José wilmer salazar pérez

23
UNIVERSIDAD NACIONAL JOSÉ MARÍA ARGUEDAS ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS ASIGNATURA DE COMPUTADORES Y SISTEMAS OPERATIVOS Informe de laboratorio Rendimiento de computadores Docente: M.Sc. Carlos Yinmel Castro Buleje Estudiante: José Wilmer Salazar Pérez

Transcript of José wilmer salazar pérez

Page 1: José wilmer salazar pérez

UNIVERSIDAD NACIONAL JOSÉ MARÍA

ARGUEDAS

ESCUELA PROFESIONAL DE INGENIERÍA DE SISTEMAS

ASIGNATURA DE COMPUTADORES Y SISTEMAS

OPERATIVOS

Informe de laboratorio

Rendimiento de computadores

Docente:

M.Sc. Carlos Yinmel Castro Buleje

Estudiante:

José Wilmer Salazar Pérez

Page 2: José wilmer salazar pérez

Facultad: Ingeniería

Escuela Profesional: Ingeniería de Sistemas

Asignatura: Computadores y sistemas

operativos II

Lugar de ejecución: Laboratorio 7 de la EPIS

Rendimiento de computadores

Evaluar el rendimiento de diversas configuraciones y arquitecturas de

computadoras e interpretar los resultados.

Comprobar la teoría identificando los FLOPS de una PC

Reconocer el entorno del software de linx

Medir el rendimiento de computadores

Un equipo de cómputo.

Software linx

Objetivo General

Objetivos Específicos

Materiales y equipos

Fundamento teórico

Page 3: José wilmer salazar pérez

1. ¿Cómo se mide el rendimiento de una computadora?

Para medir el rendimiento primero vayamos a ver ¿Qué es el rendimiento de

una computadora? Se define rendimiento de un sistema como la capacidad que

tiene dicho sistema para realizar un trabajo en un determinado tiempo. Es

inversamente proporcional al tiempo, es decir, cuanto mayor sea el tiempo que

necesite, menor será el rendimiento, también de esto se deduce que el tiempo

es la mediada del rendimiento de un computador.

El rendimiento del procesador depende de los siguientes parámetros:

1.1 Frecuencia de la CPU (fCPU): es el número de ciclos por segundo al que

trabaja el procesador o CPU. No confundir la frecuencia de la CPU con la

frecuencia del sistema, el bus del sistema trabaja a menor frecuencia que la

CPU.

2. Periodo de la CPU (TCPU): es el tiempo que dura un ciclo y es la inversa de

la frecuencia de la CPU.

3. Ciclos por instrucción (CPI): las instrucciones se descomponen en

microinstrucciones, que son operaciones básicas que se hacen en un ciclo de

reloj. En un programa se llama CPI al promedio de microinstrucciones que

tienen las instrucciones del programa, es decir, los ciclos de reloj que se tarda

de media en ejecutar una instrucción.

4. Número de instrucciones del programa: cuantas más instrucciones haya

en el programa más tiempo se tarda en ejecutarlo luego baja el rendimiento. El

que tengamos un número reducido de instrucciones dependerá del

programador y de que dispongamos de un buen compilador.

5. Multitarea: hace referencia a la capacidad que tiene un computador de

atender simultáneamente varias tareas.

El tiempo de programa depende a su vez del número de instrucciones del

programa y del tiempo que se tarda en ejecutar cada instrucción.

El tiempo que tarda en ejecutarse cada instrucción depende del número de

microinstrucciones o ciclos en los que se descompone. Cada microinstrucción

tarda distintos ciclos de reloj en ejecutarse, por lo que se hace un promedio

ponderado de ciclos de instrucción.

En resumen, el rendimiento de un procesador para un determinado programa

queda en función de tres factores:

Page 4: José wilmer salazar pérez

Frecuencia de la CPU la cual depende fundamentalmente de la tecnología de

fabricación del procesador. Cuanto mayor sea la frecuencia de la CPU, mejor

será el rendimiento.

