Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo...

12
lnve,hgación Revista Mexicana de Física 33 No. 1(1987) 89-94 Two dimensional model for intergranular void elimination by hot isostatic pressure L. Martínez Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-964, 01000 México D.F. (recibido el 2 de mayo de 1986; aceptado el 18 de septiembre de 1986) Abstract. A two dimensional model for void sintering under hot isostatic pressure controlled by grain boundary self diffusion is presented. Equations for mass transport and traction distribu. tions in the grain boundary are developed. A dilferential equation for void elimination is established, and numerically solved, where the driving forces are the isostatic pressure and the surface free energy. The qualitative differences of the present approach for densification with previous models based on "neck growth" cal- culations, by Kuckzynski and others, are discussed. Results are curves for material densificiation, void size and void elimination rate as a function of time. Also the dependence of sintering time with isostatic pressure and with capillarity angle are shown Resumen. Se presenta un modelo bidimensional para la sinter- izaci6n de cavidades bajo compresi6n isostática a alta temper- atura controlada por autodifusi6n en fronteras de grano. Se de- sarrollan ecuaciones para el transporte de masa y la distribuci6n de tracciones en las fronteras de grano. Se establece, y resuelve numéricamente, una ecuaci6n diferencial para la eliminaci6n de cavidades impulsada por la compresi6n isostática y la energía Ji. bre de superficie. Se discuten las diferencias cualitativas de este enfoque para la densificaci6n con los modelos de "crecimiento de cuello" de Kuczynski y otros. Los resultados son curvas de densi- ficaci6n del material, tamaño de cavidad y raz6n de eliminaci6n como funciones del tiempo. También se obtiene la. dependencia del tiempo de sinterizado con la presi6n isostática y con el ángulo de capilaridad. PACS: 81.40; 62.20 Hg

Transcript of Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo...

Page 1: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

lnve,hgación Revista Mexicana de Física 33 No. 1(1987) 89-94

Two dimensional model for intergranular voidelimination by hot isostatic pressure

L. Martínez

Instituto de Física, Universidad Nacional Autónoma de México,Apartado Postal 20-964, 01000 México D.F.

(recibido el 2 de mayo de 1986; aceptado el 18 de septiembre de 1986)

Abstract. A two dimensional model for void sintering under hotisostatic pressure controlled by grain boundary self diffusion ispresented. Equations for mass transport and traction distribu.tions in the grain boundary are developed. A dilferential equationfor void elimination is established, and numerically solved, wherethe driving forces are the isostatic pressure and the surface freeenergy. The qualitative differences of the present approach fordensification with previous models based on "neck growth" cal-culations, by Kuckzynski and others, are discussed. Results arecurves for material densificiation, void size and void eliminationrate as a function of time. Also the dependence of sintering timewith isostatic pressure and with capillarity angle are shown

Resumen. Se presenta un modelo bidimensional para la sinter-izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano. Se de-sarrollan ecuaciones para el transporte de masa y la distribuci6nde tracciones en las fronteras de grano. Se establece, y resuelvenuméricamente, una ecuaci6n diferencial para la eliminaci6n decavidades impulsada por la compresi6n isostática y la energía Ji.bre de superficie. Se discuten las diferencias cualitativas de esteenfoque para la densificaci6n con los modelos de "crecimiento decuello" de Kuczynski y otros. Los resultados son curvas de densi-ficaci6n del material, tamaño de cavidad y raz6n de eliminaci6ncomo funciones del tiempo. También se obtiene la. dependenciadel tiempo de sinterizado con la presi6n isostática y con el ángulode capilaridad.

PACS: 81.40; 62.20 Hg

Page 2: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

84 L. MaTt{nez

1. Introduction

Sintcring by hot isostatic pressing has been studied extensively dur-ing the last decades and theories have been developed in differentdircctions. Technological applications of sintering of uranium pel-lcts for nuclear reactors motivated the early work on the area onthe 50's and presently there is intercst in the powder metallurgy ofsuperalloys. The early work of Kuckzynski and others [1, 2, 3, 41approachcd sintering as a coalescence of two material particles andsince then the concept of "neck growth" has concentrated atten-tion. Later works [5, 6] have considered sintering as more collectivcprocess where attention is focused on interparticle void elimination.Six or more mechanisms of mass transport occur when a powderaggregate is sintered [61. These mechanisms are connected mainlywith self diffusion along different paths in the material and only afew of them contribute effectively to densification. Grain boundarysclf diffusion has been considered an effective mechanism of masstransport during sintering [6].

