transferencia de calor 2

200
FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA QUÍMICA ASIGNATURA: TRANSFERENCIA DE CALOR II CÓDIGO: 72205 SEMESTRE: SEPTIMO CREDITOS: 3 INTENSIDAD HORARIA: 3 HORAS TEORICO- PRACTICAS SEMANALES PRE-REQUISITOS: 722010 FLUIDOS 1 722020 CALOR 1 COREQUISITOS: NINGUNO

Transcript of transferencia de calor 2

Page 1: transferencia de calor 2

FACULTAD DE INGENIERÍAPROGRAMA DE INGENIERÍA QUÍMICA

• ASIGNATURA: TRANSFERENCIA DE CALOR II• CÓDIGO: 72205• SEMESTRE: SEPTIMO• CREDITOS: 3• INTENSIDAD HORARIA: 3 HORAS TEORICO- PRACTICAS

SEMANALES• PRE-REQUISITOS: 722010 FLUIDOS 1

722020 CALOR 1• COREQUISITOS: NINGUNO

Page 2: transferencia de calor 2

OBJETIVO GENERAL 

• Estudiar las técnicas de diseño y evaluación de los equipos de transferencia de calor utilizados en la industria de la ingeniería química.

• Conocer los principios y leyes que gobiernan los mecanismos de transferencia de calor aplicables a los diseños de intercambiadores de calor, evaporadores, torres de enfriamiento y aplicar estos conceptos fundamentales en el análisis, diseño y operación de sistemas térmicos que se aplican en la industria de la ingeniería química.

Page 3: transferencia de calor 2

Tema I. INTERCAMBIADORES DE CALOR

• Diseño y evaluación de intercambiadores de calor de tubo y coraza, flujo 1-2 en contracorriente y en paralelo. Diseño y evaluación de intercambiadores de calor de tubo y coraza, flujo 1-2, en los cuales interviene agua como fluido de enfriamiento. Diseño y evaluación de intercambiadores de calor de tubo y coraza, flujo 1-2, en los cuales intervienen gases como fluidos de transferencia.

Page 4: transferencia de calor 2

Tema II. FLUJO LAMINAR Y CONVECCIÓN LIBRE

Flujo laminar en los tubos de intercambiadores. Convección libre y régimen laminar combinados en tubos horizontales. Convección libre fuera de tubos y tuberías

Page 5: transferencia de calor 2

Tema III. CÁLCULO PARA CONDICIONES DE PROCESO

• Condiciones óptimas de proceso. Cálculo para intercambiador óptimo. Estándar de tubos.

Page 6: transferencia de calor 2

Tema IV. EVAPORACIÓN

• Mecanismo de vaporización. Efectos de la presión y propiedades en el coeficiente de vaporización. Evaporadores para planta de fuerza. Evaporación de múltiple efecto. Procesos de evaporación en plantas de fuerzas. Evaporación química y cálculos para el diseño de un evaporador químico. Evaporadores de circulación forzada. Evaporación química de simple efecto. Vaporación química de múltiple efecto.

Page 7: transferencia de calor 2

Tema V. TRANSFERENCIA DE CALOR POR CONTACTO DIRECTO. TORRES DE

ENFRIAMIENTO

• Conceptos generales, teoría de la difusión, temperatura de bulbo húmedo, relación entre las temperaturas de bulbo húmedo y punto de rocío. Humidificación y deshumidificación. Clasificación de torres de enfriamiento, balance de calor en torres de enfriamiento. Transferencia de calor por difusión y convección simultánea. Análisis de los requerimientos de la torre de enfriamiento, determinación del número de unidades de difusión.

Page 8: transferencia de calor 2

Bibliografía recomendada

• KERN, Donald. “PROCESOS DE TRANSFERENCIA DE CALOR”. Editorial CONTINENTAL S.A. México 1998.

• Çengel, Yunus A., Transferencia de calor / Yunus A. Çengel ; traducción, José

Hernán Pérez., 1a ed. en español, Mexico. : McGraw-Hill, 2004, Mexico, 2004

• F. P. Incropera y D. P. De Witt: Fundamentos de Transferencia de Calor, 4a Ed, Pearson Educacion, Mexico, 2000

• Holman, J. P.: Transferencia de Calor, 8a edicion, Mc Graw-Hill, Madrid, 1998.

Page 9: transferencia de calor 2

EVALUACIÓN

• Primer parcial 30% : intercambiadores de doble tubo y carcaza y tubo

• Segundo nota 20% : taller, exámenes cortos.20% : simulaciones en Excel y matlab

• Tercera nota 30% : Diseño de evaporadores y torres de enfriamiento

Page 10: transferencia de calor 2
Page 11: transferencia de calor 2

.INTRODUCCIÓN

¿Qué es la transferencia de calor?

Es un proceso dinámico durante el cual se transmite calor desde una sustancia caliente a otra más fría.

- Es el estudio de las velocidades a las cuales el calor se intercambia entre fuentes de calor y recibidores, tratados de manera independiente.

• ¿Cuáles son los mecanismos de transferencia de calor?- Conducción.- Convección.- Radiación.

Ing. Fredys Jiménez Mendoza

Page 12: transferencia de calor 2

12

Mecanismos de transmisón de calor

Conducción: transferencia de energía desde cada porción de materia a la materia adyacente por contacto directo, sin intercambio, mezcla o flujo de cualquier material.

Convección: transferencia de energía mediante la mezcla íntima de distintas partes del material: se produce mezclado e intercambio de materia.

Convección natural: el origen del mezclado es la diferencia de densidades que origina una diferencia de temperatura.

Convección forzada: la causa del mezclado es un agitador mecánico o una diferencia de presión (ventiladores, compresores...) impuesta externamente.