Número de instrucciones del programa el cual depende del programador,

del lenguaje de programación y del compilador. Cuanto mayor sea el número

de instrucciones del programa peor rendimiento tendrá.

CPI que depende de diseño interno o arquitectura del computador y del

software o instrucciones que se hayan elegido. Es importante optimizar el

programa con instrucciones que tengan pocos ciclos. Cuanto mayor sea el CPI,

peor será el rendimiento.

2. ¿Cuál es la unidad de rendimiento de las computadoras?

MIPS. -Los MIPS son los millones de instrucciones por segundo que ejecuta un

procesador para un programa determinado.

MIPS VAX. -Los MIPS VAX son la relación entre el tiempo que tarda un

computador en realizar un programa y el tiempo que tarda en realizarlo el

computador VAX11/780. Por ejemplo, un valor de MIPS VAX = 1 que toma el

80286 significa que dicho computador ejecuta un programa en el mismo tiempo

que el VAX11/780.

MEGAFLOPS NATIVOS Y RELATIVOS. -Surgen ya que los MIPS no hacen

distinción entre operaciones normales y operaciones en coma flotante.

Los Megaflops nativos indican los de millones de instrucciones en coma

flotante por segundo que se realizan para un determinado programa.

Los Meglaflops relativos o normalizados indican los millones de operaciones

en coma flotante por segundo, pero teniendo en cuenta la equivalencia que

tienen las operaciones complejas con las simples.

Benchmarks Sintéticos. - La principal función de estos programas es

comportarse como una CPU de aplicaciones del mundo real.

3. ¿Qué es Linx y que softwares de medida de rendimiento existen?

LYNX. - Es un software diseñado para medir el rendimiento de una CPU Intel

en Flops, pero también es una herramienta muy útil para comprobar la

estabilidad de una CPU.

Aparte de este software existen otros tipos de softwares para medir el

rendimiento de un computador y son las siguientes:

Benchmarks Sintéticos

El objeto de este tipo de programas de prueba es simular el comportamiento de

aplicaciones del mundo real. Para elaborar estas pruebas sintéticas se estudian

una serie de aplicaciones y se desarrolla un código artificial que mezcla los

cálculos matemáticos, bucles, llamadas a funciones, etc. Las series de

Page 5: José wilmer salazar pérez

programas de prueba sintéticos más conocidas son Whetstone y Dhrystone.

Los Benchmark Sintéticos están formados por las rutinas más repetitivas de los

programas más utilizados.

Dhrystone Benchmark (MIPS). -Miden la eficiencia del procesador y del

compilador en un entorno de desarrollo de sistemas con lenguajes de alto nivel.

Su valor es expresado en instrucciones Dhrystone por segundo (Dhrystone

MIPS, millones de instrucciones Dhrystone por segundo). No realiza

operaciones en coma flotante, por lo que muchos fabricantes no lo consideran

como una medida adecuada para definir el rendimiento de hoy en día. Los

resultados se relativizan respecto al número de instrucciones Dhrystone por

segundo que son alcanzadas en un VAX 11/780.

Whetstone Benchmark. - predecesora del Dhrystone, es una medida

desarrollada para evaluar sistemas que se vayan a destinar a la ejecución de

pequeños programas científicos y de ingeniería. Sus programas se han

implementado en FORTRAN e incluyen cálculos con enteros y en coma

flotante, manipulación de arrays y saltos condicionales. Esta prueba predice

cómo serán ejecutadas aplicaciones que hacen un uso intensivo de la unidad

central de proceso. Los resultados son expresados en Kwips (miles de

instrucciones Whetstone por segundo)

Benchmarks Reducidos o de juguete

Los programas reducidos tienen entre 10 y 100 líneas de código y producen un

resultado que el usuario conoce antes de ejecutarlo. Algunos ejemplos de este

tipo de Benchmarks serían: el Towers, que resuelve el problema de las torres

de Hanoi con muchas llamadas recursivas; el Perm, que calcula permutaciones

de 7 tornadas de 5 en 5 y los programas Criba de Eratóstenes, Puzzle y

Quicksort, que son los más populares porque son pequeños, fáciles de

introducir y de ejecutar en cualquier computador.

