (𝑠 + 0,05224)

𝑠(𝑠 + 86,07)(𝑠 + 10)(𝑠 + 0,01) (3.25)

h)

Para el sistema compensado con la red de adelanto-atraso incorporado en el ítem

previo, el error en régimen estacionario de velocidad se puede verificar mediante la

ecuación (3.26), donde se comprueba que el sistema responde según las condiciones

de diseño para la red de atraso-adelanto impuestas en el ítem g.

𝑒𝑠𝑠𝑣 =1

lim𝑠→0

𝑠 ∙ (𝐺𝑐𝑝𝑙𝑎2)=

1

lim𝑠→0

𝑠 ∙ (5271,6∙(𝑠+0,05224)

𝑠(𝑠+86,07)(𝑠+10)(𝑠+0,01))= 0,03125 (3.26)

Así, recurriendo al software MATLAB® se obtiene la respuesta para este sistema

compensado, con una entrada tipo rampa, a los efectos de apreciar el error en régimen

estacionario de velocidad; esto se presenta en la Figura 3.10.

Figura 3.10: Respuesta en rampa con compensación atraso-adelanto

i)

En la Figura 3.11 puede apreciarse como responde el sistema compensado con la red

de adelanto-atraso incorporada en el ítem g; a modo de comparación se incluye la

0 0.5 1 1.50

0.5

1

1.5

Tiempo [seg]

Am

plit

ud

Referencia

Gcp2

Error

Page 43: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 43 de 54

respuesta del sistema simplemente compensado con el proporcional y del sistema con

el compensador de adelanto de fase incorporado en el ítem c.

Figura 3.11: Respuesta de las tres compensaciones

En la Figura 3.12 se presenta un detalle del transitorio de las respuestas presentadas.

Figura 3.12: Detalle del transitorio de la respuesta

Como puede apreciarse, la compensación de adelanto-atraso de fase no produjo

mayores cambios en la respuesta transitoria del sistema respecto de la compensación

0 1 2 3 4 5 6 7 80

0.2

0.4

0.6

0.8

1

1.2

Tiempo [seg]

Am

plit

ud

Proporcional

Adelanto

Adelanto-Atraso

Referencia

4 4.5 5 5.5 6 6.5

0.95

1

1.05

1.1

1.15

Tiempo [seg]

Am

plit

ud

Proporcional

Adelanto

Adelanto-Atraso

Referencia

Page 44: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 44 de 54

en adelanto de fase. Además, se evidencia la diferencia que introducen ambos

compensadores respecto del proporcional.

En la Figura 3.13 se puede apreciar que el lugar de las raíces para el sistema

compensado con la red de adelanto-atraso de fase no ha sufrido un cambio significativo

respecto del sistema compensado con el adelanto de fase únicamente.

Figura 3.13: Lugar de las raíces para las tres compensaciones

En la Figura 3.14 se presenta el diagrama de Nyquist para el sistema con las tres

compensaciones incorporadas.

Figura 3.14: Diagrama de Nyquist para las tres compensaciones

En el diagrama de Nyquist comparativo para las tres compensaciones puede

apreciarse claramente que el compensador de adelanto-atraso de fase redujo

-80 -70 -60 -50 -40 -30 -20 -10 0 10

-20

-15

-10

-5

0

5

10

15

200.59

0.59

Proporcional

Adelanto

Adelanto-Atraso

σ

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

-15

-10

-5

0

5

10

15

Eje Real

Eje

Imag

inar

io

Proporcional

Adelanto

Adelanto-Atraso

Page 45: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 45 de 54

considerablemente el margen de fase del sistema; en tanto que el compensador de

adelanto no produce grandes cambios en el margen de fase respecto del proporcional.

j)

En la Figura 3.15 se presenta una red de adelanto-atraso de fase que permite

implementar en la práctica el controlador dado por la expresión (3.27).

-

+R3

C1

e(t)u(t)

R1R4

C2R2

Figura 3.15: Red de compensación adelanto-atraso de fase

𝑈(𝑠)

𝐸(𝑠)= 𝐾𝑐 ∙

𝑠 + 1 𝜏1⁄

𝑠 + 𝑎 𝜏1⁄∙𝑠 + 1 𝜏2⁄

𝑠 + 1 𝑏𝜏2⁄

(3.27)

Dónde se verifican las relaciones definidas por las expresiones (3.28) a (3.32).

