Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos...

12
© UdeC - DIE - 2019 Tarea N°1 idc vdc sr2 sr4 is sr1 sr3 + - inversor red lado dc vr + - vs Ls Rs + - vPV + - iPV panel solar R dc C dc L dc sb iD vSb + - Parte A Modelo Panel PV con Convertidor DC/AC Monofásico v s t () R s i s t () L s di s t () + v r t () + = v r t () s r t ()v dc t () = i dc t () s r t ()i s t () = i dc t () i D t () + C dc dv dc t () v dc t () R dc + = i D t () 1 s b t () ( ) i PV t () = v PV t () L dc di PV t () v Sb t () + = v Sb t () 1 s b t () ( ) v dc t () = i PV v PV ( ) I PVmax 1 exp 1 k PV v PV I PVmax ( ) = o bien v PV i pv ( ) V PVmax k PV ln 1 i PV I PVmax + = Given v s R s i s L s di s + s r v dc + = s r i s 1 s b ( ) i PV + C dc dv dc v dc R dc + = v PV i PV ( ) L dc di PV 1 s b ( ) v dc + = Find di s dv dc , di PV , ( ) T R s i s v s s r v dc + L s v dc R dc i PV R dc i s s r R dc i PV s b + C dc R dc v PV i PV ( ) v dc s b v dc + L dc di s t () v s t () L s R s L s i s t () 1 L s s r t () v dc t () = dv dc t () 1 C dc s r t () i s t () 1 C dc R dc v dc t () 1 s b t () C dc i PV t () + = di PV t () v PV i PV ( ) L dc 1 s b L dc v dc t () + = Modelo Promedio di s t () v s t () L s R s L s i s t () 1 L s m r t () v dc t () = dv dc t () 1 C dc m r t () i s t () 1 C dc R dc v dc t () 1 m b t () C dc i PV t () + = di PV t () v PV i PV t () ( ) L dc 1 m b t () L dc v dc t () = Tarea N°1 - Solución 1 de 12 Convertidores Estáticos Multinivel - 543 761

Transcript of Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos...

Page 1: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019Tarea N°1

idc

vdc

sr2

sr4

is

sr1

sr3

+

-

inversor redlado dc

vr

+

-

vs

LsRs

+

-

vPV +

-

iPV

panel solar

Rdc

Cdc

Ldc

sb

iD

vSb +

-

Parte A Modelo Panel PV con Convertidor DC/AC Monofásico

vs t( ) Rs is t( )⋅ Ls dis t( )⋅+ vr t( )+= vr t( ) sr t( ) vdc t( )⋅=

idc t( ) sr t( ) is t( )⋅=

idc t( ) iD t( )+ Cdc dvdc t( )⋅vdc t( )

Rdc

+=

iD t( ) 1 sb t( )−( ) iPV t( )⋅=

vPV t( ) Ldc diPV t( )⋅ vSb t( )+= vSb t( ) 1 sb t( )−( ) vdc t( )⋅=

iPV vPV( ) IPVmax 1 exp1

kPV

vPV IPVmax−( )⋅

⋅= o bien vPV ipv( ) VPVmax kPV ln 1iPV

IPVmax

⋅+=

Given

vs Rs is⋅ Ls dis⋅+ sr vdc⋅+=

sr is⋅ 1 sb−( ) iPV⋅+ Cdc dvdc⋅vdc

Rdc

+=

vPV iPV( ) Ldc diPV⋅ 1 sb−( ) vdc⋅+=

Find dis dvdc, diPV, ( )TRs is⋅ vs− sr vdc⋅+

Ls

−vdc Rdc iPV⋅− Rdc is⋅ sr⋅− Rdc iPV⋅ sb⋅+

Cdc Rdc⋅−

vPV iPV( ) vdc− sb vdc⋅+

Ldc

dis t( )vs t( )

Ls

Rs

Ls

is t( )⋅−1

Ls

sr t( )⋅ vdc t( )⋅−= dvdc t( )1

Cdc

sr t( )⋅ is t( )⋅1

Cdc Rdc⋅vdc t( )⋅−

1 sb t( )−

Cdc

iPV t( )⋅+= diPV t( )vPV iPV( )

Ldc

1 sb−

Ldc

vdc t( )⋅+=

Modelo Promedio

dis t( )vs t( )