Radiación: transferencia de energía mediada por ondas electromagnéticas, emanadas por los cuerpos calientes y absorbidas por los cuerpos fríos.

Ambiental

Física

Page 13: transferencia de calor 2

• ¿Qué es conductividad térmica?

La conductancia es la cantidad de calor que pasaría por unidad de tiempo, a través de una unidad de área de un material de espesor dado, sometido a la unidad de diferencia de temperatura.

Esta se puede determinar por medio de la ecuación : C = k A/x: A: área x: Grueso del material K: conductividad térmica

Ing. Fredys Jiménez Mendoza

Page 14: transferencia de calor 2

Conductividad térmica

Material K (W/m K) Material K (W/m K)Diamante 1000 Plata 406.0Cobre 385.0 Oro 314Aluminio 205.0 Hierro 7 9.5Plomo 34.7 Mercurio 8.3Hielo 1.6 Agua a 20±C 0.6Fibra de vid. 0.04 Ladrillo (aisl.) 0.15Ladrillo 0.6 Corcho 0.04Poliestireno 0.033 Poliuretano 0.02Madera 0.12-0.04 Aire a 0±C 0.024Helio (20±C) 0.138 Hidrógeno (20±C) 0.172Nitrógeno(20±C) 0.0234 Oxígeno (20±C) 0.0238

Tomado de Young, Hugh D., University Physics, 7th Ed. Table 15-5 y del CRC Handbook

of Chemistry and Physics.

Tema I – F´ısica 1er curso CCAA – http://www.uhu.es/gem/docencia/fisica-ccaa/– p. 19

Ing. Fredys Jiménez Mendoza

Page 15: transferencia de calor 2

• ¿Como influye la temperatura y la presión en la conductividad térmica?

La conductividad térmica de los sólidos es mayor que la de los líquidos, la que a su vez es mayor que la de gases.

La K para muchos líquidos decrece con el aumento de la temperatura.

La K para muchos gases y vapores aumenta con el incremento de la temperatura.

Ing. Fredys Jiménez Mendoza

Page 16: transferencia de calor 2

CONDUCTIVIDAD TÉRMICA

Ing. Fredys Jiménez Mendoza

Introducción a la conducción

METALES GASES

Page 17: transferencia de calor 2

• Variación de la conductividad en cuanto a la presión:

la influencia de la presión en sólidos y líquidos es depreciable.

La influencia de la presión en gases es pequeña, excepto a vacíos muy bajos.

Ing. Fredys Jiménez Mendoza

Page 18: transferencia de calor 2

convección

• Es la transferencia de calor entre partes relativamente calientes y frías de un fluido por medio de mezclas.

• Esta se debe al movimiento del fluido. El fluido frio adyacente a superficies calientes recibe calor que luego se transfiere al resto del fluido frio mezclándose con el.

Ing. Fredys Jiménez Mendoza

TThq sx

Convección

Ley de Newton

Ts

T∞

q”

Interface entre un sólido y un fluido en movimiento

h = coeficiente de convección [W/m2.K]

Page 19: transferencia de calor 2

Transferencia de calor por Radiación: Involucra la transferencia de energía radiante desde una fuente a un

recibidor.

Ing. Fredys Jiménez Mendoza

4sTE

T2

T1

4sb TE

RadiaciónEn el vació, fluidos o sólidos

Ley de Stefan-Boltzmann

44alrsrad TTq

Talr

Tsσ = 5,67 x 10-8 W/m.K4

Page 20: transferencia de calor 2

• Enumere las aplicaciones de la transferencia de calor en los procesos Químicos.?

Explique al menos uno

Ing. Fredys Jiménez Mendoza

Page 21: transferencia de calor 2

INTRODUCCIÓNMÉTODOS DE CALENTAMIENTO INDIRECTO

1. Casi invariablemente se usa agua o vapor en camisas o serpentines ( hasta poco más de 150º). Costo inicial y de funcionamiento es bajo. El vapor de agua es relativamente barato, no es tóxico, no es corrosivo, cede su calor a temperatura fija, se transporta en cañerías.

2. Aceites minerales, de 150-320ºC. Buen control de la temperatura, no son tóxicos, pero son de costo inicial elevado, necesitan muchos aparatos auxiliares, se descomponen y se inflaman.

3. Que otros medios de calentamiento indirecto conoces?

Page 22: transferencia de calor 2

Solución de problemas de transferencia de calor: Geometría Plana

Hipótesis: geometría plana, unidimensional, sin generación, estado estable, conductividad constante.

0

dx

dTk

dx

d

t

TCq

z

Tk

zy

Tk

yx

Tk

xtzyx

ptzyx

),,,(

),,,(

02

2

dx

Td21)( CxCT x

Page 23: transferencia de calor 2

Estado estable, geometría plana unidimensional, sin generación, conductividad constante

1,)0( sTT 21)( CxCT x 1,2 sTC

21)( CxCT x

x

Ts,1

Ts,2

2,)( sL TT L

TTC ss 1,1,

1

1,1,2,

)( sss

x TxL

TTT

L

TTAkq ss

x1,2,

)(

Aplicando Fourier

T

Ts,2

Ts,1

Page 24: transferencia de calor 2

Estado estable, geometría plana unidimensional, sin generación, conductividad constante

Ak

LTT

q ssx

2,1,)(

R

EEI ss 2,1,

Ak

L

q

TTR

x

sscondt

2,1,

,

Reacomodando

Análogo Eléctrico

Corriente eléctrica → Flujo de calor

Potencial eléctrico → Temperatura

Resistencia eléctrica → Resistencia térmica

Page 25: transferencia de calor 2

Para los laterales, donde existe convección:

Estado estable, geometría plana unidimensional, sin generación, conductividad constante

hAR

hA

TTq

TThAq

convt

s

s

1

1

,

21)( CxCT x

Ts,1

T1

T∞,2T∞,1 Ts,1 Ts,2

T∞,2

h2

Ts,2

T∞,1

h1

Page 26: transferencia de calor 2

Estado estable, geometría plana unidimensional, sin generación, conductividad constante

1

,

1

hA

R convt

2

,

1

hA

R convt

kA

L

R condt ,

21

11

hAkA

L

hARtot

totR

TTq 2,1,

Page 27: transferencia de calor 2

Estado estable, geometría plana unidimensional, sin generación, conductividad constante

AhAk

L

Ak

L

Ak

L

AhRtot

23

3

2

2

1

1

1

11

AhAk

xRR ttot

1Ts,1

k1 k2 k3

A

Ts,4

T2 T3

T2 T3Ts,1

Ts,4

T∞,1

h1T∞,2

h2

T∞,1 T∞,2

L1 L2 L3

Page 28: transferencia de calor 2

Estado estable, geometría plana unidimensional, sin generación, conductividad constante

ARU

tot

1

de esta forma el flujo de calor se puede expresar como:

TAUq

Coeficiente global de transferencia de calor “U”

El flujo de calor queda expresado en función del coeficiente U, el área y el salto de temperatura, de manera análoga a la ley de Newton. U tiene las mismas unidades que h.

Page 29: transferencia de calor 2

Resistencia Térmica de Contacto

Interfaz (Presión) R’t,c X 104 (m2.K/W)

Chip de silicio/aluminio recubierto en aire (27-500 kN/m2) 0.3 - 0.6

Aluminio/aluminio con relleno de hoja de indio (100 kN/m2) 0.07

Acero inoxidable/acero inoxidable con relleno de hoja de indio (3500 kN/m2)

0.04

Aluminio/aluminio con recubrimiento metálico (Pb) 0.01 - 0.1

Aluminio/aluminio con grasa Dow Coming 340 (100 kN/m2) 0.07

Acero inoxidable/acero inoxidable con grasa Dow Coming 340 (3500 kN/m2)

0.04

Chip de silicio/aluminio con resina epóxica de 0.02 mm 0.2 - 0.9

Bronce/bronce con soldadura de estaño de 15 m 0.025 - 0.14

Page 30: transferencia de calor 2

Resistencia Térmica de Contacto

R”t,c x 104 (m2.K/W)

Presión de contacto

100 kN/m2 10000 kN/m2

Acero inoxidable 6 - 25 0.7 - 4.0

Cobre 1 - 10 0.1 - 0.5

Magnesio 1.5 - 3.5 0.2 - 0.4

Aluminio 1.5 - 5.0 0.2 - 0.4

R”t,c depende de:• Acabado superficial• Presión entre superficies• Sustancia intersticial

Page 31: transferencia de calor 2

Resistencia Térmica de Contacto

R”t,c X 104 [m2.K/W] para interfaz de aluminio con diferentes fluidos de interfaz (rugosidad de la superficie de 10 m,¨presión l05 N/m2)

Aire 2.75

Helio 1.05

Hidrógeno 0.720

Aceite de silicio 0.525

Glicerina 0.265

Page 32: transferencia de calor 2

Intercambiadores de calor

Page 33: transferencia de calor 2

OBJETIVO DEL ESTUDIO DE INTERCAMBIADORES DE CALOR

Page 34: transferencia de calor 2

34

Definición:• Un intercambiador de calor es un dispositivo diseñado para

transferir calor de un fluido a otro, sea que estos estén separados por una barrera sólida o que se encuentren en contacto. Son parte esencial de los dispositivos de refrigeración, acondicionamiento de Aire, producción de Energía y procesamiento Químico.

Page 35: transferencia de calor 2

35

Tipos de Intercambiadores de Calor• Dada la multitud de aplicaciones de estos dispositivos, se

puede realizar una clasificación dependiendo de su construcción. Para la elección del mismo se consideran aspectos como tipo de fluido, densidad, viscosidad, contenido en sólidos, límite de temperaturas, conductividad térmica, etc.

Page 36: transferencia de calor 2

CLASIFICACIÓN DE LOS EQUIPOS DE TRANSFERENCIA DE CALOR

Según su función

Según su geometría de construcción

Evaporadores CalentadoresEnfriadoresIntercambiadoresRefrigeradoresCondensadoresRehervidores

Doble tuboCoraza y tuboTorres de enfriamientoCalderin

Page 37: transferencia de calor 2

37

Intercambiador de Doble Tubo• Las partes principales son dos juegos de tubos concéntricos, dos tubos en “T” conectores, un cabezal de retorno y un codo en U. La tubería interior se soporta en la exterior mediante estoperos y el fluido entra al tubo interior a través de una conexión roscada localizada en la parte externa del intercambiador.

Page 38: transferencia de calor 2

38

Intercambiador de Placas

• De placas: formados por un conjunto de placas de metal corrugadas (acero inoxidable, titanio, etc.) contenidas en un bastidor. El sellado de las placas se realiza mediante juntas o bien pueden estar soldadas.

Page 39: transferencia de calor 2

39

Intercambiador de Tubos en U

• Tubulares: formados por un haz de tubos corrugados o no, realizado en diversos materiales. El haz de tubos se ubica dentro de una carcasa para permitir el intercambio con el fluido a calentar o enfriar.