𝜏1 = (𝑅1 + 𝑅3)𝐶1 (3.28)

𝜏2 = 𝑅2𝐶2 (3.29)

𝑎

𝜏1=

1

𝑅1𝐶1 (3.30)

𝑏𝜏2 = (𝑅2 + 𝑅4)𝐶2 (3.31)

𝐾𝑐 =𝑅4𝐶1𝑅3𝐶2

(3.32)

Teniendo en cuenta lo presentado previamente; es posible dimensionar los

componentes pasivos del circuito electrónico que implemente el compensador de

adelanto-atraso dado en la ecuación (3.33).

𝐺𝑐2 = 5271,6 ∙(𝑠 + 6)

(𝑠 + 86,07)∙(𝑠 + 0,05224)

(𝑠 + 0,01) (3.33)

Page 46: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 46 de 54

El diseño del circuito electrónico se realiza prefijando que todos los capacitores en éste

incluidos sean de 10 µF porque es necesario garantizar que los mismos sean no

polarizados, y de este modo se asegura su disponibilidad comercial.

Por simple inspección puede generarse el sistema de ecuaciones dado en (3.34).

𝜏1 =

16⁄ = (𝑅1 + 𝑅3)𝐶1

𝜏2 =10,05224⁄ = 𝑅2𝐶2

𝑎𝜏1⁄ = 86,07 = 1

𝑅1𝐶1⁄

𝑏𝜏2 = 100 = (𝑅2 + 𝑅4)𝐶2

(3.34)

Basándose en el condicionante para el diseño del circuito mencionado previamente se

resuelve los valores ideales para los componentes del circuito; detallados en (3.35).

𝑅1 = 1161,8 Ω𝑅2 = 1,91 𝑀Ω𝑅3 = 15,504 𝑘Ω𝑅4 = 8,08 𝑀Ω

(3.35)

Para la implementación real del compensador, todos los elementos se han adoptado a

sus valores comerciales más próximos.

Con los componentes dimensionado y contemplando un detector de error; además, el

inversor de ganancia unitaria para la acción de control; el circuito completo resulta

como se exhibe en la Figura 3.16.

Figura 3.16: Esquema eléctrico del compensador proyectado

Recurriendo al software PSIM se generan las simulaciones de la respuesta del sistema

compensado, presentado en la Figura 3.17.

Page 47: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 47 de 54

Figura 3.17: Referencia y Salida para el sistema con el compensador proyectado

Puede apreciarse en la respuesta al escalón del sistema que el tiempo de pico real no

coincide con las especificaciones de diseño, este comportamiento se debe a que al

simulación fue realizada con una alimentación simétrica de 15V para los AO; de modo

que estos se ven saturados y no pueden llevar al sistema al estado de consigna con la

velocidad esperada.

En la Figura 3.18 se presenta el error y en la Figura 3.19 se puede apreciar la acción

de control aplicada por el compensador proyectado.

Figura 3.18: Señal de Error para el compensador

0 10 20 30 40 50 60

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

Referencia Salida

0 10 20 30 40 50 60

Time (s)

0

-0.2

0.2

0.4

0.6

0.8

1

Referencia Error

Page 48: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 48 de 54

Figura 3.19: Acción de Control aplicada por el compensador

En la Figura 3.19 se evidencia el comportamiento detallado previamente, dónde queda

patente la saturación de los AO; fenómeno que impide al compensador aplicar más

energía para llevar a la planta a su estado de consigna en el tiempo previsto. Esto es

una indicación de que se deben relajar las exigencias sobre el compensador

proyectado.

Conclusiones

El desarrollo del presente ejercicio permitió tomar contacto inicial con la técnica de

diseño de compensadores mediante el análisis del lugar de las raíces. Además, del

diseño de etapas de atraso-adelanto de fase.

(Resuelto por: Krujoski Matías G.)

