ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... ·...

316
ESTRUCTURAS DE HORMIGÓN CARLOS ALBERTO RIVEROS JEREZ PROGRAMA DE INGENIERÍA CIVIL ESCUELA AMBIENTAL FACULTAD DE INGENIERÍA UNIVERSIDAD DE ANTIOQUIA 2016

Transcript of ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... ·...

Page 1: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN

CARLOS ALBERTO RIVEROS JEREZ

PROGRAMA DE INGENIERÍA CIVIL

ESCUELA AMBIENTAL

FACULTAD DE INGENIERÍA

UNIVERSIDAD DE ANTIOQUIA

2016

Page 2: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

TABLA DE CONTENIDO

1. ELEMENTOS ESTRUCTURALES Y FUNCIONES PRIMARIAS DE LAS EDIFICACIONES .......... 3

2. TIPOS DE ESTRUCTURAS DE HORMIGÓN ....................................................................................... 10

3. ESTADOS LÍMITE Y FILOSOFÍAS DE DISEÑO ................................................................................. 23

4. GENERALIDADES DEL CONCRETO Y EL ACERO DE REFUERZO .............................................. 32

5. PROPIEDADES MECÁNICAS DEL CONCRETO Y EL ACERO DE REFUERZO ............................ 39

6. FLEXIÓN .................................................................................................................................................. 48

7. CONSIDERACIONES BÁSICAS EN LA TEORÍA DE FLEXIÓN ....................................................... 65

8. CARGAS ................................................................................................................................................... 73

9. VIGAS SIMPLEMENTE REFORZADAS ............................................................................................... 79

10. VIGAS DOBLEMENTE REFORZADAS ................................................................................................ 99

11. ANÁLISIS Y DISEÑO DE VIGAS T .................................................................................................... 112

12. CORTANTE ............................................................................................................................................ 132

13. DISEÑO A CORTANTE ........................................................................................................................ 137

14. TORSIÓN ................................................................................................................................................ 156

15. ADHERENCIA Y ANCLAJE ................................................................................................................. 170

16. GANCHOS ESTÁNDAR ........................................................................................................................ 183

17. PROCEDIMIENTO DE CORTE DEL ACERO DE REFUERZO ......................................................... 193

18. LOSAS ..................................................................................................................................................... 205

19. LOSAS ARMADAS EN UNA DIRECCIÓN ......................................................................................... 207

20. LOSAS ARMADAS EN DOS DIRECCIONES ..................................................................................... 226

21. COLUMNAS ........................................................................................................................................... 242

22. DIAGRAMA DE INTERACCIÓN ......................................................................................................... 255

23. COLUMNAS BIAXIALES ..................................................................................................................... 270

24. EFECTOS DE ESBELTEZ ..................................................................................................................... 276

25. CIMENTACIONES ................................................................................................................................. 285

26. DISEÑO DE ZAPATAS ......................................................................................................................... 291

Page 3: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos.Alberto Página 2

INTRODUCCIÓN

La gran mayoría de obras civiles utilizan el hormigón como material de base para la construcción de

diferentes obras, por lo tanto es importante para cualquier ingeniero civil entender la mecánica y los

procedimientos de diseño de elementos en hormigón. Todas las áreas de la ingeniería civil tienen en

el hormigón un material de construcción de amplio uso, en el área de aguas los sistemas de

almacenamiento, conducción y tratamiento de aguas ya sea potable, industrial o sanitaria usan

estructuras de hormigón, en el área de vías es común el uso del hormigón en la construcción de obras

de estabilización de laderas, puentes y obras de arte menores como ser cunetas o bordillos, de igual

forma en algunas zonas del país es común el uso de pavimentos rígidos cuyo material base es el

hormigón y en el área de estructuras se tienen una gran cantidad de edificaciones hechas en hormigón

desde viviendas de uno o dos pisos hasta edificaciones de gran altura. El presente documento enfatiza

en criterios de diseño por durabilidad atendiendo requerimientos de resistencia sísmica.

Los temas tratados en este documento requieren de bases sólidas en la mecánica del medio contínuo,

la resistencia de materiales y el análisis estructural. En los capítulos 1 y 2 se presentan los diferentes

componentes y sistemas estructurales. Se presentan los sistemas de resistencia a cargas

gravitacionales y cargas ambientales. En los capítulos 4 y 5 se presentan las propiedades de los

materiales que se usan para la elaboración del concreto reforzado a saber el concreto y el acero. Los

capítulos 6 y 7 presentan las consideraciones básicas que se deben considerar en el diseño a flexión,

el capítulo 8 presenta las tipologías y combinaciones de cargas que se deben usar en el diseño de

edificaciones, los capítulos 9, 10 y 11 presenta el diseño a flexión de elementos de concreto reforzado,

los capítulos 12 al 17 presentan los criterios generales de diseño de vigas de acuerdo a la NSR-10, los

capítulos 18 al 20 presentan en forma resumida el tema de losas como sistemas usados como

entrepisos en edificaciones, se presentan los criterios generales de dimensionamiento dejando para

cursos más avanzados el análisis y diseño de losas, los capítulos 21 al 24 presentan las cosideraciones

generales en el diseño de columnas de concreto reforzado con base a la NSR-10. Finalmente, los

capítulos 25 y 26 presentan en forma resumida los criterios a considerar en el diseño de cimentaciones

enfatizando en el diseño de zapatas y dejando para cursos más avanzados el análisis y diseño de

cimentaciones profundas.

Page 4: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos.Alberto Página 3

1. ELEMENTOS ESTRUCTURALES Y FUNCIONES PRIMARIAS DE LA S EDIFICACIONES

En el curso de análisis estructural se estudiaron diferentes metodologías para solucionar estructuras,

estos métodos se fundamentan en que el trabajo efectuado por las cargas aplicadas se convierte en

energía potencial elástica de deformación; los elementos cargados almacenan la energía en forma de

deformación y una vez se descargan los elementos, la energía es liberada y la estructura regresa a su

estado inicial. Al deformarse la estructura, la configuración geométrica de la estructura cargada es

diferente de su configuración sin carga. La idealización estructural consiste en reducir la estructura a

un modelo matemático que la represente de forma adecuada y permita evaluar su comportamiento en

forma numérica ante las diferentes solicitaciones de carga; las hipótesis que se tienen son en primer

punto que las deformaciones son pequeñas y el comportamiento de los elementos de la estructura es

lineal y elástico. Una estructura es estable cuando es capaz de soportar cualquier sistema concebible

de cargas sin presentar inestabilidad por lo que la estabilidad no depende del sistema de cargas. Para

que una estructura permanezca en estabilidad estática es necesario que se cumplan las siguientes

condiciones:

F 0 E cu a ción qu e re la c ion a la s fuerza s= →∑

M 0 Ecuación que relaciona los m om entos= →∑

Cuando hay tres reacciones de equilibrio para una estructura en el plano, debe haber por lo menos

tres reacciones independientes para impedir el desplazamiento (condición necesaria pero no suficiente

para el equilibrio estático). Con base en el principio de conservación de energía se tiene el siguiente

enunciado: “El trabajo efectuado por las cargas aplicadas se convierte en energía potencial de

deformación elástica o energía elástica que se almacena en los elementos”. La energía de

deformación puede ser causada por: fuerza normal, fuerza cortante, momento flector, y/o momento

torsor. Todo el trabajo de las fuerzas externas debe ser igual al trabajo que hacen las fuerzas internas

en la estructura. Los diferentes elementos estructurales usados para representar el comportamiento de

una estructura pueden ser clasificados básicamente en las siguientes tipologías:

• Elemento tipo viga.

• Elemento tipo columna.

• Elemento tipo losa / placa.

• Elemento tipo muro / diafragma.

Page 5: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos.Alberto Página 4

Elemento tipo viga:

Definición: miembro sujeto básicamente a esfuerzos de flexión y cortante.