Page 40: transferencia de calor 2

40

Intercambiador de Tubo Aleteado• Tubo aleteado: se

compone de un tubo o haz de tubos a los que se les unen unas aletas de diferentes tamaños y grosores para permitir el intercambio entre fluidos y gases. P. ej., radiador de un vehículo

Page 41: transferencia de calor 2

41

Intercambiador de Un solo paso

Page 42: transferencia de calor 2

42

Intercambiador de Tubos en Espiral

Page 43: transferencia de calor 2

43

Intercambiador de Cabezal Flotante Interno

Page 44: transferencia de calor 2

44

Intercambiador de Espejo Fijo

Page 45: transferencia de calor 2

45

Intercambiador de Cabezal Flotante con Empaque Exterior

Page 46: transferencia de calor 2

46

Intercambiador de Calor de Tubos en U

Page 47: transferencia de calor 2

47

Rehervidor de Cabezal Flotante de Caldera

Page 48: transferencia de calor 2

48

Intercambiador con Espejo empaquetado y Anillo de Cierre Hidráulico

Page 49: transferencia de calor 2

PROCEDIMIENTO BÁSICO DE DISEÑO

Ec. De diseño para flujo de calor a través de una superficie

q = U A dT

Donde

q = W U = w/m2C A = m2 DT = c

Objetivo principal de diseño es determinar A ( dado q, T )

Page 50: transferencia de calor 2
Page 51: transferencia de calor 2
Page 52: transferencia de calor 2
Page 53: transferencia de calor 2
Page 54: transferencia de calor 2
Page 55: transferencia de calor 2
Page 56: transferencia de calor 2
Page 57: transferencia de calor 2
Page 58: transferencia de calor 2
Page 59: transferencia de calor 2

Eficacia en los sistemas de intercambio de calor

E = Calor transferido . = Calor máximo transferible

Page 60: transferencia de calor 2
Page 61: transferencia de calor 2
Page 62: transferencia de calor 2
Page 63: transferencia de calor 2

PROBLEMAS TIPOS CON INTERCAMBIADORES DE CALOR

Page 64: transferencia de calor 2
Page 65: transferencia de calor 2
Page 66: transferencia de calor 2

DIMENSIONAR EQUIPOS DE TRANSFERENCIA DE CALOR resumen

Page 67: transferencia de calor 2

COEFICIENTE DE PELICULA

Page 68: transferencia de calor 2

DETERMINACIÓN COEFICIENTE DE PELICULA

Page 69: transferencia de calor 2
Page 70: transferencia de calor 2
Page 71: transferencia de calor 2
Page 72: transferencia de calor 2
Page 73: transferencia de calor 2
Page 74: transferencia de calor 2
Page 75: transferencia de calor 2

DISEÑO DE INTERCAMBIADORES

DE DOBLE TUBO

Page 76: transferencia de calor 2
Page 77: transferencia de calor 2
Page 78: transferencia de calor 2
Page 79: transferencia de calor 2

PROCEDIMIENTO intercambiadores de doble tubo

Elegir configuración geométrica Dext * Dint

Calcular el áres de flujo en el tubo y anulo

Calular Reynolds y prant para el tubo y anulo

Calcular hi, ho, Uc, UdA, NTU,

Laminar o turbulento

FINSI

Velocidad y flujo en el Intervalo permisible

Calcular ficción,, y caída de presión en

tubo y anulo

Sobrediseño adecuado

Análisisgeomet

ría

Análisisgeomet

ría

Page 80: transferencia de calor 2
Page 81: transferencia de calor 2
Page 82: transferencia de calor 2
Page 83: transferencia de calor 2
Page 84: transferencia de calor 2
Page 85: transferencia de calor 2

DISEÑO DE INTERCAMBIADORES DE CORASA Y TUBO

Page 86: transferencia de calor 2
Page 87: transferencia de calor 2
Page 88: transferencia de calor 2
Page 89: transferencia de calor 2

• El intercambiador de calor más sencillo se compone de un tubo dentro de otro tubo.

• Este montaje de corrientes paralelas funciona, tanto en contracorriente como en equicorriente, circulando el fluido caliente o el frío a través del espacio anular, mientras que el otro fluido circula por la tubería interior.

TIPOS BASICOS DE INTERCAMBIADORES DE CALOR

Page 90: transferencia de calor 2

INTERCAMBIADOR DE PASO SIMPLE (1-1)

• El intercambiador más sencillo que consta de dos tubos concéntricos, no es adecuado cuando el gasto másico es elevado.

• Si se utilizan varios tubos concéntricos en paralelo, el peso del material de los tubos que se necesita se haría tan grande, que es mucho más económico el construirlos formando un conjunto de carcasa y tubos, de forma que se utiliza una carcasa común para muchos tubos; éste intercambiador, debido a que funciona con un solo paso de fluido en el lado de la carcasa y un solo paso de fluido en el lado de los tubos se denomina intercambiador 1-1.

Page 91: transferencia de calor 2

• En un flujo paralelo en equicorriente, la temperatura final del fluido más frío nunca puede llegar a ser igual a la temperatura de salida del fluido más caliente.

• Sin embargo, en un flujo en contracorriente, la temperatura final del fluido más frío (que es el que se calienta) puede superar la temperatura de salida del fluido más caliente (que se enfría), puesto que existe un gradiente de temperaturas favorable a todo lo largo del intercambiador de calor.

• En un intercambiador en contracorriente, los coeficientes de transmisión de calor del lado de la carcasa y del lado de los tubos deben ser del mismo orden de magnitud y ser grandes para obtener un coeficiente global satisfactorio.

• La velocidad y turbulencia del líquido del lado de la carcasa son tan importantes como las del líquido del lado de los tubos.

Page 92: transferencia de calor 2

• Si las dos corrientes son del mismo orden de magnitud, la velocidad del lado de la carcasa es menor que la del lado de los tubos; por esta razón se instalan placas deflectoras con el fin de disminuir la sección de flujo del líquido del lado de la carcasa y obligarlo a circular en dirección cruzada a la bancada de tubos en vez de hacerlo paralelamente a ellos; de esta forma se consigue un coeficiente de transferencia de calor más elevado en flujo cruzado que en circulación paralela a los tubos.