Ls

Rs

Ls

is t( )⋅−1

Ls

mr t( )⋅ vdc t( )⋅−= dvdc t( )1

Cdc

mr t( )⋅ is t( )⋅1

Cdc Rdc⋅vdc t( )⋅−

1 mb t( )−

Cdc

iPV t( )⋅+= diPV t( )vPV iPV t( )( )

Ldc

1 mb t( )−

Ldc

vdc t( )⋅−=

Tarea N°1 - Solución 1 de 12 Convertidores Estáticos Multinivel - 543 761

Page 2: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019

Parte B Modelo en ejes rotatorios

mr t( ) amr sin ωs t⋅( )⋅ bmr cos ωs t⋅( )⋅+= vs t( ) avs sin ωs t⋅( )⋅ bvs cos ωs t⋅( )⋅+= is t( ) ais sin ωs t⋅( )⋅ bis cos ωs t⋅( )⋅+= vdc t( ) vdc_dc t( ) vdc_h t( )+=

dais sin ωs t⋅( )⋅ ais ωs⋅ cos ωs t⋅( )⋅+ dbis cos ωs t⋅( )⋅+ bis ωs⋅ sin ωs t⋅( )⋅−amr sin ωs t⋅( )⋅ bmr cos ωs t⋅( )⋅+

Ls

− vdc_dc vdc_h+( )⋅Rs

Ls

ais sin ωs t⋅( )⋅ bis cos ωs t⋅( )⋅+( )⋅−

1

Ls

avs sin ωs t⋅( )⋅ bvs cos ωs t⋅( )⋅+( )⋅+

...=

dvdc_dc dvdc_h+vdc_dc−

Rdc Cdc⋅

vdc_h−

Rdc Cdc⋅+

amr sin ωs t⋅( )⋅ bmr cos ωs t⋅( )⋅+

Cdc

ais sin ωs t⋅( )⋅ bis cos ωs t⋅( )⋅+( )⋅+1 mb−

Cdc

iPV iPV_h+( )⋅+=

diPV t( )vPV iPV t( )( )

Ldc

1 mb t( )−

Ldc

vdc t( )⋅−=

dais bis ωs⋅amr

Ls

vdc_dc⋅−Rs

Ls

ais⋅−1

Ls

avs⋅+= dvdc_dc

vdc_dc−

Rdc Cdc⋅

amr ais⋅ bmr bis⋅+

2 Cdc⋅+

1 mb−

Cdc

iPV⋅+=

dbis ais− ωs⋅bmr

Ls

vdc_dc⋅−Rs

Ls

bis⋅−1

Ls

bvs⋅+= diPV

vPV iPV( )Ldc

1 mb−

Ldc

vdc⋅−=

Parte C Punto de Operación

VPVmax 360:= IPVmax 8:= kPV 50:= Ldc 10 103−

⋅:=La tensión de red, fs 50:= ωs 2 π⋅ fs⋅:= Vs_amp 2 220⋅:= vs t( ) Vs_amp sin ωs t⋅( )⋅:=