Figura 1

Propiedades elásticas:

Flexión n

EI

Lbk f

=

Cortante GA

Lsk =

Esfuerzo normal My

Iσ =

Esfuerzo cortante VQ =

Ibτ

Flexión bδ = F (carga, condiciones de soporte, L, E, I)

Page 6: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos.Alberto Página 5

Matriz de rigidez elemento viga:

3 2 3 2

2 2

3 2 3 2

2 2

1 2 3 4

12 6 12 61

6 4 6 22

[ ]12 6 12 6

3

6 2 6 44

EI EI EI EI

L L L LEI EI EI EI

L L L LkEI EI EI EI

L L L LEI EI EI EI

L L L L

u u u u

u

u

u

u

= − − − −

Elemento tipo columna:

Definición: miembro sujetos a flexión, cortante y fuerza axial.

Figura 2

Page 7: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos.Alberto Página 6

Propiedades elásticas:

Axial EA

Lak =

Flexión n

EI

Lbk f

=

Cortante GA

Lsk =

Normal bδ = F (carga, condiciones de soporte, L, E, I)

Esfuerzo cortante VQ =

Ibτ

Esfuerzo Normal a

F

Aσ =

Esfuerzo Normal b

M y

Iσ =

Matriz de rigidez elemento columna:

3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0

12 6 12 60 0

6 4 6 20 0

[ ]

0 0 0 0

12 6 12 60 0

6 2 6 40 0

AE AE

L LEI EI EI EI

L L L LEI EI EI EI

L L L LkAE AE

L LEI EI EI EI

L L L LEI EI EI EI

L L L L

− − − = −

− − −

Page 8: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos.Alberto Página 7

Elemento tipo losa / placa

Definición: miembro sujeto a flexión bidireccional y cortante.

Figura 3

Elemento tipo muro / diafragma

Definición: miembro sujeto a cortante.

Figura 4

Page 9: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos.Alberto Página 8

Funciones primarias de las edificaciones

Una estructura bien diseñada es aquella que presta su servicio en forma adecuada y a la vez es segura

ante solicitaciones de cargas ambientales sin presentar colapso. La misión principal de una estructura

es dar soporte a las cargas gravitacionales en condiciones de resistencia y servicio de diseño durante:

• Uso normal de la edificación (condiciones de servicio).

• Consideraciones máximas de cargas durante su vida útil (condiciones en las cuales se presentan

condiciones máximas de cargas).

• Cargas ambientales de variadas intensidades (eventos sísmicos, explosiones, avalanchas,

inundaciones, vientos, huracanes).

Figura 5

Una estructura bien diseñada no solo es segura ante eventos sísmicos sino que garantiza que los

elementos no estructurales como ser muros y pisos no sufran daño considerable a fin de garantizar la

preservación de la estructura. Los daños causados a elementos no estructurales durante sismos pueden

resultar extremadamente costosos y puede resultar compleja la recuperación de la estructura. Es

importante entender que entre menos peso tengan estos elementos no estructurales menos

probabilidades de daño sufriran durante una eventualidad sísmica.

Page 10: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos.Alberto Página 9

Las tres lógicas por la cuales una estructura es susceptible a fallar son las siguientes:

• La carga que la estructura supuestamente resiste, no se puede predecir con suficiente grado

de exactitud.

• La resistencia de los distintos componentes de la estructura no puede ser predicha con

suficiente grado de exactitud.

• La estructura entra en un grado de deterioro que causa pérdida de su capacidad para resistir

cargas. Este aspecto es importante en la fase de diseño seleccionando adecuadamente los

materiales que se van a usar en la construcción de la estructura, Por ejemplo en zonas costeras

el uso de acero estructural debe considerar aspectos de corrosión que pueden comprometer

en el corto tiempo la estabilidad de la estructura.

Provisiones para fuerzas sísmicas:

Sismos de pequeña y moderada intensidad deben ser resistidos dentro del rango elástico de los

componentes estructurales sin sufrir daño considerable.

Fuerzas sísmicas con sus respectivas intensidades deben ser usadas en los procedimientos actuales de

diseño.

Exposición de la estructura a sismos de alta intensidad no deben causar colapso de la estructura o sus

elementos. El sitio donde ocurra daño debe ser detectable y de fácil acceso y reparación. Los

procedimientos de diseño deben garantizar que los daños sufridos por estructuras se concentren

principalmente en vigas evitando la generación de daño en columnas garantizando la estabilidad

estructural.

Tipos de Cargas:

Gravedad:

• Muerta

• Viva

• Impacto

• Lluvia/granizo

• Inundaciones

Laterales:

• Viento

• Sismos

• Presiones laterales de suelo

• Variación de temperatura

• Fuerzas centrífugas

Page 11: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 10

2. TIPOS DE ESTRUCTURAS DE HORMIGÓN

Sistemas estructurales de soporte a cargas verticales.

Sistemas estructurales de soporte a cargas laterales.

Sistemas de soporte a cargas verticales:

• Placa plana.

• Losa plana (con ábacos y/o capiteles).

• Losa aligerada armada en una dirección.

• Losa aligerada armada en dos direcciones.

Figura 6

Ventajas:

• Relativa facilidad de construcción.

• Techos a la vista planos (reduce costos acabados).

• Muy eficiente para alturas de entrepiso relativamente pequeñas.

• Sistema adecuado para uso en edificaciones de luces cortas o medianas con cargas pequeñas.

Este sistema no es recomendado para zonas de amenaza sísmica intermedia y alta por los altos

esfuerzos generados durante un sismo en las uniones columna placa plana llevando a una falla por

punzonamiento.

Page 12: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 11

Figura 7

Ventajas:

Las mismas del sistema de placa plana y adicionalmente se tienen las siguientes:

• Aumento de la resistencia ante cargas verticales y laterales.

• Aumento de la rigidez torsional.

• Disminución de deflexiones en el borde de la placa.

• Sistema adecuado para uso en edificaciones de luces cortas o medianas con cargas pequeñas.

Este sistema confina perimetralmente la estructura pero no garantiza la falla por punzonamiento de

las columnas interiores por lo cual su uso es restringido en zonas de amenaza sísmica intermedia y

alta.

Page 13: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 12

Figura 8

Ventajas:

• Aumento de la resistencia ante cargas verticales y laterales.

• Relativa facilidad de construcción.

• Techos a la vista planos (reduce costos acabados).

• Sistema adecuado para uso en edificaciones de luces medianas con cargas pequeñas.

Sistema de uso común en edificaciones al garantizar una adecuada transferencia de momento entre

las columnas y las vigas que conforman el entrepiso.

Page 14: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 13

Figura 9

Ventajas:

• Disminución de deflexiones en la losa.

• Incremento de la resistencia a cortante de la losa.

• Techos a la vista planos (reduce costos acabados).

• Muy eficiente para alturas de entrepiso relativamente pequeñas.

• Sistema adecuado para uso en edificaciones de luces medianas con cargas moderadas a altas.

El principal inconveniente para el uso de este sistema es constructivo, por cuanto la organización de

las formaletas necesarias para conformar los ábacos y capiteles puede resultar costosa y compleja

desde el punto de vista constructivo.

Page 15: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 14

Figura 10

Figura 11

Page 16: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 15

Ventajas:

• Luces más largas para resistir cargas mayores.

• Reducción del peso propio de la losa debido al aligeramiento.

• Buena resistencia a la vibración.

• Sistema adecuado para uso en edificaciones de luces medianas a largas con cargas altas.

Este sistema presenta inconvenientes de tipo estructural para la ubicación de las instalaciones

hidrosanitarias y eléctricas, las cuales atraviesan las viguetas disminuyendo su sección efectiva. Otro

aspecto importante es que la loseta superior de este tipo de losa debe tener como mínimo 100 mm

para ser considerada como elemento de resistencia al fuego.

Figura 12

Ventajas:

• Reducción del peso propio de la losa debido al aligeramiento.

• Las instalaciones hidrosanitarias y eléctricas pueden ser ubicadas entre las viguetas.

• Buena resistencia a la vibración y excelente terminado.

• Sistema adecuado para uso en edificaciones de luces largas con cargas altas.

Page 17: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 16

Figura 13

Sistemas de Soporte a Cargas Laterales

• Generalidades del sistema pórtico.

• Pórticos placa/losa-columna con ábacos y/o capiteles.

• Pórticos viga-columna.

• Sistema de muros de cortante.

• Sistema dual.

Page 18: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 17

Figura 14

Figura 15

Page 19: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 18

Figura 16

Ventajas del sistema pórtico:

• Uso óptimo del espacio de los pisos (parqueaderos).