Ejercicio 4)

Considere un proceso cuya función de transferencia es:

100( )

( 4)pG s

s s

(4.1)

La misma se inserta en lazo cerrado en serie con una ganancia K, como se muestra en

la Figura 4.1. Primero, con K = 1, obtenga el valor de sobrepaso y tiempo de

asentamiento de la respuesta al escalón unitario del sistema. Esto equivale a colocar

solamente la planta en lazo cerrado sin ninguna compensación.

Figura 4.1: Diagrama en bloques del sistema con compensador proporcional

0 10 20 30 40 50 60

Time (s)

0

-5

5

10

15

Referencia Acc. Control

Page 49: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 49 de 54

A continuación, realice lo siguiente:

A) Trazar la región deseada de los polos de lazo cerrado para que el sistema cumpla

con un sobrepaso menor o igual al 14% y un tiempo de asentamiento menor o igual a 1

segundo.

B) Busque valores de la ganancia K que verifiquen las especificaciones deseadas. Para

este procedimiento utilice el trazado de las respectivas respuestas al escalón mediante

Matlab ubicándolas, si es posible, en un mismo gráfico.

C) Si no es posible conseguir que se cumplan las especificaciones únicamente con

valores de K, justificar por qué y luego, proyectar mediante el método gráfico visto en

clase teórica, un compensador de adelanto de fase, con la siguiente función de

transferencia:

( )( )

( )

cc c

c

s ZG s K

s P

(4.2)

D) Trazar el lugar de raíces resultante con el compensador del punto c y trazar el

diagrama de Bode del sistema compensado para determinar cuánto mejoró la

estabilidad relativa respecto al sistema sin compensación. Utilizar el comando “margin”

de Matlab.

Desarrollo:

De la repuesta en lazo cerrado de la planta sin compensación (K=1), graficada en la

Figura 4.2, se aprecia que el tiempo asentamiento es de 1,96 segundos, el sobrepaso

tiene una amplitud de 1,53 (Mp=53%) y un tiempo se subida de 0,12 segundos.

Figura 4.2: Respuesta al escalón del sistema en lazo cerrado, sin compensador.

Respuesta al escalon

Tiempo (sec)

Am

plit

ud

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

System: glc

Peak amplitude: 1.53

Overshoot (%): 52.6

At time (sec): 0.315

System: glc

Settling Time (sec): 1.96

System: glc

Rise Time (sec): 0.122

Page 50: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 50 de 54

A)

Para hallar la región deseada, es necesario definir los siguientes parámetros:

2

10,53

1ln( )Mp

(4.3)

Entonces se calcula el ángulo máximo de la ubicación de los polos como:

1 1

max cos ( ) cos (0,53) 57,96 (4.4)

Luego el valor de la parte real de los polos (σ) y el de la parte imaginaria (ωd) se hallan

como:

4,5 4,54,5

1st (4.5)

4,58,49

0,53n

(4.6)

2 21 8,49 1 0,53 7,19d n (4.7)

Con los datos obtenidos, podemos trazar la región deseada de los polos, esto se

aprecia en la Figura 4.3

Figura 4.3: Región deseada de ubicación de los polos.

B)

Graficando con Matlab el sistema compensado con distintos valores de ganancia se

obtiene la Figura 4.4. En esta, se puede apreciar que para un Kp=0,14 se logra un

sobrepaso menor al 14% pero el tiempo de establecimiento supera el especificado. Por

lo que al variar la ganancia Kp, no se cumplen ambas especificaciones.

j

Región

deseada

4.5

Page 51: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 51 de 54

Figura 4.4: Respuesta al escalón en lazo cerrado, para la planta compensada con Kp=0,5; Kp=0,25 y Kp=0,14.

C)

Como en el punto anterior no se pudo obtener un valor de Kp que cumpla las

especificaciones, se gráfica en la Figura 4.5 el lugar de las raíces, con el comando

rlocus de Matlab. En la gráfica obtenida se ve que, los polos del sistema quedan fuera

de la región deseada, por lo cual no es posible cumplir las especificaciones variando la

ganancia del proporcional

Figura 4.5: Lugar de las raíces y región deseada.