Page 93: transferencia de calor 2

• El flujo pasa perpendicularmente a los tubos, circulando hacia abajo en la primera sección, hacia arriba en la segunda, y así sucesivamente; la turbulencia adicional que se crea mediante este tipo de flujo aumenta el coeficiente de transmisión de calor del lado de la carcasa.

Page 94: transferencia de calor 2

INTERCAMBIADOR DE CORRIENTES PARALELAS EN CONTRACORRIENTE (1-2)

Page 95: transferencia de calor 2

INTERCAMBIADOR DE CORRIENTES PARALELAS EN CONTRACORRIENTE (1-2)

El flujo en un intercambiador (1-2) es parcialmente en contracorriente y parcialmente en corrientes paralelas; en lafigura el conjunto de las curvas de temperatura se corresponde con un intercambiador de corrientesparalelas en equicorriente.

Page 96: transferencia de calor 2

INTERCAMBIADOR DE CORRIENTES PARALELAS EN CONTRACORRIENTE (1-2)

En la figura las curvas de temperatura sonpara un intercambiador en contracorriente.

Page 97: transferencia de calor 2

INTERCAMBIADOR DE CORRIENTES PARALELAS EN CONTRACORRIENTE (1-2)

En este tipo de intercambiadores disminuye la sección libre para el flujo, con lo cual aumenta la velocidad, dando lugar a un incremento del coeficiente de transmisión de calor por convección.Sus principales desventajas son:a) El intercambiador es más complicadob) Aumentan las pérdidas por fricción debido a la mayor velocidad y a la multiplicación de las pérdidas de carga en la entrada y en la salida.

Page 98: transferencia de calor 2

INTERCAMBIADOR (2-4)

Page 99: transferencia de calor 2

INTERCAMBIADOR (2-4)

• En la figura las líneas de trazo discontinuo de la distribución de temperaturas en un intercambiador (2-4) se refieren al fluido del lado de la carcasa y las de trazo continuo al fluido del lado de los tubos; el fluido que circula por la carcasa es el más caliente.

• El paso más caliente del fluido de la carcasa está en contacto térmico con los dos pasos más calientes del lado de los tubos y el paso más frío del lado de la carcasa lo está con los dos pasos más fríos del lado de los tubos.

Page 100: transferencia de calor 2
Page 101: transferencia de calor 2
Page 102: transferencia de calor 2
Page 103: transferencia de calor 2
Page 104: transferencia de calor 2
Page 105: transferencia de calor 2
Page 106: transferencia de calor 2
Page 107: transferencia de calor 2
Page 108: transferencia de calor 2
Page 109: transferencia de calor 2
Page 110: transferencia de calor 2
Page 111: transferencia de calor 2
Page 112: transferencia de calor 2
Page 113: transferencia de calor 2
Page 114: transferencia de calor 2
Page 115: transferencia de calor 2
Page 116: transferencia de calor 2
Page 117: transferencia de calor 2

MODELOS DE INTERCAMBIADORES

Page 118: transferencia de calor 2

INTERCAMBIADOR DE FLUJOS CRUZADOS

• En el enfriamiento o calentamiento de gases es interesante utilizar un intercambiador de calor en flujo cruzado, en el que uno de los fluidos (líquido o gas) circula por el interior de los tubos, mientras que al otro fluido (gaseoso) se le obliga a circular perpendicularmente al haz de tubos

Page 119: transferencia de calor 2

• El flujo del fluido exterior puede realizarse mediante convección forzada o libre; el gas que circula por el exterior de los tubos se considera de tipo de mezcla, mientras que el fluido del interior de los tubos se considera sin mezclar; el flujo del gas exterior es con mezcla porque puede moverse libremente entre los tubos cuando intercambia calor, mientras que el fluido del interior de los tubos está confinado y no puede mezclarse con ningún otro flujo o corriente durante el proceso de intercambio de calor

INTERCAMBIADOR DE FLUJOS CRUZADOS

Page 120: transferencia de calor 2

COEFICIENTE DE TRANSFERENCIA TÉRMICA GLOBAL

• Una de las primeras cuestiones a realizar en el análisis térmico de un intercambiador de calor de carcasa y tubos consiste en evaluar el coeficiente de transferencia térmica global entre las dos corrientes fluidas.

• El coeficiente de transferencia térmica global entre un fluido caliente a temperatura TC y otro frío a temperatura TF separados por una pared plana se define mediante la ecuación:

AhkA

L

AhR

UA

TTUAq

Fc

i

ii

FC

1111

3

1

Page 121: transferencia de calor 2

COEFICIENTE DE TRANSFERENCIA TÉRMICA GLOBAL

• En el caso de un intercambiador de calor formado por dos tubos concéntricos, el área de la superficie de intercambio térmico es:

• Interior: Ai = 2 π riL• Exterior: Ae = 2 π reL

• de forma que, en general:

eF

ie

ic AhkLrr

Ah

UA

ei

12

ln11

Page 122: transferencia de calor 2

COEFICIENTE DE TRANSFERENCIA TÉRMICA GLOBAL

• Si el coeficiente de transferencia térmica global viene referido a la superficie exterior Ae el valor de Ue será:

• mientras que si viene referido a la superficie interior Ai será:

eFi

ee

iiC

e

e

hr

r

k

r

rh

rU

1ln

1

eFe

i

i

ei

iC

i

hr

r

r

r

k

r

h

U

ln

1

1

Page 123: transferencia de calor 2

FACTORES DE SUCIEDAD

• Con frecuencia resulta imposible predecir el coeficiente de transferencia de calor global de un intercambiador de calor al cabo de un cierto tiempo de funcionamiento, teniendo sólo en cuenta el análisis térmico; durante el funcionamiento con la mayoría de los líquidos y con algunos gases, se van produciendo gradualmente unas películas de suciedad sobre la superficie en la que se realiza la transferencia térmica, que pueden ser de óxidos, incrustaciones calizas procedentes de la caldera, lodos, carbonilla u otros precipitados, el efecto que ésta suciedad origina se conoce con el nombre de incrustaciones, y provoca un aumento de la resistencia térmica del sistema.