• Proceso de construcción relativamente simple y del que se tiene mucha experiencia.

• Generalmente económico para alturas inferiores a 20 pisos.

• En Colombia, la mayoría de pórticos han sido hechos en concreto reforzado.

Desventajas del sistema pórtico:

• Generalmente, los pórticos son estructuras flexibles y su diseño es dominado por

desplazamientos laterales para edificaciones con alturas superiores a 4 pisos.

• Las luces tienen longitudes limitadas cuando se usa concreto reforzado tradicional (generalmente

inferiores a 8 metros). La longitud de las luces puede ser incrementada con el uso de concreto

pretensado.

Page 20: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 19

Figura 17

Figura 18

Page 21: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 20

Figura 19

Figura 20

Page 22: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 21

Figura 21

Page 23: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 22

Figura 22

Figura 23

Page 24: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 23

3. ESTADOS LÍMITE Y FILOSOFÍAS DE DISEÑO

Procedimiento de diseño:

Fase 1

Definición de las necesidades de los clientes y las prioridades

• Requerimientos funcionales (colegio, industria, vivienda).

• Requerimientos estéticos (aspectos arquitectónicos).

• Requerimientos de presupuesto (recursos públicos o privados, disponibilidad de los recursos).

Fase 2

Desarrollo conceptual del proyecto (ingeniería conceptual)

• Desarrollo de posibles esquemas.

• Análisis preliminar aproximado para cada uno de los esquemas / costo para cada arreglo.

• Selección del sistema estructural más favorable (evaluación variables ambientales).

Fase 3

Diseño del sistema individual

• El análisis estructural (basado en el diseño preliminar)

Análisis de cargas y determinación de esfuerzos o fuerzas internas en términos de momentos,

fuerzas cortantes y fuerzas axiales.

• Diseño

Dimensionamiento y diseño de los elementos estructurales.

Planos de construcción.

Especificaciones de construcción.

Estética.

Factibilidad de construcción.

Mantenimiento.

Estados límite

Condición en la cual una estructura o elemento estructural ya no es aceptable para su uso previsto.

En estructuras se tienen tres estados límites:

• Estado límite último.

• Estado límite de servicio.

• Estado límite especial.

Page 25: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 24

Estado límite último

• Tiene que ver con el colapso estructural de toda o parte de la estructura (con muy poca

probabilidad de ocurrencia).

• Tiene que ver con la pérdida del equilibrio de una o todas las partes de una estructura como un

cuerpo rígido (volcamiento, deslizamiento de la estructura).

• Tiene que ver con la ruptura de los componentes críticos, causando el colapso parcial o completo

(flexión, falla a cortante).

Colapso progresivo

(1) Debido a una falla menor local, lo que ocasiona sobrecargas a los elementos adyacentes

induciendo un colapso total de la estructura. La integridad estructural se proporciona mediante la

vinculación de los elementos que componen la estructura por medio de un adecuado detallamiento

en el corte del acero de refuerzo, proporcionando vías alternativas de transmisión de cargas en caso

de falla localizada. (2) Formación de un mecanismo plástico (articulaciones plásticas) en algunas

zonas de la estructura haciendo que la estructura pase a ser inestable. Se prefiere que los daños se

presenten en vigas ante el peligro de colapso que representa una falla inducida en una columna. (3)

Inestabilidad causada por deformaciones de la estructura causando pandeo y por consiguiente

incremento en los momentos de diseño de los elementos de soporte a cargas verticales. (4) Fatiga en

elementos estructurales puede fracturarlos en virtud de ciclos de esfuerzos repetidos por las cargas

de servicio (pueden causar colapso).

Estado límite de servicio

La parte funcional de una estructura es afectada, pero el colapso no es inminente; lo cual puede

generar un peligro potencial para los elementos no estructurales. Un ancho de grieta excesivo produce

fugas de líquidos. La corrosión del refuerzo produce deterioro gradual de estructura. Las deflexiones

excesivas en vigas causan mal funcionamiento de la maquinaria, dificultad en apertura de puertas,

rompimiento de vidrios o vitrinas actuando como elementos no estructurales. Una deflexión

considerable en una viga además de causar alarma visual puede generar cambios en las distribuciones

de fuerzas. Las vibraciones no deseadas producen cambios en las cargas. Es importante prestar

atención en los requerimientos arquitectónicos del proyecto para evitar afectaciones en el uso de la

estructura, por ejemplo la localización de fluxómetros contiguos a aulas de clases puede generar la

interrupción por el ruido que generan estos elementos, para esto se deben aislar mediante pasillos.

Page 26: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 25

Estado límite especial

El daño y la falla son provocados por condiciones anormales como: terremotos de gran magnitud,

inundaciones, deslizamientos, efectos del fuego, explosiones, colisiones vehiculares, efectos de

corrosión, inestabilidad física y química a largo plazo, deterioro causado por agentes ambientales

que se han tornado agresivos y que no fueron considerados en el diseño de la estructura. Es

importante tener especial cuidado en la selección del tipo de estructura. Estructuras de concreto

reforzado presentan un mejor comportamiento que estructuras de acero estructural desde el punto de

vista de agresividad ambiental y resistencia al fuego, pero el acero estructural puede resultar muy

ventajoso desde el punto de vista dinámico por su bajo peso y alta ductilidad.

Diseño en estado límite

Identificar todos los posibles modos de falla. Determinar niveles aceptables de seguridad para las

estructuras normales con base en las recomendaciones de los códigos de construcción vigentes.

Considerar los estados límites significativos. Los elementos se deben diseñar para el estado límite

último, el servicio se comprueba y el especial se debe garantizar con una adecuada selección del

sistema estructural y materiales utilizados en la construcción.

Códigos de Construcción

Cuando dos materiales diferentes, tales como acero y hormigón, actuando en conjunto deben ser

analizados, es comprensible que el análisis del esfuerzo en un elemento de hormigón armado tiene

que ser parcialmente empírico, aunque racional. Estos principios semi-racionales están siendo

revisados constantemente y mejorados como resultado de la investigación teórica y experimental que

se acumula. El American Concrete Institute (ACI), sirve como centro de información para estos

cambios, así como principal referente de los diferentes códigos de construcción a nivel mundial.

Filosofías de diseño

• Método de esfuerzos admisibles (enfocado en condiciones de cargas de servicio).

• Método de resistencia (enfocado en condiciones de cargas últimas).

Método de esfuerzos admisibles

La seguridad en el diseño se obtiene especificando que el efecto de la carga debe producir esfuerzos

que corresponden a una fracción de fy, por ejemplo 0,5. Este valor equivale a proveer un factor de

Page 27: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 26

seguridad de 2. Este método no es apropiado para el diseño de estructuras modernas debido a las

siguientes limitaciones:

• El concepto de resistencia se fundamenta en el comportamiento elástico de materiales

homogéneos.

• Este método no proporciona una medida razonable del esfuerzo, el cual es una medida más

fundamental de la resistencia que el esfuerzo admisible.

• El factor de seguridad es aplicado solo a la resistencia, por lo que las cargas en este modelo son

de naturaleza determinística (sin variación).

• La selección del factor de seguridad es subjetiva y por lo tanto no proporciona una medida de

confianza en términos de probabilidad de falla.

Método de resistencia

El método de resistencia se considera conceptualmente más realista para establecer la seguridad

estructural, en este método las cargas de servicio son incrementadas por medio de factores para

obtener las cargas a las cuales la falla es considerada inminente; ésta carga es llamada carga

factorizada o carga mayorada.

Resistencia Proporcionada ≥ Resistencia Requerida

Generalmente la resistencia proporcionada es levemente mayor a la resistencia requerida. La

resistencia proporcionada se calcula de acuerdo con las normas y los supuestos de comportamiento

prescrito por el código de construcción y la resistencia requerida se obtiene mediante la realización

de un análisis estructural con cargas mayoradas. La "resistencia proporcionada" se conoce

comúnmente como "resistencia última".

Provisiones de seguridad

Las estructuras y elementos estructurales deben ser diseñados para resistir carga adicional por encima

de lo que se espera bajo condiciones normales de uso. Hay tres razones principales por las que algún

tipo de factor de seguridad es necesario en el diseño estructural.