Estos programas, al ser tan pequeños y sencillos, eran muy vulnerables, era

muy fácil mejorar el rendimiento para un programa concreto, por lo que se pasó

a los Benchmark Kernel o de núcleo.

Kernel Benchmarks. -Son programas de pruebas formados por pequeñas

piezas clave de programas reales que evalúan el rendimiento y lo aíslan de las

características individuales de una máquina, permitiendo explicar las razones

de las diferencias en los rendimientos de programas reales.

Los ejemplos más conocidos son el “Livermore Loops”, una serie de 21

fragmentos de bucles pequeños, y el “Linpack”, formado por un paquete de

subrutinas de álgebra lineal. Sólo tratan algunos aspectos y son antiguos. No

existen núcleos para evaluar prestaciones gráficas.

Programas Reales. -Son programas hechos con partes de programas que

realmente se utilizan mucho (procesadores de texto, compiladores,

herramientas CAD, etc). Los problemas que presentan son que dependen

Page 6: José wilmer salazar pérez

mucho de los datos de entrada, suelen ser complejos de usar, los S.O. sobre

los que se prueban suelen ser incompatibles y no son ni estándar ni de libre

distribución.

4. ¿Cuáles con las 5 mejores supercomputadoras del mundo y donde

se encuentran?, lea los siguientes artículos como referencia

1. El SUNWAY TAIHULIGHT (2016) es un computador que, hasta junio del

2016, es calificada como la más rápida supercomputadora del mundo, con

un índice de 93 PETAFLOPS en el punto de referencia de LINPACK. Esto

es casi tres veces más rápido que el titular anterior del registro, TIANHE-2,

el cual corre a 34 PETAFLOPS. Esta súper computadora en el centro

nacional de supercomputación de china en la ciudad de WUXI, en la

provincia de JIANGSU, china. Tiene un consumo energético de 15 MW y su

propósito es de prospección de petróleo, ciencias de la vida, el tiempo, el

diseño industrial, la investigación de fármacos.

2. TIANHE-2 (MILKYWAY-2) -(2015)

Desarrollada por la universidad nacional de tecnología de defensa de china

(NUTT) y la empresa china INSPUR. Tiene un rendimiento de 33,86

PETAFLOPS (33.860.000.000.000.000 operaciones en coma flotante por

segundo), un pico teórico de 54,9 PETAFLOPS, Está ubicado en el nacional

de supercomputadora en GUANGZHOU de china.

3. TITAN (2015)

Desarrollado por CEY INC. Una empresa estadounidense dedicada a la

fabricación de tecnología de este tipo. CRAY TITAN posee 299.008

núcleos, con 18.688 CPUS AMD OPTERON y cuenta con esa misma

cantidad de GPUS TESLA K20X por cada microprocesador. El tamaño

resultante de la memoria RAM es de 710 TIB, con 10 PB de

almacenamiento y cuenta con más de 10.000 discos rígidos de 1 TB A 7200

RPM. Diseñada para estudiar fenómenos naturales desarrollando modelos

virtuales, por ejemplo, de tormentas (huracanes), física de moléculas o

cualquier exigencia del tipo científico (como las requeridas por la medicina),

está ubicada en DOE/ SC/ laboratorio nacional de OAK RIDGE ESTADOS

UNIDOS.

4. SEQUOIA-BLUE GENE

Se ubica en esta de california, Estados Unidos, IBM SEQUOIA pertenece al

tipo de ordenadores IBM BLUE GENE/Q en cual posee un rendimiento de

16.3 PETAFLOPS por segundos (operaciones de coma flotante por

segundo, unidad de media del rendimiento de una computadora). A partir

de esta velocidad, la supercomputadora IBM SEQUOIA es capaz de

calcular en una hora lo mismo que unos 6.700 millones de personas con

una calculadora en un periodo de tiempo de 320 años.