Page 124: transferencia de calor 2

• La resistencia térmica del depósito se puede determinar, generalmente, a partir de ensayos reales o de la experiencia.

Transmisión de calor entre la cámara de combustión y el agua de una caldera con incrustaciones calcáreas

Page 125: transferencia de calor 2

Factores de resistencia por ensuciamiento normalesTipo de fluido Requiv (m2ºK/W)

Agua de mar por debajo de 325°K 0,0009

Agua de mar por encima de 325°K 0,0003

Agua de alimentación de calderas por encima de 325°K 0,0005

Agua de río 0,001-0,004

Agua condensada en un ciclo cerrado 0,0005

Agua de torre de refrigeración tratada 0,001-0,002

Gasóleo ligero 0,0020

Gasóleo pesado 0,0030

Asfalto 0,0050

Gasolina 0,0010

Queroseno 0,0010

Soluciones cáusticas 0,0020

Fluido hidráulico 0,0010

Sales fundidas 0,0005

Gases de escape de un motor 0,010

Aceite combustible 0,0050

Aceites vegetales 0,0030

Vapores de alcohol 0,0001

Vapor, cojinetes sin aceite 0,0005

Vapor, con aceite 0,0010

Vapores refrigerantes, con aceite 0,0020

Aire comprimido 0,0010

Líquido refrigerante 0,0010

Page 126: transferencia de calor 2

• Si se realizan ensayos de rendimiento en un intercambiador limpio y se repiten después de que el aparato haya estado en servicio durante algún tiempo, se puede determinar la resistencia térmica del depósito (o factor de incrustación) RSuc mediante la relación:

LimpioSucio

Func

UR

U1

1

Page 127: transferencia de calor 2

• Siendo

• La expresión del coeficiente global de transmisión de calor UFunc en funcionamiento al cabo de un tiempo, referida a la sección exterior Ae es:

i

e

ciequiv

ce

Limpioi

eieSucio

A

A

hR

h

UA

ARRR

111

;....

ici

e

i

eiequive

ce

func

Ah

A

A

ARRR

h

U

1

1

Page 128: transferencia de calor 2

• en la que:

• Ulimpio es el coeficiente global de transmisión de calor del intercambiador limpio, respecto a la sección exterior

• Usuc. es el coeficiente global de transmisión de calor del intercambiador después de producirse el depósito

• hce es el coeficiente de convección medio del fluido en el exterior del tubo• hci es el coeficiente de convección medio del fluido en el interior del tubo• Re es la resistencia unitaria del depósito de suciedad en el exterior del

tubo• Ri es la resistencia unitaria del depósito de suciedad en el interior del

tubo• Requiv es la resistencia unitaria del tubo, en la que no se han considerado

los depósitos de suciedad interior y exterior, y el material del tubo, en m2°K/W, basada en el área de la superficie exterior del tubo.

Page 129: transferencia de calor 2

TRANSMISIÓN DE CALOR ENTRE FLUIDOS EN MOVIMIENTO, A TEMPERATURAS VARIABLES, A TRAVÉS DE UNA PARED

• Para determinar la transferencia de calor por unidad de tiempo, y admitiendo que el calor cedido por un fluido es totalmente absorbido por el otro, (no hay pérdidas térmicas), se puede hacer el siguiente balance de energía:

• Si se toma a ambos lados de la pared un elemento de superficie dA, en una misma sección transversal se puede suponer que ambos fluidos toman las temperaturas TC y TF en estos elementos diferenciales.

• Haciendo ΔT = TC - TF es evidente que la cantidad de calor que pasará del fluido caliente al fluido frío, por unidad de tiempo es:

1221 FFpFFCCpCC TTCmTTCmQ

FpFFCpCC dTCmdTCmTUdAdQ

Page 130: transferencia de calor 2

Distribución de temperaturas en intercambiadores de calorcon flujos en contracorriente y de un solo paso de tubos

Page 131: transferencia de calor 2

FACTOR DE CORRECCIÓN DE LA (LMTD).-

• Cuando se tienen intercambiadores muy complejos, como los montajes en carcasa y tubos, con varios pasos de tubos por cada carcasa, o varias carcasas, y en el caso de intercambiadores de flujo cruzado, la deducción analítica de una expresión para la diferencia media de temperaturas resulta muy compleja.

mTFAUQ ***

Page 132: transferencia de calor 2

DIFERENCIA DE TEMPERATURA MEDIA LOGARITMICA

• Calculamos la transferencia de calor en el arreglo de doble tubo con:

Donde• U coeficiente total de transferencia de calor• A área de superficie para transferencia de calor consistente con la definición de U• ΔTm diferencia de temperatura media conveniente a través del intercambiador de

calor

mTUAQ

12

21

1221

lnFC

FC

FFCCm

TT

TTTTTT

T

Page 133: transferencia de calor 2

• La expresión anterior se simplifica utilizando las siguientes relaciones adimensionales:Coeficiente de efectividad:

Relación de capacidades térmicas:

• que permiten obtener la diferencia media de la temperatura como una función de F(P,Z).