• Variabilidad en resistencia.

• Variabilidad en cargas.

• Consecuencia de la falla.

Page 28: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 27

Variabilidad en resistencia

• La variabilidad de la resistencia del concreto y el refuerzo. Las condiciones ambientales influyen

en la resistencia final de concretos.

• Las diferencias entre las dimensiones de los elementos construidos en obra y los que se

encuentran consignados en los planos estructurales. Este tipo de diferencias es inevitable por

cuanto los procesos constructivos están sujetos a errores humanos ya sea en la etapa de ubicación

de formaletas o durante el proceso de fundida de los elementos estructurales.

• Los efectos de la simplificación hecha en la derivación de la resistencia de los elementos. Si bien

en la actualidad se cuentan con herramientas computacionales de gran precisión, los modelos

matemáticos usados para representar el comportamiento de los elementos estructurales nunca

podrán representar la realidad.

La siguiente gráfica muestra una comparación de la medida y cálculo de los momentos de falla

basados en todos los datos de vigas de hormigón armado con > 2000 psi.f'c

Figura 24

Variabilidad en cargas

Distribución de frecuencias de los componentes sostenidos de las cargas vivas en las oficinas. Es

posible ver como la frecuencia y la intensidad de la carga viva aumenta al aumentar el área de

aplicación de esta carga.

Page 29: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 28

Figura 25

Consecuencias de la falla

Una serie de factores subjetivos deben ser considerados en la determinación de un nivel aceptable de

seguridad:

• La posible pérdida de vidas humanas.

• El costo de retirar escombros con la correspondiente sustitución de la estructura y su contenido.

• Costo para la sociedad.

• Tipo de advertencia de la falla estructural y la existencia de rutas de carga alternativas.

• Daño ambiental que genera el colapso de una estructura.

Margen de seguridad

Las distribuciones de la resistencia y la carga se usan para obtener una probabilidad de falla de la

estructura.

Page 30: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 29

Figura 26

El término Y = R – S se llama margen de seguridad. La probabilidad de falla se define como:

Pf = Probabilidad de �� < 0�

Y el índice de seguridad es:

Y

Yβσ

=

Figura 27

Page 31: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 30

Cargas

Especificaciones

Las ciudades en los Estados Unidos en general, basan sus códigos de construcción en uno de los

siguientes tres códigos (después del 2000):

• International Building Code IBC.

• Building Code Requirements for structural Concrete and Commentary ACI Committee 318,

2008.

Para las ciudades de Colombia, la norma que rigió los códigos de construcción antes del año 2010

fue:

• Reglamento Colombiano de Construcción Sismo Resistente, NSR-98, 1998.

Para las ciudades de Colombia, la norma que rige los códigos de construcción después del año 2010

es:

• Reglamento Colombiano de Construcción Sismo Resistente, NSR-10, 2010.

Cargas Muertas

• El peso de toda la construcción permanente.

• Magnitud constante y ubicación fija.

Ejemplos:

• Peso de la estructura (paredes, pisos, techos, cielorrasos, escaleras).

• Equipos de servicio fijo (HVAC, pesos de tubería, bandeja de cables).

Pueden ser inciertas:

• Espesor del pavimento.

• Relleno de tierra sobre la estructura subterránea.

Cargas Vivas

• Cargas producidas por el uso y ocupación de la estructura.

• Máximo de cargas que se puedan producir por el uso previsto.

• No menos que el mínimo de carga uniformemente distribuida dada por el código.

Para el caso de bodegas se debe tomar el 25% de la carga viva para el cálculo de la masa de la

estructura que se utiliza en el análisis dinámico.

Page 32: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 31

Cargas Ambientales

• Cargas de nieve.

• Sismo.

• Viento.

• Presión del suelo.

• Estancamiento de aguas pluviales.

• Diferenciales de temperatura.

Cargas de Construcción

• Materiales utilizados para llevar a efecto la construcción de una edificación.

• Peso de la formaletería que soporta el peso del concreto fresco.

Uno de los aspectos que más accidentes genera en la industria de la construcción es un mal diseño

de formaletería, este tipo de accidentes puede ser evitado con un adecuado cálculo de las cargas y

posibles sobre cargas que se van a tener durante el tiempo del armado del refuerzo de los elementos

estructurales y la fundida de los mismos, con estos datos se debe diseñar el número de apoyos

requeridos para los elementos de cimbrado. Un estricto control de calidad es importante justo antes

de la ejecución de labores de colocación de concreto para evitar que elementos deteriorados de las

cimbras causen accidentes a los trabajadores. Es importante resaltar el concepto de contraflecha, la

cual es una pequeña elevación en el centro de la luz que se le da a la cimbra donde se va a fundir la

losa o viga con el objeto de compensar la flecha generada por el peso de la losa o viga al momento

de decimbrar y de esta forma garantizar que la deformación de la losa sea imperceptible. Es

importante resaltar que las deformaciones se clasifican en deformaciones instantáneas y a largo plazo.

Page 33: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 32

4. GENERALIDADES DEL CONCRETO Y EL ACERO DE REFUERZO

Definición de Concreto

Material compuesto de cemento Portland, agregado fino (arena), agregado grueso (grava / piedra), y

agua con o sin otros aditivos.

Hidratación

Proceso químico en el que el polvo del cemento reacciona con el agua para luego endurecerse

formando una masa sólida y de esta forma uniendo los agregados entre sí.

Calor de hidratación

El calor se libera durante el proceso de hidratación. En grandes masas de hormigón el calor se disipa

lentamente, dando lugar al aumento de la temperatura y la expansión de volumen; más adelante hay

contracción por causas de enfriamiento, debido a esto es importante el uso de medidas especiales

para controlar la fisuración.

Dosificación

El objetivo es lograr la mezcla con:

• Resistencia adecuada.

• Trabajabilidad adecuada para la colocación.

• Bajo costo.

Bajo costo

• Minimizar la cantidad de cemento.

• Gradación buena de los materiales (disminuyendo los vacíos y por lo tanto la pasta de cemento

requerida).

Relación agua-cemento (A / C)

• El aumento de A / C: mejora la plasticidad y fluidez de la mezcla.

• El aumento de A / C: los resultados en disminución de la resistencia debido al mayor volumen

de vacíos en la pasta de cemento y debido al agua libre.

• La completa hidratación del cemento requiere A / C ~ 0,25.

Page 34: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 33

• Necesidad de agua para humedecer la superficie total, facilitar la movilidad del agua durante la

hidratación y proporcionar trabajabilidad.

• Valor típico de A / C = 0,40-0,60

Tabla 1

Relación Típica Agua/Cemento y Resistencia a la Compresión y Flexión del Peso Normal del Concreto

Relación Agua/Cemento Probabilidad de la Resistencia del Concreto a los

28 Días

Compresión Flexión

Por el Peso Galones por Saco

(94 lb.)

Litros por Saco

(50 kg) psi N/mm2 psi N/mm2

0,35 4,0 17,5 6300 41 650 4,5

0,4 4,5 20,0 5800 40 610 4,2

0,44 5,0 22,0 5400 37 590 4,1

0,49 5,5 24,5 4800 33 560 3,9

0,53 6,0 26,5 4500 31 540 3,7

0,58 6,5 29,0 3900 27 500 3,5

0,62 7,0 31,0 3700 25 490 3,4

0,67 7,5 33,5 3200 22 450 3,1

0,71 8,0 35,5 2900 20 430 3,0

Las proporciones se dan por volumen o peso de cemento para arena y grava (es decir, 1:2:4) con la

relación A / C especificada separadamente.

Agregados

Corresponden al 70-75% del volumen de concreto endurecido.

El resto corresponde a pasta de cemento endurecida, el agua no mezclada, burbujas de aire.

Los agregados más densos dan mejor:

• Fuerza.

• Resistencia a la intemperie (durabilidad).

• Economía.

Agregado fino: arena (pasa a través de una malla # 4 (4 agujeros por pulgada)).

Agregado grueso: grava.

Page 35: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 34

Gradación buena

• 2-3 grupos de tamaño de la arena.

• Varios grupos de tamaño de la grava.

El tamaño máximo del agregado grueso en las estructuras de concreto reforzado: deben ajustarse a

las formas y el espacio disponible entre las barras de refuerzo (NSR-10, C.3.3.2).