The present work is an approach to sintering controlled by grainboundary self diffusion where the process is studied as interparticlevoid elimination and includes the effects of hot isostatic pressure andthe capillarity angle formed at the points where voids are in contactwith the grain boundaries.Results show that the void eliminationapproach has a differential equation with qualitative differences withthe two particle coalescence method.

2. Geometry

Consider a compact array of monocrystalline long wires of radiusT. In sintering conditions thcre is sorne definite time, which is notcalculated here, after which the voids in the compact assume theshape shown in Fig. 1. In this configuration the curvature is constantand surface tensions are in equilibrium at the points where contactis made between void surfaces and grain boundaries. The angleformed by the tangent of the void surface and the plane of the grain

Page 3: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

Two dimensional model foro . . 85

boundary, at the point of contaet, is given by (see Fig. 2)

-1 ( ""1b )Q=cos -,2""1.

(1)

Where""1band""1.are the grain boundary and void surface free energies.Let a be the distance from the center to the tip of the void. Then

the curvature of the void surface is

1K=--,

u(Q)a

wherev'3

u(Q) = v'3 .3 sin Q - cos Ct

The area of a void cross section is

wherep(Q) = 9(Q-,,/6) _ 3v'3cOSQ

(v'3 sin Q - COSQ)2 v'3 sin Q - cas Q .

(2)

(3)

(4)

(5)

Ir the amount of densification prior to the initial formation of theconfiguration of Fig. 1 is assumed to be negligible, simple trigonom-etry can be used to obtain the initial value of a, ao, given by

00 = r(v'3-"/2)

p(Q) (6)

The distance from center to center of neighboring voids is 2b,where

b=r (1)

Notice thed during densification the void distance is gomg to bereduced.

Page 4: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

86 L. Martínez

FIGURE 1. Array of voíds after the first stage of densification. The amount ofdensification during this stage is considered negligible.

3. Self diffusion equations

If surface self diffusion is fast enough to keep the void curvature,1<, constant, then the sintering process is controlled by grain bound-

Page 5: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

Two dimensional modellor.. . 87

FIGURE 2. Traction distribution in a grain boundary. At point a there is chemi-ca! potential continuity and at the point b there is a zero flux condi-tion by syrnmetry. Between points a and b the traction distributionaverages the hydrostatie pressure.

ary self diffusion [7].The chemical potential at any point on the voidsurface is [8)

ÁJJ = -0...,,1<:, (8)

where O is the atomic volume. In the grain boundary the diffusionequation is [9, 10]

DóO a2Tn •kT ax2 + w = O, (9)

where D is the self diffusion coefficient in the grain boundary, ó theeffective grain boundary thickness, kT is the Boltzmann factor andW is the rate of volume depletion per unit of grain boundary area.

Assuming that grain boundary self diffusion removes materialfrom the neighboring grains uniformly [9), the traction distribution

Page 6: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

88 L. MaTtínez

will be parabolic as shown in Fig. 2. At the point a there is chemicalpotential continuity and at the point b there is, by symmetry, a zeroflux condition. Also the traction distribution between points a and baverages the isostatic or hydrostatic pressure, u, on the material andis given by

( ) [ ( )2 ( )]UI 1 x - a x - a

Tn(x) = /,1< + 3 b _ a + /,1< 2" b _ a - b - a '

where u is assumed to be positive in compression conditions.

4. Sintering

The rate of change of a void cross section is given by

dA- = 3flóJ(a),dt

(10)

(11)

where J(a), the atomic flux coming into the void from each of thethree adjacent grain boundaries can be obtained from Eq. (10) [71:

J(a) = 3D [uI /,]--+--kT(b - a) b - a u(a)a'

(12)

The differential equation for the variable a can be obtained from (4),(11) and (12):

da + 9Dófl [~ + ---.:l!-] - Odt 2p(a)kTa(b - a) b - a u(a)a - . (13)

The differential equation can easily be integrated numerically.Solutions a(t) for different values ofE = u'//" a proper adimensionalvariable associated to the hydrostatic pressure, are shown in Fig. 3.The time is given in units of

kTr'tn = Dó/,fl ' (14)

Page 7: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

Two dimensional model foro . . 89

a variable which inc1udes most of the intrinsic physical quantities ofthe material.