Ls 15 103−

⋅:= Rs 0.5:= Cdc 4700 106−

⋅:= Rdc 5000:= iPV vPV( ) IPVmax 1 exp1

kPV

vPV VPVmax−( )⋅

⋅:= vPV iPV( ) VPVmax kPV ln 1iPV

IPVmax

⋅+:=

Punto de operación Bis 0:= Avs 220 2⋅:= Bvs 0:= VDC_dc 400:=

CI Ais 10−:= Amr 0:= Bmr 0:= Mb 0.5:= IPV 6:=

Given

Tarea N°1 - Solución 2 de 12 Convertidores Estáticos Multinivel - 543 761

Page 3: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 20190 Bis ωs⋅

Amr−

Ls

VDC_dc⋅+Rs

Ls

Ais⋅−1−

Ls

Avs⋅−= 0 Ais− ωs⋅Bmr−

Ls

VDC_dc⋅+Rs

Ls

Bis⋅−1−

Ls

Bvs⋅−=

0VDC_dc−

Rdc Cdc⋅

Amr− Ais⋅ Bmr− Bis⋅+

2 Cdc⋅−

1 Mb−

Cdc

IPV⋅+= 0

VPVmax kPV ln 1IPV

IPVmax

⋅+

Ldc

1 Mb−

Ldc

VDC_dc⋅−=

VPVmax kPV ln 1IPV

IPVmax

⋅+IPV kPV⋅

IPVmax

IPV

IPVmax

1−

+ 0=

Sol Find Ais Amr, Bmr, Mb, IPV, ( ):= Ais Sol1

:= Amr Sol2

:= Bmr Sol3

:= Mb Sol4

:= IPV Sol5

:=

Ais 11.187−= Amr 0.792= Bmr 0.132= Mb 0.331= IPV 6.74=

VPV vPV IPV( ):= VPV 267.567=pPV v( ) v iPV v( )⋅:= PPV pPV VPV( ):= PPV 10

3−⋅ 1.804=

Ps

Avs

2

Ais

2⋅:= Ps 10

3−⋅ 1.74−= η

Ps−

PPV

100⋅ 96.491=:=

v 1 VPVmax..:=

0 100 200 300 4000

2

4

6

8

IPV

iPV v( )

VPV

v

0 100 200 300 4000

0.5

1

1.5

2PPV

1000

v iPV v( )⋅

1000

Vs_ampVPV

v

Simulación en ejes estacionariosTarea N°1 - Solución 3 de 12 Convertidores Estáticos Multinivel - 543 761

Page 4: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019

nf 2000:= tf 0.020:= n 0 nf..:= t 0tf

nf

, tf..:= vPV iPV( ) VPVmax kPV ln 1iPV

IPVmax

⋅+:=

∆Avs 0.00:= vs t( ) Avs 1 ∆Avs Φ t 0.040−( )⋅+( )⋅ sin ωs t⋅( )⋅ Bvs cos ωs t⋅( )⋅+:= mr t( ) Amr sin ωs t⋅( )⋅ Bmr cos ωs t⋅( )⋅+:= mb t( ) Mb:=

D t x, ( )

mr t( )− x2

⋅ Rs x1

⋅− vs t( )+

Ls

mr t( ) x1

Cdc

x2

Rdc Cdc⋅−

1 mb t( )−

Cdc

x3

⋅+

vPV x3( )

Ldc

1 mb t( )−

Ldc

x2

⋅−

:= Za rkfixed

0

VDC_dc

IPV

0, tf, nf, D,

:= CI

Zanf 2,

Zanf 3,

Zanf 4,

:= Za rkfixed CI 0, tf, nf, D, ( ):=

CI

Zanf 2,

Zanf 3,

Zanf 4,

:= Za rkfixed CI 0, tf, nf, D, ( ):=

∆Amr 0.0:= amr t( ) Amr 1 ∆Amr Φ t 0.100−( )⋅+( )⋅:=

∆Avs 0.0:= vs t( ) Avs 1 ∆Avs Φ t 0.100−( )⋅+( )⋅ sin ωs t⋅( )⋅ Bvs cos ωs t⋅( )⋅+:= mr t( ) amr t( ) sin ωs t⋅( )⋅ Bmr cos ωs t⋅( )⋅+:= mb t( ) Mb:=

D t x, ( )

mr t( )− x2

⋅ Rs x1

⋅− vs t( )+

Ls

mr t( ) x1

Cdc

x2

Rdc Cdc⋅−

1 mb t( )−

Cdc

x3

⋅+

vPV x3( )

Ldc

1 mb t( )−

Ldc

x2

⋅−

:= CI

Zanf 2,

Zanf 3,

Zanf 4,

:= Za rkfixed CI 0, tf, nf, D, ( ):=

Tarea N°1 - Solución 4 de 12 Convertidores Estáticos Multinivel - 543 761

Page 5: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019

0 5 103−

× 0.01 0.015 0.02

1−

0.5−

0

0.5

1

moduladora inversor mr

0 5 103−

× 0.01 0.015 0.02

0.3306

0.3308

0.331

0.3312

0.3314

0.3316

moduladora boost mb

0 5 103−

× 0.01 0.015 0.02

400−

200−

0

200

400

voltaje y corriente de red vs, 10is

0 5 103−

× 0.01 0.015

250

300

350

400

450

Voltaje DC y en el switch vdc, vsb

0 5 103−

× 0.01 0.015

265

266

267

268

269

voltaje panel vPV

0 5 103−

× 0.01 0.015

10−

8−

6−

4−

2−

0

2

corriente dc idc

0 5 103−

× 0.01 0.015

4

5

6

7

corriente panel y en el diodo iPV, iD

0 5 103−

× 0.01 0.015

1− 103

×

0

1 103

×

2 103

×

3 103

×

4 103

×potencia fuente y panel

N 1024:= m 1 N..:= per 1:= xm

mr mtf

N⋅

Zatrunc

m

Nnf⋅

2, ⋅:= xf FFT x( ):= xv m( )