Como no se cumplen las especificaciones requeridas, se proyecta un compensador de

adelanto de fase. La función transferencia en lazo abierto de la planta más el

compensador de adelanto de fase es la siguiente:

( ) 100( )

( ) ( 4)

cla

c

K s ZG s

s P s s

(4.8)

Respuestas al escalon

Tiempo (sec)

Am

plit

ud

0 0.5 1 1.5 2 2.5 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

System: glc1

Peak amplitude: 1.4

Overshoot (%): 39.5

At time (sec): 0.472 System: glc2

Peak amplitude: 1.25

Overshoot (%): 25.4

At time (sec): 0.682System: glc5

Peak amplitude: 1.14

Overshoot (%): 13.7

At time (sec): 0.997

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5-10

-8

-6

-4

-2

0

2

4

6

8

10

0.531

0.531

Root Locus

Real Axis

Imagin

ary

Axis

Region

deseada

Page 52: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 52 de 54

Para cumplir con las especificaciones, la región deseada de los polos estará

determinada por los siguientes parámetros.

d4 /1 4 y 6,39ln( )Mp

(4.9)

Con los valores hallados se determina que el polo deseado se ubica en (-4,-6,4) y,

mediante el método grafico, se diseña el compensador ubicando los ceros y polos,

como se indica en la Figura 4.6.

Figura 4.6: polos y ceros de la planta más los del compensador de adelanto de fase.

Planteando la condición de fase se tiene que:

121 90 180 31 (4.10)

Una vez determinado el ángulo tita y ubicando la mitad de este (15,5º) hacia ambos

lados de la bisectriz, se determina la posición del cero y del polo. Estos se ubican en

Z=-6 y P=-11,3. Entonces planteando condición de módulo la cual establece que:

2 2

2 2 2 2 2 2

.100. (6 4) 6,41 0,699

(11,3 4) 6,4 . (4) 6,4 . (0) 6,4

KK

(4.11)

Por lo que la función de transferencia del sistema compensado, en lazo abierto resulta

69,93( 6)( )

( 11,3)( 4)la

sG s

s s s

(4.12)

j

6.4 j

Z

90

1

dP

P

2

2

Page 53: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 53 de 54

D)

Una vez hallado el compensador de adelanto de fase, se procede a graficar con Matlab

el lugar de las raíces del sistema compensado.

Figura 4.7: Lugar de las raíces de la planta más compensador de adelanto de fase.

Las siguientes figuras, nos muestran el diagrama de Bode de la planta (Figura 4.8), y

del sistema compensado (Figura 4.9)

Figura 4.8: Diagrama de Bode de la planta

-12 -10 -8 -6 -4 -2 0 2-30

-20

-10

0

10

20

30

Root Locus

Real Axis

Imagin

ary

Axis

10-1

100

101

102

-180

-135

-90

System: planta

Frequency (rad/sec): 9.55

Phase (deg): -157

Phase (

deg)

Bode Diagram

Gm = Inf dB (at Inf rad/sec) , Pm = 22.6 deg (at 9.61 rad/sec)

Frequency (rad/sec)

-40

-20

0

20

40

60

System: planta

Frequency (rad/sec): 9.7

Magnitude (dB): -0.167

Magnitu

de (

dB

) planta

Page 54: Región deseada de los polos de lazo cerrado - Proyecto de controladores con lugar de las raíces

Control Clásico y Moderno FI - UNaM TP N° 5

HOFF – KRUJOSKI Página 54 de 54

Figura 4.9: Diagrama de Bode de la planta compensada por adelanto de fase.

Comparando las Figura 4.8 y Figura 4.9 se aprecia que la introducción del

compensador ha aportado un gran margen de fase al sistema, lo cual contribuye a la

estabilidad de la planta y mejora su respuesta. El margen de ganancia en ambos casos

tiende a infinito pero el sistema es estable.

(Resuelto por: Hoff Romina)

Bode Diagram

Gm = Inf dB (at Inf rad/sec) , Pm = 49.7 deg (at 6.3 rad/sec)

Frequency (rad/sec)

-80

-60

-40

-20

0

20

40

System: sistema compensado

Frequency (rad/sec): 5.99

Magnitude (dB): 0.604

Magnitu

de (

dB

)

10-1

100

101

102

103

-180

-135

-90

System: sistema compensado

Frequency (rad/sec): 6.27

Phase (deg): -130

P

hase (

deg)

sistema compensado