Figure 4 shows that the rate of void elimination increases toinfinity at the final stage and this is consistent with the fact thatno gaseous species in the voids are considered in this model. Thisbehaviour of the velocity shows a qualitative difference with theresults that may be expected in a model of sintering by coalescence oftwo partic1es. The later necessarily ends with a neck growth velocityapproaching to zero [31.

Curves for the densification,

p= Pmat

[I+~] , (15)

where Pma' is the density of the material without voids, as shown inFig. 5. The dependence of the time of sintering with the hydrostaticpressure is described in Fig. 6. At low hydrostatic pressures theprocess is driven by capillarity forces. When the hydrostatic pressureis higher the sintering time becomes inversely proportional. However,since this model does not inc1ude plasticity, the results are limitedto values of the hydrostatic pressure not big enough to induce powerlaw creep.

The effect of the capillarity angle, that is, of the ratio of grainboundary to twice the void surface free energies, on the sintering timeis shown in Fig. 7. The interesting interval for capillarity angles isfrom 60 to 80 degrees where many metals are inc1uded [11].

Acknowledgements

This work was sponsored by Project PCCBBNA-02C348 ofUNAM-CONACyT, México.

Page 8: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

90 L. Martíntz

o 0.5

¿=\

1.5

¿=O

FIGURE 3. Solutions af the difFerential equation governing the sintering proces!for different values af the hydrostatie pressure in &dimensional units.

Page 9: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

Two dimensional model foro . . 91

o 0.5 1.5

~ -250o-.....•.~~.....•.

W1-<{ -500a:::ZO1-<{Z -750 ¿=102- ¿=10 ¿=1 ¿=O~..JW

OO> -1000

-1250

FIGURE 4. Velocity of void elimination. The faet of increasing to infinite atthe final stage of sintering shows a qua1itative differente with thetwo particle coalescence method where the driving force ror sinteringapproa.ches at the same stage to lero.

Page 10: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

92 L. Martínez

>-!::"'z1'5w2:1-<¡...JWo:

"5

e .0

flgUrt D._ ¡¡epenaenc. O' Ilnter,n~ •••• ~ .,,,. 4~~¡'~Y "Iy.y •••• n

pr.ssurt. At lo_ •• (un of hydrOHltlC p.usur. tn.slnterlng pro"u h drlun "1!nJ~ by (lpllh.,tJ forcu.Whln the p,usure h ntgner th. slnterlng tllI, OHOUS ln-••• ul} ~roportlonll.

la 10' '0'HYDROSTATIC PRESSURE I (Y./r)

FIGURE 6. Dependence of sintering time with applied hydrostatie pressure. Atlow values of hydrostatie pressure the sintering process is drivenmainly by eapillarity forees. When the pres.ure is higher the sinteringtime becomes inversely proportional.

Page 11: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

Two dimensional model foro . . 93

5

4

~o 3-'"'o~"--

2

¿=10

30 40 50 60 70 80 90

CAPILLARITY ANGLEFIGURE 7. Elfect of the capillarity angle on sintering time. The interval of

interest is between 60 to 80 degrees where many metal! are included.

Page 12: Two dimensional model for intergranular void elimination ... · izaci6n de cavidades bajo compresi6n isostática a alta temper-atura controlada por autodifusi6n en fronteras de grano.

94 L. Martínez

References

1. C.C. Kuczynski, J. Appl. Phys. 21 (1950) 632.2. C.C. Kuczynski, J. Appl. Phys. 20 (1949) 1160.3. P. Bross and H.E. Exner, Acta Met. 27 (1979) 1013.4. F.A. Nichols, Acta Met. 16 (1968) 103.5. R.F. Walker, J. Amer. eeram. Soco38 (1955) 187.6. F.B. Swinkels and M.F. Ashby, Acta Met. 29 (1981) 259.7. 1. Martínez and W.D. Nix, Met. Trans. 13A (1982) 427.8. C. Herring, "The Physics oí Powder Metallurgy", Ch. 8, W.D. King-

ston, ed., McCraw-Hill, New York, NY 1951, pp. 143-79.9. R. Raj and H.F. Ashby, Acta Met. 23 (1975) 653.10.1. Martínez and W.D. Nix, Met. Trans. 12A (1981) 23.11. T. Chuang, Ph.D. Thesis, Brown University (1975).