if m 1= 1, 2, ( )

xf1 per⋅

xfm per⋅

⋅ 100⋅:=

Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

Page 6: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019

0 5 10 15 20 25 30 35 40 45 501

10

100

espectro corriente dc idc

Simulación en ejes rotatorios

D t x, ( )

x2ωs⋅

x3

− amr t( )⋅ Rs x1

⋅− Avs 1 ∆AvsΦ t 0.100−( )+( )⋅+

Ls

+

x1

− ωs⋅x3

− Bmr⋅ Rs x2

⋅− Bvs+

Ls

+

amr t( )

x1

2⋅ Bmr

x2

2⋅+

x3

Rdc

1

Cdc

⋅1 mb t( )−

Cdc

x4

⋅+

vPV x4( )

Ldc

1 mb t( )−

Ldc

x3

⋅−

:=

Zb rkfixed

Ais

Bis

VDC_dc

IPV

0, tf, nf, D,

:= iL n( ) Zbn 2,

sin ωs n⋅tf

nf

⋅ Zbn 3,

cos ωs ntf

nf

⋅+:=

Tarea N°1 - Solución 6 de 12 Convertidores Estáticos Multinivel - 543 761

Page 7: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019

0 5 103−

× 0.01 0.015 0.02

0

0.2

0.4

0.6

0.8

moduladora inversor Amr, Bmr

0 5 103−

× 0.01 0.015 0.02

0.3306

0.3308

0.331

0.3312

0.3314

0.3316

moduladora boost mb

0 5 103−

× 0.01 0.015 0.02

200−

100−

0

100

200

300

400

volt y corr red Avs, Bvs, 10Ais, 10Bis

0 5 103−

× 0.01 0.015

250

300

350

400

Voltaje DC y en el switch vdc, vsb

0 5 103−

× 0.01 0.015

267.2

267.4

267.6

267.8

268

voltaje panel vPV

0 5 103−

× 0.01 0.015

10−

8−

6−

4−

2−

0

2

corriente dc idc

0 5 103−

× 0.01 0.015

4

5

6

7

corriente panel y en el diodo iPV, iD

0 5 103−

× 0.01 0.015

1.74 103

×

1.76 103

×

1.78 103

×

1.8 103

×

1.82 103

×potencia fuente y panel

N 1024:=N 1024:= m 1 N..:=m 1 N..:= per 1:=per 1:= xm

mr mtf

N⋅

iL truncm

Nnf⋅

⋅:=xm

mr mtf

N⋅

iL truncm

Nnf⋅

⋅:= xf FFT x( ):=xf FFT x( ):= xv m( )if m 1= 1, 2, ( )

xf1 per⋅

xfm per⋅

⋅ 100⋅:=xv m( )if m 1= 1, 2, ( )

xf1 per⋅

xfm per⋅

⋅ 100⋅:=

Tarea N°1 - Solución 7 de 12 Convertidores Estáticos Multinivel - 543 761

Page 8: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019

0 5 10 15 20 25 30 35 40 45 501

10

100

espectro corriente dc idc

0 5 10 15 20 25 30 35 40 45 501

10

100

espectro corriente dc idc

Parte D Modelo Conmutado

Simulación en ejes estacionarios

nf 6000:= tf 0.020:= n 0 nf..:= t 0tf

nf

, tf..:= vPV iPV( ) VPVmax kPV ln 1iPV

IPVmax

⋅+:=

∆Avs 0.00:= vs t( ) Avs 1 ∆Avs Φ t 0.040−( )⋅+( )⋅ sin ωs t⋅( )⋅ Bvs cos ωs t⋅( )⋅+:= mr t( ) Amr sin ωs t⋅( )⋅ Bmr cos ωs t⋅( )⋅+:= mb t( ) Mb:=

fn_b 50:= fn_r 20:= fM atanBmr

Amr

:=

Tb

1

fs fn_b⋅:=

Triangular, tri t( )2

πasin sin fn_r ωs⋅ t⋅ fM fn_r⋅+

π

2−

⋅:=

Primera pierna s1 t( ) if mr t( ) tri t( )> 1, 0, ( ):= Segunda pierna s2 t( ) if mr t( )− tri t( )> 1, 0, ( ):=

s3 t( ) if s1 t( ) 1= 0, 1, ( ):= s4 t( ) if s2 t( ) 1= 0, 1, ( ):= sr t( ) s1 t( ) s2 t( )−:=