Page 7: José wilmer salazar pérez

5. FUJITSU K COMPUTER

Creada por el grupo informático FUJITSU y un instituto japonés de

investigación. Totaliza 88.128 procesadores que trabajan a concertados,

logro una marca de 10.51 PETAFLOPS (10.51 billones de operaciones de

punto flotante por segundo). Se utiliza para investigación climática,

meteorología, prevención de catástrofes y próximamente en medicina.

http://www.pcworld.com.mx/Articulos/29402.htm

https://www.top500.org/lists/2016/06/

http://www.muycomputer.com/2016/06/23/ibm-superordenador-200-petaflops

http://www.fullaprendizaje.com/2015/08/top-10--supercomputadoras-2015.html

Para realizar este el siguiente trabajo de Evaluar el rendimiento de diversas

configuraciones y arquitecturas de computadoras, vamos a necesitar de 9

computadores de diferentes arquitecturas de procesador y un software llamado Lynx.

LINX

Como ya habíamos mencionado antes LINX es un software para medir el rendimiento

de una computadora.

Fig. 1

Como podemos ver este es el software que vamos a utilizar para la siguiente práctica.

Procedimiento

Page 8: José wilmer salazar pérez

COMPUTADOR Nº 1

Este es el primer computador, es un una Intel Core i7 de la primera generación con un

Fig. 2

Con un microprocesador de 3.1 GHz de ocho núcleos.

Aquí ya vemos al programa linx terminando de hacer los cálculos respectivos, como

podemos ver en esta parte del programa utilizamos 751 Mb de memoria RAM

entonces lo que hizo este programa es realizar diez veces 9866 problemas en un

determinado tiempo como vemos en la siguiente figura 3.

Estos mismos pasos los vamos repetir para cada computador con las que vamos a

trabajar ahí es lo que veremos el rendimiento de cada computador y el rendimiento de

de un computador se mide en GFlops.

Page 9: José wilmer salazar pérez

Fig. 3

En esta parte vemos el recurso del computador que está trabajando con su máxima

capacidad todos los 8 núcleos que tiene el computador están trabajando al 100 por

ciento de su capacidad.

Fig. 4

Page 10: José wilmer salazar pérez

COMPUTADOR Nº 2

Este es un computador Intel Core i3 de la cuarta generación con un procesador de 1.7

GHz de cuatro núcleos

Fig. 5

Fig. 6

Page 11: José wilmer salazar pérez

Fig. 7

COMPUTADOR Nº 3

Este es un computador Intel Celeron de la segunda generación con un

microprocesador de 2.16 GHz de dos núcleos de procesamiento.

Fig. 8

Page 12: José wilmer salazar pérez

Fig. 9

Fig. 10

Page 13: José wilmer salazar pérez

COMPUTADOR Nº 4

Este es un computador Intel Core i5 de la segunda generación con un

microprocesador de 2.60 GHz de cuatros núcleos de procesamiento.

Fig. 11

Fig. 12

Page 14: José wilmer salazar pérez

Fig. 13

COMPUTADOR Nº 5

Este es un computador Intel Core i5 de la quinta generación con un microprocesador

de 2.20 GHz de cuatro núcleos de procesamiento.

Fig. 14

Page 15: José wilmer salazar pérez

Fig. 15

Fig. 16

Page 16: José wilmer salazar pérez

COMPUTADOR Nº 6

Este es un computador Intel Core i7 de la tercera generación con un microprocesador

de 2.30 GHz de ocho núcleos de procesamiento

Fig. 17

Fig. 18

Page 17: José wilmer salazar pérez

Fig. 19

COMPUTADOR Nº 7

Este es un computador Intel Core i5 de la cuarta generación con un microprocesador

de 1.70 GHz de cuatro núcleos de procesamiento.

Fig. 20

Page 18: José wilmer salazar pérez

Fig. 21

Fig. 22

Page 19: José wilmer salazar pérez

COMPUTADOR Nº 8

Este es un computador AMD APU whit Radeon de la cuarta generación con un

microprocesador de 3.90 GHz de cuatro núcleos de procesamiento.