• 1/5 de la dimensión más estrecha.

• 1/3 de la profundidad de la losa.

• 3/4 de la distancia mínima entre barras de refuerzo.

Resistencia de los agregados

Agregados fuertes: cuarcita.

Agregados débiles: arenisca, mármol.

Resistencia intermedia: piedra caliza, granito.

En el diseño de mezclas de concreto, tres requisitos principales para el concreto son de gran

importancia: calidad, trabajabilidad y economía.

Calidad

La calidad del hormigón se mide por su resistencia y durabilidad. Los principales factores que afectan

a la resistencia del concreto, suponiendo que los agregados son de buena calidad, son la relación A/C,

y la medida en que ha progresado la hidratación. La durabilidad del hormigón es la capacidad del

concreto para resistir la desintegración debido procesos de congelación y descongelación, y en

algunos casos debido al ataque químico o por proximidad a zonas costeras. Se debe prestar especial

cuidado a una correcta selección de la relación A/C en estructuras costeras y estructuras localizadas

en ambientes agresivos a fin de garantizar baja porosidad del concreto y de esta forma evitar la

corrosión del acero de refuerzo. Un diseño optimizado de elementos de concreto reforzado no debe

fundamentarse solamente en dimensionar con mínimos posibles las secciones de los elementos

ubicando el mínimo posible de refuerzo, sino que se debe fundamentar en el uso de resistencias o

relaciones agua cemento del concreto dependiendo del grado de exposición a condiciones

ambientales o de riesgo de incendio, en este sentido se debe tener de presente que algunas normativas

de otros países han establecido resistencias del concreto para diferentes clases de exposición a

variables ambientales que distan mucho de las que comúnmente se usan en Colombia, este aspecto

afecta de forma directa la durabilidad y en algunos casos compromete la seguridad de las estructuras.

Page 36: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 35

Trabajabilidad

La trabajabilidad del hormigón se puede definir como la composición característica indicativa de la

facilidad con que la masa de material plástico puede depositarse en su lugar definitivo, sin

segregación durante la colocación, y su capacidad de adaptarse a la formaleta que conforma el

elemento estructural. El uso de aditivos químicos es recomendado para evitar comprometer la

resistencia del concreto.

Economía

La economía tiene en cuenta el uso eficaz de los materiales, un resultado adecuado de resistencia, y

facilidad de manejo y disposición del concreto. El costo de producción de concreto de buena calidad

es un factor importante en el costo total de cualquier proyecto de construcción.

Tabla 2. Influencia de los ingredientes en las propiedades del concreto.

Ingrediente Calidad Trabajabilidad Economía

Agregados Incrementa Disminuye Incrementa

Cemento Portland Incrementa Incrementa Disminuye

Agua Disminuye Incrementa Incrementa

De W.A. Cordon, Properties, Evaluation, and Control of Engineering Materials, McGraw-Hill

Book Company, New York, 1979.

Ensayo de asentamiento

La trabajabilidad es medida por la prueba de asentamiento. La medida de la consistencia de la mezcla

se hace con el ensayo de asentamiento de cono.

Figura 28

Page 37: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 36

Capa 1: Llenar 1 / 3 (25 inserciones).

Capa 2: Llenar 2 / 3 (25 inserciones).

Capa 3: Llenar completo (25 inserciones).

Se retira el cono y se mide el asentamiento (por lo general está entre 2 y 6 pulgadas).

Tabla 3: Rangos de asentamientos recomendados para las distintas clases de estructuras de hormigón.

Mezcla Recomendada Para La Consistencia Del Cemento

Tipo de Estructura Asentamiento (in.)

Mínimo Máximo

Secciones masivas, pavimentos y pisos

fundidos sobre el suelo 1 4

Losas pesadas, vigas, muros 3 6

Muros delgados y columnas, losas ordinarias

y vigas. 4 8

Aditivos

• Mejoran la trabajabilidad.

• Aceleran o retardan el fraguado y endurecimiento.

• Ayudan en la curación.

• Mejoran la durabilidad.

Incorporación de aire

Añadir vacíos de aire con burbujas

• Ayuda con los ciclos de congelación/descongelación, facilidad de trabajo, etc.

• Disminuye la densidad: reduce la resistencia, pero también disminuye A / C.

Superplastificantes

Incrementan la trabajabilidad por la liberación química del agua contenida en los agregados finos.

Tipos de cemento

• Tipo I:

Es el más utilizado en nuestro medio, destinado a obras de hormigón en general, al que no se le

exigen propiedades especiales.

Page 38: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 37

• Tipo II:

Es el que se debe usar en obras que estén expuestas a la acción moderada de sulfatos y se requiera

moderado calor de hidratación, como por ejemplo canales de aguas negras.

• Tipo III:

Es el que desarrolla altas resistencias a temprana edad. Utilizado en la industria de elementos

prefabricados de concreto.

• Tipo IV:

Es el que desarrolla bajo calor de hidratación. Se usa para represas y obras que posean un gran

volumen de concreto.

• Tipo V:

Es el que ofrece alta resistencia a la acción de sulfatos, útil para obras que se encuentren en

contacto con el medio marino

Mecanismos de falla del concreto

Microfisuras por retracción

Corresponde a la contracción inicial del concreto debido a la retracción por fraguado, la contracción

de hidratación, y la contracción por secado.

Figura 29

Microfisuras por adherencia

Son extensiones de microfisuras de retracción, al aumentar el esfuerzo a compresión el campo de

fisuramiento incrementa, la contracción de microfisuras amplía pero no se propaga en la matriz.

Ocurren cuando el nivel de esfuerzos alcanza un 15-20 % de la resistencia última del concreto.

Page 39: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 38

Figura 30

Microfisuras de matriz

Son microfisuras que se producen en la matriz. Se producen cuando el nivel de esfuerzos alcanza un

30-45 % de la resistencia última del concreto. Las microfisuras de matriz comienzan el puente entre

sí correspondiente a un 75%. Las microfisuras en los agregados se producen justo antes del fallo.

Figura 31

Page 40: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 39

5. PROPIEDADES MECÁNICAS DEL CONCRETO Y EL ACERO DE REFUERZO

Concreto

Figura 32

La prueba de resistencia estándar generalmente utiliza una muestra cilíndrica. La prueba se hace

después de 28 días para la prueba de resistencia, f’c. El concreto se sigue endureciendo con el tiempo

y para un cemento Portland normal se incrementará con el tiempo aproximadamente de la siguiente

forma:

Tabla 3

Edad 7 Días 14 Días 28 Días 3 Meses 6 Meses 1 Año 2 Años 5 Años

Relación de

Resistencia 0,67 0,86 1 1,17 1,23 1,27 1,31 1,35

Resistencia a la compresión, f’c

Por norma se define a 28 días para la resistencia de diseño

Relación de Poisson, ν

ν ~ 0,15 a 0,20 generalmente se usa ʋ = 0,17

Page 41: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 40

Figura 33

Figura 34

Módulo de elasticidad del concreto (Ec)

Corresponde al módulo secante para un valor de esfuerzo equivalente a 0,45 f’c. NSR-10 (C.8.5.1).

El módulo de elasticidad, Ec, para el concreto puede tomarse como:

1.5 0,043 ´c cw f× En MPa.

Para valores de wc comprendidos entre 1440 y 2560 kg/m3. Para concreto de densidad normal, Ec

puede tomarse como 4700 cf

Donde wc = Peso (kg / m3)

Page 42: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 41

3 3c1440 Kg/ m < < 2560 Kg/ mw

Ec (MPa) = 4700 cf

Para el peso normal del concreto:

32400 Kg/mcw ≅

Deformación del concreto a máximo esfuerzo de compresión

• Para las curvas típicas de la compresión εc varía entre 0,0015-0,003.

• Para la resistencia normal de hormigón εc ~ 0,002.

• La máxima deformación unitaria utilizable en la fibra extrema sometida a compresión del

concreto se supone igual a 0,003. NSR-10 (C.10.2.3). εcu = 0,003.

• Usado para flexión y compresión axial.

Las curvas Esfuerzo vs Deformación para un concreto típico en compresión:

Figura 35

Tipos de falla a compresión

Hay tres modos de falla:

• El concreto falla a cortante bajo compresión axial.