( )Tarea N°1 - Solución 8 de 12 Convertidores Estáticos Multinivel - 543 761

Page 9: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019sb0 t( )mod t Tb, ( )

Tb

:= sb t( ) if mb t( ) sb0 t( )> 1, 0, ( ):=

D t x, ( )

sr t( )− x2

⋅ Rs x1

⋅− vs t( )+

Ls

sr t( ) x1

Cdc

x2

Rdc Cdc⋅−

1 sb t( )−

Cdc

x3

⋅+

vPV x3( )

Ldc

1 sb t( )−

Ldc

x2

⋅−

:= Za rkfixed

0

VDC_dc

IPV

0, tf, nf, D,

:= CI

Zanf 2,

Zanf 3,

Zanf 4,

:= Za rkfixed CI 0, tf, nf, D, ( ):=

CI

Zanf 2,

Zanf 3,

Zanf 4,

:= Za rkfixed CI 0, tf, nf, D, ( ):=

CI

Zanf 2,

Zanf 3,

Zanf 4,

:= Za rkfixed CI 0, tf, nf, D, ( ):=

CI

Zanf 2,

Zanf 3,

Zanf 4,

:= Za rkfixed CI 0, tf, nf, D, ( ):=

CI

Zanf 2,

Zanf 3,

Zanf 4,

:= Za rkfixed CI 0, tf, nf, D, ( ):=

Tarea N°1 - Solución 9 de 12 Convertidores Estáticos Multinivel - 543 761

Page 10: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019

0 5 103−

× 0.01 0.015 0.02

1−

0.5−

0

0.5

1

portadora pr y moduladora mr

0

0 5 103−

× 0.01 0.015 0.02

0

0.4

0.8

portadora pb y moduladora mb

0

0 5 103−

× 0.01 0.015 0.02

1−

0.5−

0

0.5

1

Conmutación sr

0

0 5 103−

× 0.01 0.015 0.02

0

0.4

0.8

Conmutación sb

0

0 5 103−

× 0.01 0.015 0.02

400−

200−

0

200

400

voltaje y corriente red vs, is

0

N 1024:= m 1 N..:= per 1:= xm

Zatrunc

m

Nnf⋅

2, := xf FFT x( ):= xv m( )

if m 1= 1, 2, ( )

xf2 per⋅

xfm per⋅

⋅ 100⋅:=

Tarea N°1 - Solución 10 de 12 Convertidores Estáticos Multinivel - 543 761

Page 11: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019

0 5 10 15 20 25 30 35 40 45 501

10

100

espectro corriente idc

0 5 103−

× 0.01 0.015

0

100

200

300

400

voltaje condensador y swithc vdc, vsb

0 5 103−

× 0.01 0.015

0

100

200

300

400

voltaje panel vPV

0 5 103−

× 0.01 0.015

15−

10−

5−

0

corriente idc

0

N 1024:= m 1 N..:= per 1:= xm

Zatrunc

m

Nnf⋅

2, sr

m

Ntf⋅

⋅:= xf FFT x( ):= xv m( )if m 1= 1, 2, ( )

xf1 per⋅

xfm per⋅

⋅ 100⋅:=

Tarea N°1 - Solución 11 de 12 Convertidores Estáticos Multinivel - 543 761

Page 12: Mathcad - 543761 CEM 2019 2 Tarea 1€¦ · Tarea N°1 - Solución 5 de 12 Convertidores Estáticos Multinivel - 543 761

© UdeC - DIE - 2019

0 5 10 15 20 25 30 35 40 45 501

10

100

espectro corriente idc

0 5 103−

× 0.01 0.015

0

2

4

6

8

corriente panel y diodo iPV, iD

0 5 103−

× 0.01 0.015

1− 103

×

1 103

×

3 103

×

potencia fuente ac y panel

0

Tarea N°1 - Solución 12 de 12 Convertidores Estáticos Multinivel - 543 761