11

21

CF

FF

TTTT

P

12

21

FF

CC

TTTT

Z

Page 134: transferencia de calor 2

FACTOR DE CORRECCIÓN DE LA (LMTD) PARA ALGUNOS INTERCAMBIADORES

Page 135: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador en contracorriente (1-2), o un múltiplo par de pasos de tubos

Page 136: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador (1-3), con dos de los pasos en contracorriente

Page 137: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador en contracorriente (2-4)y un múltiplo par de pasos de tubos

Page 138: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador (3-2), o un múltiplo par de pasos de tubos

Page 139: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador (4-2), o un múltiplo par de pasos de tubos

Page 140: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador (6-2), o un múltiplo par de pasos de tubos

Page 141: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador de flujos cruzados,con mezcla de un fluido en la parte de la carcasa y sin mezcla del otro fluido, y un paso de tubos

Page 142: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador de flujos cruzados,con mezcla de ambos fluidos y un paso de tubos

Page 143: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador de flujos cruzados,con mezcla de un fluido en la parte de la carcasa y sin mezcla del otro fluido, y un múltiplo de 2 pasos de tubos

Page 144: transferencia de calor 2

Factor de corrección de la (LMTD) para un intercambiador de flujos cruzados,con mezcla de un fluido en la parte de la carcasa y sin mezcla del otro fluido, y un múltiplo de 2 pasos de tubos

Page 145: transferencia de calor 2
Page 146: transferencia de calor 2

DISEÑO DE INTERCAMBIADORES

CORASA Y TUBO

Page 147: transferencia de calor 2

EJERCICIOS

Page 148: transferencia de calor 2

Calderas

Page 149: transferencia de calor 2

CALDERAS

• Son generadores de vapor. Son recipientes cerrados que producen vapor de agua a mayor presión que la atmosférica, a partir del calor absorbido desde el hogar de la caldera donde se quema el combustible.

Page 150: transferencia de calor 2

Se pueden distinguir 3 partes principales:1. el hogar (fogón) que consta de 1 altar de la parrilla, del

cenicero y cámara de combustible2. el cuerpo de la caldera (la caldera propiamente tal)

generalmente de forma cilíndrica que contiene el fluido que se va a calentar.

3. Los conductos de humo, por los que pasan los productos de la combustión.

El hogar costa de una parrilla donde se coloca el combustible sólido. Bajo la parrilla está el cenicero donde se acumulan los residuos de la combustión.

Page 151: transferencia de calor 2
Page 152: transferencia de calor 2

La superficie de calefacción es la zona que está en contacto con el agua1. y las llamas (superficie de calefacción directa)2. y los gases de la combustión (superficie de calefacción indirecta).

Page 153: transferencia de calor 2

• COMBUSTIÓN: Es la combinación de una sustancia con el oxígeno con la formación de calor.

• COMBUSTIBLES INDUSTRIALES: Sustancias que al combinarse con el oxígeno, arden con gran desprendimiento de calor. Su obtención debe ser relativamente barata y deben encontrarse en cantidad abundante. No deben ser tóxicos, ni destruir el hogar donde se produce la combustión

Page 154: transferencia de calor 2

Combustibles

Se clasifican de acuerdo a su origen y estado físico en :

Naturales: • Sólidos (madera y carbón)• Líquidos (petróleo crudo y alquitrán)• Gaseosos ( gas natural)

Artificiales: • Sólidos (carbón de madera, cokes, briquetas y residuos)• Líquidos (gasolina, kerosene, fuel oil, breas líquidas)• Gaseosos (gas pobre, gas de agua, gas de hulla, gas licuado)

Page 155: transferencia de calor 2
Page 156: transferencia de calor 2

En Chile se usa principalmente hulla (o hulla lignitífera).

Se hace a los carbones dos tipos de análisis:1. Análisis inmediato: consiste en la determinación de la humedad, materiales

volátiles, carbón fijo y cenizas. Además se determina separadamente, azufre y poder calorífico.

2. Análisis mediato o elemental: se determinan los porcentajes de carbono, hidrógeno, nitrógeno y azufre, por métodos analíticos y directos.

• La combustión del carbón se realiza sobre lechos de sobre una parrilla soplando o aspirando aire (factor muy importante, con poco aire la combustión es incompleta; con mucho, se enfrían los humos).

• No es muy común el uso de carbón pulverizado.• El carbón se almacena al aire libre o bajo agua (evita el peligro de combustión

espontánea). La humedad del carbón que se le agrega agua para transportarlo es de 40%.

• Las cantidades relativas de las cenizas y su composición imponen ciertas limitaciones al uso del carbón.

Page 157: transferencia de calor 2

Para decidir la aplicación de un combustible, es necesario tener presente tres características fundamentales:

1. El poder calorífico: es la cantidad de calor que puede obtenerse por la combustión completa de una cantidad unitaria de sustancia combustible bajo condiciones definidas.

2. La temperatura de combustión: es la máxima temperatura que se alcanza de la combustión.

3. Los residuos de la combustión: especialmente cenizas y escorias, que pueden ser perjudiciales por su cantidad (entorpecen la combustión y encarecen el transporte) o por su naturaleza ( atacan la estructura del hogar)

Page 158: transferencia de calor 2

Definiciones

• Producción horaria, son los kilogramos de vapor saturado producido por la caldera por hora.

• Cámara de agua, toda la zona de la caldera que está con agua durante su operación.

• Cámara de vapor es la zona en el interior de la caldera que contiene el vapor.

• Domo es una cavidad en forma de bóveda que prolonga por arriba la cámara de vapor de una caldera y en la cual se halla la toma de vapor, lejos de la superficie de agua. Por tanto aumenta el volumen de la cámara de vapor y se obtiene el vapor más seco posible.

Page 159: transferencia de calor 2

Tipos de calderas

Page 160: transferencia de calor 2
Page 161: transferencia de calor 2
Page 162: transferencia de calor 2
Page 163: transferencia de calor 2
Page 164: transferencia de calor 2
Page 165: transferencia de calor 2

• Capacidad o potencia de una caldera: la mejor forma de expresarla es a través de la producción horaria. Se usan algunas veces los HP de caldera, 1 boiler es igual a la evaporación de 34,5 lb de agua desde 212 ºF a vapor a 212ºF. Otra forma es a través del ratting. Así ratting 100% es capaz de transferir 9.100 Kcal/h.