Page 43: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 42

• La separación de la muestra en piezas en forma de columna por lo que se conoce como división

o fractura de columna.

• Combinación de la falla cortante y fractura de columna.

Figura 36

Resistencia a tracción del concreto

• Resistencia a tracción ~ 8% a 15% del cf ´ .

• Módulo de rotura, fr.

Para los cálculos de deflexión, se usa:

0,62 ( )r cf f´ MPaλ=

Para el uso de concreto de peso liviano, debe emplearse el factor de modificación λ como

multiplicador de cf´ en todas las ecuaciones y secciones aplicables del Título C del

Reglamento NSR-10, donde = 0,85 λ para concreto liviano de arena de peso normal y 0,75 para

los otros concretos de peso liviano. Se permite la interpolación entre 0,75 y 0,85 con base en

fracciones volumétricas, cuando una porción de los agregados finos de peso liviano es reemplazada

por agregado fino de peso normal. Se permite la interpolación lineal entre 0.85 y 1.0 para el concreto

que contiene agregado fino de peso normal y una combinación de agregados gruesos de peso

normal y de peso liviano. Para el concreto de peso normal = 1,0λ . Si se especifica la resistencia

promedio a la tracción por hendimiento del concreto de peso liviano, fct, entonces:

= 1,0

(0,56 )

ct

c

f

f´λ ≤ NSR-10, C.8.6.1

Ensayo

Page 44: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 43

Figura 37

Figura 38

Acero de refuerzo

Page 45: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 44

Figura 39

• Tipos más comunes para miembros no pretensados:

Laminados en caliente, barras corrugadas.

Tejidos de alambre soldado.

Page 46: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 45

Figura 40

Tabla 4: áreas, pesos, dimensiones acero de refuerzo. Designaciones, áreas, perímetros y pesos de

barras estándar.

Diámetro

Área De

Sección

Transversal

Perímetro Unidad De

Peso Por Pie Diámetro Área

Barra in. in2. in. lb. mm. mm2.

# Nominal Actual

2 1/4 0,250 0,05 0,79 0,167 6,4 32

3 3/8 0,375 0,11 1,18 0,376 9,5 71

4 1/2 0,500 0,20 1,57 0,668 12,7 129

5 5/8 0,625 0,31 1,96 1,043 15,9 200

6 3/4 0,750 0,44 2,36 1,502 19,1 284

7 7/8 0,875 0,60 2,75 2,044 22,2 387

8 1 1,000 0,79 3,14 2,670 25,4 510

9 1 1,128 1,00 3,54 3,400 28,7 645

10 1� 1,270 1,27 3,99 4,303 32,3 820

11 1� 1,410 1,56 4,43 5,313 35,8 1010

14 1�� 1,693 2,25 5,32 7,650 43,0 1450

18 2� 2,257 4,00 7,09 13,600 57,3 2580

Page 47: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 46

Tipos

ASTM A615 - Especificación estándar para barras de acero deformadas.

ASTM A616 – Barras para rieles de acero.

ASTM A617 – Barras para ejes de acero.

ASTM A706 – Barras de baja aleación de acero.

Curva esfuerzo-deformación para diferentes tipos de barras de acero de refuerzo

Figura 41

Es = modulo de elasticidad del acero, el cual puede tomarse como la tangente inicial en la curva

esfuerzo deformación y puede tomarse para acero de refuerzo no pre-esforzado como un valor

constante de 200 GPa (NSR-10 C.8.5.2).

Page 48: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 47

Máquina ensayo de barras de acero

Figura 42

En la NTC 2289 se definen unos valores mínimos de resistencia y porcentaje de alargamiento que deben cumplir los especímenes ensayados:

Requisitos de tracción (NTC 2289).

La NTC 2289 define cual debe ser la composición química de los aceros de refuerzo, una de las verificaciones que se debe hacer es un chequeo de los porcentajes de los componentes del acero con base a la siguiente tabla. Por lo general esta verificación se hace una vez se haya cumplido con los valores mínimos de resistencia y deformación. Es de obligatorio cumplimiento garantizar un acero de refuerzo no solo en términos de resistencia sino de su composición química

Porcentajes máximos de los componentes químicos del acero de refuerzo

Page 49: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 48

6. FLEXIÓN

Localización del acero de refuerzo

Figura 43

Figura 44

Page 50: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 49

Figura 45

Figura 46

Page 51: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 50

Figura 47

Esfuerzo flector en vigas

La viga es un elemento estructural diseñado para soportar principalmente momentos flectores y

cortantes. Una viga debe ser definida como columna si existiera una fuerza de compresión

considerable.

C = T

M = C*(jd)

M = T*(jd)

El esfuerzo en un bloque es definido como:

max

= (M y) / I

Sxx = I / (y )

σ ×

La ecuación para el módulo Sxx para el cálculo del esfuerzo de compresión máxima.

Page 52: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 51

Figura 48

Page 53: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 52

Figura 49

Cinco estados de esfuerzos en el concreto al incrementarse la carga aplicada

Estado de carga #1: No hay cargas externas, solo el peso propio.

Figura 50

Page 54: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 53

Estado de carga #2: La carga externa aplicada sobre la viga hace que las fibras inferiores extremas

tengan un esfuerzo equivalente al módulo de rotura del concreto fr. La sección de concreto entera es

efectiva, las barras de acero en el lado de tensión tienen la misma deformación que la del concreto

ubicado alrededor de las barras de refuerzo.

Estado de carga #3: La resistencia a la tracción del hormigón excede la equivalente al módulo de

rotura fr y por consiguiente se desarrollan fisuras. El eje neutro se desplaza hacia arriba y las fisuras

se extienden hasta el eje neutro. El concreto pierde resistencia a la tracción y el acero comienza a

trabajar eficazmente resistiendo la carga de tensión total.

Estado de carga #4: El esfuerzo en el concreto en la fibra extrema superior se comporta en el rango

lineal para posteriormente sobrepasar el valor de 0,45 cf ´ y pasar a un comportamiento no lineal del

material.

Estado de carga #5: Falla de la viga.

Figura 51

Page 55: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 54

Figura 52

Figura 53

Page 56: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 55

El diagrama momento-curvatura muestra los cinco estados de la viga. El diagrama es del ángulo de

curvatura,φ ,

( )Ey y

( )E

y

yMI

M

EI

σεφ

φ

φ

= =

=

=

La primera viga falla a cortante y la segunda viga falla a momento flector.

Figura 54

Tipos de fallas por flexión de una viga de concreto reforzado:

El acero alcanza el esfuerzo de fluencia antes de que el concreto alcance su máximo valor esfuerzo

(condición de falla sub-reforzada).

Figura 55

Page 57: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 56

El acero alcanza su esfuerzo de fluencia al mismo tiempo que el hormigón alcanza su máximo valor

esfuerzo y deformación (condición de falla balanceada).

Figura 56

El concreto alcanza su máximo valor esfuerzo y deformación antes que el acero alcance su esfuerzo

de fluencia (condición de fallan sobre-reforzada).

Figura 57

Page 58: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 57

Análisis de vigas en condiciones de cargas de servicio

Ec – Módulo de Elasticidad - Concreto

Es – Módulo de Elasticidad - Acero

As – Área del Acero

d – Distancia al acero

b – Ancho

h – Alto

n – Relación Modular

s

c

En

E=

Propiedades de la Mecánica de Materiales

Centroide i i

i

y Ay

A= ∑∑

Momento de Inercia ( )2

i i iI I y y A= + −∑ ∑

Sección no fisurada

Figura 58

Page 59: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 58

Tabla 5

Área yi yiA I yi - y (yi -y)2 A

Concreto bh h/2 bh2/2 bh3/12 (h/2-y) (h/2-y)2bh

Acero (n-1)As d d(n-1)As --- (d-y) (d-y)2(n-1)As

( )( )

( ) ( ) ( )

2

232 2

12

1

112 2

i i

i

i i i

s

s

s

bhn A dy A

yA bh n A

bh hI I y y A y bh d y n A

+ −= =

+ −

= + − = + − + − −

∑∑

∑ ∑

Sección fisurada

Para una sección fisurada el concreto esta en compresión y el acero está en tensión. La deformación

en la viga es lineal.