Fig. 23

Fig. 24

Page 20: José wilmer salazar pérez

Fig. 25

COMPUTADOR Nº 9

Este un computador AMD ATHLOM IIX2 de la segunda generación con un

microprocesador de 3.0 GHZ de dos núcleos de procesamiento.

Fig. 26

Page 21: José wilmer salazar pérez

Fig. 27

Fig. 28

Page 22: José wilmer salazar pérez

En conclusión, como he podido observar las arquitecturas de los procesadores AMD

son mejores que los microprocesadores de Intel, ¿Por qué? Porque al momento de

realizar el respectivo testeo algunas máquinas en procesadores Intel se ponían

lentas(LAG), en los procesadores AMD no pasaba eso podías hacer algunas otras cosas

mientras se realizaba el respectivo testeo.

Una observación muy importante que vi, el software linx no funcionaba en las

computadoras AMD, lo que hice era lo siguiente, me descargue una versión anterior a

la que estoy usando en este caso es el linx 0.6.4 y funciono normal.

Además, con este respectivo trabajo podemos ver de cada uno de las computadoras

cuantas operaciones puede realizar y las veces ejecutadas en un determinado tiempo.

Otra observación que vi, es comparando una Intel Core i5(fig.12) segunda generación,

Intel Celeron (fig.9) con una AMD athlom XII (fig. 27) de segunda generación se demora

mucho tiempo en realizar la medida del rendimiento nos podemos fijar en el tiempo que

tarda en terminar el proceso, pero la arquitectura AMD al contrario no le tomo mucho

tiempo, por eso una AMD es mejor que una Intel.

Ahora veremos gráficamente como se ubican las posiciones de rendimiento de

los diferentes computadores:

RENDIMINETO

A B C D E F G H I

21.3078 34.7722 2.5648 38.5068 42.4540 40.3498 31.2972 18.5533 15.4314

21.5247 35.0352 2.5460 38.0345 41.8778 39.8852 32.2701 17.8736 14.9527

21.2944 34.3364 2.6507 37.8473 42.4940 34.5811 31.2331 17.9222 15.3870

21.2940 35.6534 2.6530 35.0118 40.4695 31.8758 32.1810 17.1761 14.3405

21.4242 30.5270 2.4040 34.7854 40.6866 30.1433 30.2458 17.9246 15.4214

21.3010 29.8548 2.7057 31.0004 40.7299 33.9299 30.0803 17.5653 15.5298

21.3366 32.8216 2.7158 30.9657 40.5531 35.4201 32.7569 17.5949 15.4902

21.3048 33.9647 2.6926 30.8775 40.9211 39.5700 30.7163 17.6336 14.1286

20.8675 32.1864 2.7007 30.5908 40.4608 39.5616 33.5523 17.4268 14.3370

22.3554 33.0316 2.7771 30.7737 41.4896 36.3055 33.8268 17.9006 14.2768

Conclusiones

Page 23: José wilmer salazar pérez

Leyenda: M

OD

ELO

A Intel core i7 primera generación

B Intel core i3 cuarta generación

C Intel Celeron segunda generación

D Intel Core i5 segunda generación

E Intel Core i5 quinta generación

F Intel Core i7 tercera generación

G Intel Core i5 Cuarta generación

H AMD A8-650DK APU cuarta generación

I AMD Athlon IIX2 250 Segunda generación

Bueno aquí vemos la tablita y las posiciones de rendimiento de cada computador, por

ahí vemos que la letra E tiene mayor rendimiento que el resto.

http://www.bbc.com/mundo/noticias/2015/07/150731_tecnologia_eeuu_supercomputad

or_mas_poderoso_autorizo_obama_lv#orb-banner

http://www.elmundo.es/blogs/elmundo/el-gadgetoblog/2016/06/21/el-superordenador-

mas-potente-del-mundo.html

Bibliografía

A

C

E

GI

0.0000

10.0000

20.0000

30.0000

40.0000

50.0000

1 2 3 4 5 6 7 8 9 10

Tabla de rendimento

A B C D E F G H I