Page 166: transferencia de calor 2
Page 167: transferencia de calor 2
Page 168: transferencia de calor 2

Accesorios de calderas:

• Economizadores : precalientan el agua que se emplea en la producción de vapor; generalmente son tubos que se ponen en contacto con los humos.

• Precalentadores de aire: se hace pasar por túneles anexos al hogar o conductos de aire.• Manómetros• Indicadores de nivel: tubo que da el nivel de agua en la cámara de agua• Válvulas de seguridad: la más sencilla está formada por un resorte. Si la presión es muy

alta, el resorte cede y sale vapor. Cuando la presión disminuye, el resorte cierra el paso al vapor.

• Inyectores: usan el mismo vapor para introducir a presión el agua• Bombas: para agua, centrífugas, para petróleo• Reguladores automáticos de nivel• Separadores de vapor, producen cambios bruscos de dirección del vapor para obtenerlo

más seco.

Page 169: transferencia de calor 2

Reglamento de calderas:

• Las calderas de una industria deben inscribirse inmediatamente y se debe llevar un libro de registro donde está el Nº de inscripción y el diario de vida de la caldera.

• Están sometidas a controles periódicos y de instalación. Se les hace una prueba hidráulica y otra de presión.

• Si el agua que llega a la caldera contiene mas de 1 g/l de dureza debe revisarse cada 6 meses para ver las incrustaciones.

• Los fogoneros deben tener un certificado de competencia.

Page 170: transferencia de calor 2

Chequeo de rutina que se debe hacer a las calderas de baja presión:

1. Se debe corroborar el funcionamiento de la válvula de seguridad.

2. Controlar el tubo de nivel ( se abren y se cierran periódicamente los grifos).

3. Controlar la presión de trabajo de las bombas.4. En el caso de usar petróleo, revisar los quemadores y la

llama que dan.5. Controlar la temperatura del agua de alimentación (es

importante para el rendimiento.6. Temperatura de los gases de combustión.7. Se toma muestras en el estanque de condensado y se

determina la dureza.

Page 171: transferencia de calor 2

Tratamiento del agua en alimentación en calderas:

1. Los precipitados pueden adherirse a las paredes (incrustaciones).

2. El CO2 y O2 pueden atacar las paredes de acero (corrosión).

3. El vapor arrastra partículas de agua cargadas con sustancias salinas disueltas (impurificación del vapor).

Page 172: transferencia de calor 2

Tratamiento externo:

1. Eliminación de materias en suspensión: 1. clarificación (se agregan coagulantes químicos como sulfato

de aluminio) y 2. filtración a través de capas de arena, ripio , calcita, etc.

2. Ablandamiento: tiene por finalidad eliminar las sales causantes de la dureza (iones alcalino térreos). Se usan las resinas ácidas, llamadas catiónicas. Contienen un ión hidrógeno intercambiable con todos los cationes. Suministran (por intercambiar hidrogeniones) un agua ácida, la que debe ser neutralizada

Page 173: transferencia de calor 2

Eliminación de gases disueltos:

• El tratamiento se refiere a la eliminación de oxígeno y CO2 dado que causan corrosión

• Para calderas de baja presión características de industrias pequeñas, basta un solo tratamiento interno. Esto es la introducción en la caldera de sustancias capaces de rebajar el ataque o hacer que las aguas sean inofensivas.

Page 174: transferencia de calor 2

Incrustaciones

• Se usan agentes químicos desincrustantes, que se agregan directamente al agua, con el fin que las partículas no se adhieran a las paredes, además de otras sustancias que actúan sobre la corrosión y la formación de espuma.

• La disolución de las incrustaciones se produce por fenómenos físicos de desagregación que tienen origen en la diferencia de volumen entres las incrustaciones sulfatadas o carbonatadas y los fosfatos insolubles, a los que aquellos dan lugar.

Page 175: transferencia de calor 2

Resinas

• Una vez agotadas, son regeneradas con HCl o Acido sulfúrico en exceso. En cambio si son regeneradas con NaCl, es decir, cambiando un ión sodio por Ca y Mg. Estas resinas catiónicas poseen una considerable capacidad de intercambio (por ejemplo, 80 de CaCO3/l de resina.

• La capacidad de una resina se expresa generalmente en g de CaCO3/l de resina. El rendimiento de una resina disminuye con su uso.

Page 176: transferencia de calor 2

Evaporadores

Page 177: transferencia de calor 2
Page 178: transferencia de calor 2
Page 179: transferencia de calor 2

ESQUEMA DE UN EVAPORADOR

Vapor de disolvente

Disolución concentrada

ALIMENTO

CALOR

Vapor de agua

Condensado

Page 180: transferencia de calor 2
Page 181: transferencia de calor 2
Page 182: transferencia de calor 2
Page 183: transferencia de calor 2
Page 184: transferencia de calor 2
Page 185: transferencia de calor 2
Page 186: transferencia de calor 2
Page 187: transferencia de calor 2
Page 188: transferencia de calor 2
Page 189: transferencia de calor 2

Factores y Criterios

Page 190: transferencia de calor 2
Page 191: transferencia de calor 2

Tipos de evaporadores

Page 192: transferencia de calor 2
Page 193: transferencia de calor 2
Page 194: transferencia de calor 2
Page 195: transferencia de calor 2
Page 196: transferencia de calor 2
Page 197: transferencia de calor 2
Page 198: transferencia de calor 2
Page 199: transferencia de calor 2
Page 200: transferencia de calor 2