Figura 59

1

2c

s s

C yb f

T A f

=

= ×

Condición de equilibrio

Page 60: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 59

1

2

2

s s c

s cs

T C

A f yb f

ybf f

A

=

× =

=

Usando la Ley de Hooke

f Eε=

c ss s c c

s c

2 2

2

s s

s

Eyb A nAE E

A E yb yb

εε εε

= → = =

Sin embargo, este es un problema indeterminado para encontrar y . Se debe utilizar la condición de

compatibilidad de deformaciones.

Figura 60

Usando la condición de compatibilidad de deformaciones.

s c c

s

y

d y y d y

ε ε εε

= ⇒ =− −

Se sustituye en la primera ecuación.

Se sustituye para la relación de deformación

2 sy nA

d y yb=

Reorganizar la ecuación en una ecuación de segundo grado

2 2 20

s snA nAy y d

b b + − =

Utilizar una relación de áreas de concreto y acero

Page 61: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 60

2 22 2 0sA

y n d y n dbd

ρ ρ ρ= → + − =

Modificar la ecuación para definir una relación adimensional.

2

2 2 0y y

n nd d

ρ ρ + − =

Usando la fórmula cuadrática

( )

( )

2

2

2 2 8

2

2

n n ny

d

yn n n

d

ρ ρ ρ

ρ ρ ρ

− ± + =

= + −

Resolver para el centroide multiplicando el resultado por d . El momento de inercia es definido

usando el teorema de los ejes paralelos

Figura 61

( )

( )

( )

2

232

32

12 2

3

= + −

= + + −

= + −

∑ ∑i i i

s

s

I I y y A

by yI by d y nA

byI d y nA

Page 62: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 61

EJEMPLO 1

Considere una viga rectangular simplemente reforzada con un área de acero de refuerzo .sA

Determinar la ubicación del centroide y el momento de inercia para la sección mostrada en la figura,

considerando los casos de sección no fisurada y fisurada. Compare los resultados.

(C.8.5.2)

Usar 4 barras Nº7 para el acero de refuerzo.

Una barra Nº7 tiene un área de 387 mm2, entonces 4Nº7 corresponde a 1548 mm2.

Se tiene la relación modular, 200000

825000

s

c

E MPan

E Mpa= = =

Sección no fisurada

2 22

2

300 (400 )( 1) (8 1) 1548 340

2 2 212( 1) 300 400 (8 1) 1548

s

s

bh mm mmn A d mm mm

y mmbh n A mm mm mm

×+ − × × + − × ×= = =

+ − × × + − ×

( ) ( )23

21

12 2s

bh hI y bh d y n A

= + − + − −

200000

25000

340

300

400

s

c

E MPa

E MPa

d mm

b mm

h mm

==

===

Page 63: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 62

( ) ( )23

2 2300 (400 ) 400211,6 300 400 340 211,6 8 1 1548

12 2

mm mm mmI mm mm mm mm mm mm

× = + − × × + − − ×

41794795564I mm=

Sección fisurada

215480,0152

300 340

sA mm

bd mm mmρ = = =

×

( ) ( ) ( ) ( )2 22 8 0,0152 2 8 0,0152 8 0,0152 0,3863

0,3863 0,3863 340 131

yn n n

d

y d mm mm

ρ ρ ρ = + − = × + × × − × =

= × = × =

( ) ( ) ( )33

2 2 2

4

300 131,35340 131,35 8 1548

3 3

765751065

mm mmbyI d y nAs mm mm mm

I mm

×= + − = + − × ×

=

Se puede observar que el centroide cambia de 212 mm a 131 mm y el momento de inercia se reduce

de 1794795564 mm4 a 765751065 mm4.

El centroide disminuye en un 38% y el momento de inercia en un 57%. La sección fisurada pierde

más de la mitad de su resistencia original.

EJEMPLO 2

Determinar la distribución de esfuerzos para los siguientes momentos Mu1= 75 KN-m y Mu2= 125

KN-m.

Es = 200000 MPa

Ec = 25000 MPa

d = 590 mm

b = 300 mm

h = 650 mm

As = 1548 mm2

Page 64: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 63

Relación modular, 200000

825000

s

c

E MPan

E Mpa= = =

Para agregado grueso de origen ígneo se tiene 4700 ccE f´= (C.8.5.1)

2 225000

28,29 284700 4700

ccE

f´ MPa MPa = = = →

El módulo de rotura, fr, se define de la siguiente forma (NSR-10 C.9-10)

0,62

0,62 1 28 3,28

cr

r

f f´

f MPa

λ= ×

= × × =

Tensiones elásticas sección no fisurada

2 22

2

300 (650 )( 1) (8 1) 1548 590

2 2 339( 1) 300 650 (8 1) 1548

s

s

bh mm mmn A d mm mm

y mmbh n A mm mm mm

××+ − × + − × ×

= = =+ − × × + − ×

( ) ( )23

21

12 2s

bh hI y bh d y n A

= + − + − −

( ) ( ) ( )3 2

2 2300 650 650339 300 650 590 339 8 1 1548

12 2

mm mm mmI mm mm mm mm mm mm

× = + − × × + − × − ×

47586523836I mm=

Concreto a compresión

( )3 4

75 0,3393,35

7,586 10cc

KN m mf MPa

m−

− ×= =

×

Concreto a tracción

( )( )3 4

75 0,650 0,3393,07

7,586 10ct r

KN m m mf MPa f

m−

− −= = <

×

La suposición de que el concreto se encuentra en la zona de tensiones elásticas correspondiente a una

sección no fisurada es correcta.

Tensiones elásticas sección fisurada

215480,0087

300 590

sA mm

bd mm mmρ = = =

×

Page 65: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 64

( ) ( ) ( ) ( )2 22 8 0,0087 2 8 0,0087 8 0,0087 0,31

0,31 0,31 590 183

yn n n

d

y d mm mm

ρ ρ ρ = + − = × + × × − × =

= × = × =

( ) ( ) ( )33

2 2 2

4

300 183590 183 8 1548

3 3

2664245916

smm mmby

I d y nA mm mm mm

I mm

×= + − = + − × ×

=

Concreto a compresión

( )3 4

125 0,1838,59 0,45 12,6

2,664 10cc c

KN m mf MPa f´ MPa

m−

− ×= = < =

×

La suposición de que el concreto se encuentra en la zona de tensiones elásticas correspondiente a una

sección fisurada es correcta.

Esfuerzo en el acero

3 2

0,183 0,38,59 152,32

2 2 1,548 10s c

s

yb m mf f MPa MPa

A m−

× = = × = × ×

Page 66: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 65

7. CONSIDERACIONES BÁSICAS EN LA TEORÍA DE FLEXIÓN

• Las secciones planas continúan siendo planas antes y después de la aplicación de la carga. Este

enunciado no es cierto para vigas de gran altura h> 4b.

• La deformación en el acero de refuerzo es igual a la deformación en el concreto medidas al

mismo nivel.

• El esfuerzo en el concreto y en el acero de refuerzo puede ser calculado de las equivalencias en

deformación de las curvas σ ε− del concreto y el acero.

Supuestos adicionales para el diseño (con el fin de simplificar)

• Resistencia a la tracción del concreto no se considera para el cálculo de resistencia a la flexión.

• El concreto se asume que falla en compresión cuando:

(deformación concreto) (estado límite)

(deformación concreto) 0,003c cu

c

ε εε

==

NSR-10

C.10.2 Suposiciones de diseño

C.10.2.3 La máxima deformación unitaria utilizable en la fibra extrema sometida a compresión

del concreto se supone igual a 0,003.

La relación σ ε− para el concreto puede ser asumida que tiene cualquier forma, siempre y cuando

los resultados permitan obtener un valor aceptable de la resistencia.

Figura 62

Page 67: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 66

La fuerza de compresión se modela como c 1 3 cC = k k f b c × en la posición 2x = k c×

Figura 63

Los coeficientes de compresión de los esfuerzos en el bloque dados por las siguientes figuras:

Figura 64

k3 es la relación de máximo esfuerzo para cf ´ en la zona a compresión de una viga para la resistencia

del cilindro, cf ´ (0,85 es el valor típico para un concreto común).

Page 68: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 67

La zona de compresión se modela con un bloque de esfuerzo equivalente.

Figura 65

La distribución rectangular equivalente de esfuerzos para el concreto tiene lo que se conoce como

coeficiente 1β , que es la proporción del promedio que incluye la distribución de esfuerzos.

1

1

para 0,85 28

28 0,85 0,05 0,65

7

c

c

f´ MPa

β

β

= ≤− = − × ≥

Requisitos para el análisis de vigas de concreto reforzado

• Esfuerzo – compatibilidad de deformación

El esfuerzo en un punto en la viga debe corresponder a la tensión en el punto simétrico.

• Equilibrio

Las fuerzas internas se balancean con las fuerzas externas.

Figura 66

Page 69: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 68

Condición de equilibrio

x 0 T C

0,85

0 T2

s s c

n

F

A f f´ a b

aM d = M

= ⇒ =

× = × ×

= ⇒ −

Figura 67

Resistencia de la sección a flexión

0,85

0,85

s s

c

s s

c

T A f

C f´ a b

A fa

f´ b

= ×= × ×

×=×

( )Momento del brazo

2

n

n s s

M T

aM A f d

=

= × −

Se debe confirmar s y > ε ε

( )

yy

s

1

s c y

E

ac

d c

c

σε

β

ε ε ε

=

=

−= >

Page 70: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 69

EJEMPLO 3

Determinar la ubicación del eje neutro y el momento de diseño para la viga rectangular mostrada en

la figura.

28

420

300

440

500

y

f´c MPa

f MPa

b mm

d mm

h mm

==

===

Usar 4 Nº7 para el acero de refuerzo, sA = 1548 mm2.

β1 = 0,85 para 28 (C.10.2.7.3)cf´ MPa≤

Principio de equilibrio, asumiendo fluencia del acero se tiene:

2

0,85

420 154891

0,85 0,85 28 300

y

y

c s

s

c

C T

f´ b a A f

A f MPa mma mm

f´ b MPa mm

=× × = ×

× ×= = =× × × ×

El eje neutro se encuentra ubicado a:

1

91107

0,85

a mmc mm

β= = =

Revisión si el acero de refuerzo ha alcanzado la fluencia:

fluencia del acerode refuerzo. Este valor

debe ser superior a 0,005.

4200,0021

200000

440 1070,003 0,003 0,0093

107

0,0093 0,0021

ys

s

yf MPa

E MPa

d c mm mm

c mm

ε

ε

= = =

− − = × = × =

>

( )( )3 2 0,0911,548 10 420000 0,44 256,5

2 2yn s

a mM A f d m KPa m KN m− = × − = × − = −

Page 71: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 70

EJEMPLO 4

Para la viga mostrada en la figura con cf ´ = 41MPa, fy = 420MPa y d = 640mm.

Determinar el área de acero para la condición balanceada de la sección sombreada, la cual muestra

el área de concreto a compresión, determinar el momento nominal resistente de la sección y la

ubicación del eje neutro.

Determinar el área de concreto:

2150 100 300 80 39000cA mm mm mm mm mm= × + × =

Por condición de equilibrio se tiene:

2

3 2 2

0,85 0,85 41000 0,039 1359

0,85 13590,85 3,236 10 3236

420000y

y

c c

c cs c c s

C T

C f´ A KPa m KN

f´ A KNA f f´ A A m mm

f KPa−

== × × = × × =

× ×× = × × ⇒ = = = × =

Determinar el centroide de la zona de compresión del concreto:

150 100 50 300 80 140105

150 100 300 80i i

i

y A mm mm mm mm mm mmy mm

A mm mm mm mm

× × + × ×= = =× + ×

∑∑

Momento resistente de la sección:

( ) ( )1359 0,64 0,105 727,1nM T d y KN m m KN m= − = × − = −

Page 72: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 71

Determinar la ubicación del eje neutro:

1

28 41 280,85 0,05 0,85 0,05 0,76 (C.10.2.7.3)

7 7

cf´β − − = − × = − × =

1

180237

0,76

a mmc mm

β= = =

2370,37

640

c mm

d mm= =

EJEMPLO 5

Determinar el momento último que resiste la sección mostrada en la figura

( )2 2

28

420

4 510 2040

y

c

s

f´ MPa

f MPa

A mm mm

==

= × =

Verificación cuantía mínima

2

min

min min

20400,126

300 540

1,4 28 1,4

4 4 420 420

0,0031 0,0033

y y

s

c

A mm

bd mm mm

f f

ρ

ρ

ρ ρ ρ

= = =×

= ≥ = ≥×

= ≥ → >

Equilibrio de fuerzas

22

21

2 2 22 1

22

2

0,85

2040 4203600

0,85 0,85 28

2 75 100 15000

36000 15000 21000

2100070

300

y

y

s c c

sc

c

c

T C

A f f´ A

A f mm MPaA mm

f´ Mpa

A mm mm mm

A A A mm mm mm

A mmA bx x mm

b mm

=× = × ×

× ×= = =× ×

= × × =

= − = − =

= → = = =

Page 73: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 72

Ubicación eje neutro 100 70 170

170200

0,85

a mm mm mm

mmc mm

= + =

= =

Verificación falla tensión 200

0,370 0,375 0,9540

= = < → =c mm

d mmφ

Determinar el centroide de la zona a compresión del concreto

2 75 100 50 70 300 13599,6

2 75 100 70 300

× × × + × ×= = =× × + ×

∑∑

i i

i

y A mm mm mm mm mm mmy mm

A mm mm mm mm

Momento resistente 3 2( ) 2,04 10 420000 (0,54 0,1 ) 377

0,9 377

339,3

yn s

u n

u

M A f d y m KPa m m KN m

M M KN m

M KN m

φ

−= × × − = × × × − = −= = × −= −

Page 74: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 73

8. CARGAS

Provisiones de seguridad

Las estructuras y los elementos estructurales deben siempre ser diseñados para llevar algo de carga

de reserva por encima de lo que se espera bajo condiciones normales de uso. Hay tres razones

principales por las que algún tipo de factor de seguridad es necesario en el diseño estructural.

• Las consecuencias de la falla.

• La variabilidad en la carga.

• La variabilidad en la resistencia.

Especificaciones

Las ciudades en los EE.UU. por lo general basan sus códigos de construcción en uno de los 3 códigos

modelo:

• Uniform Building Code.

• Basic Building Code (BOCA).

• Standard Building Code.

Estos códigos se han consolidado en el 2000 International Building Code.

Las cargas en estos códigos se basan principalmente en el documento ASCE Minimum Design Loads

for Buildings and Other Structures, las cuales han sido actualizadas para ASCE 7-02.

En Colombia a nivel de normativa tenemos:

• Código Colombiano de Construcciones Sismo-resistentes : Decreto 1400 de 1984.

• Normas Colombianas de Diseño y Construcción Sismo-resistente NSR-98.

• Reglamento Colombiano de Construcciones Sismo-resistente NSR-10.

Las variaciones de carga se tienen en cuenta mediante el uso de una serie de "factores de carga" para

determinar la carga última.

Page 75: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 74

NSR-10

Capítulo B.2 — COMBINACIONES DE CARGA

B.2.2 — NOMENCLATURA

D = carga muerta consistente en:

(a) peso propio del elemento.

(b) peso de todos los materiales de construcción incorporados a la edificación y

que son permanentemente soportados por el elemento, incluyendo muros y particiones divisorias

de espacios.

(c) peso del equipo permanente.

E = fuerzas sísmicas reducidas de diseño (E = Fs/ R) que se emplean para diseñar los

miembros estructurales.

F = cargas debidas al peso y presión de fluidos con densidades bien definidas y alturas máximas

controlables.

G = carga debida al granizo, sin tener en cuenta la contribución del empozamiento.

L = cargas vivas debidas al uso y ocupación de la edificación, incluyendo cargas debidas a

objetos móviles, particiones que se pueden cambiar de sitio. L incluye cualquier reducción que se

permita. Si se toma en cuenta la resistencia a cargas de impacto este efecto debe tenerse en cuenta en

la carga viva L.

L e = carga de empozamiento de agua.

L r = carga viva sobre la cubierta.

H = cargas debidas al empuje lateral del suelo, de agua freática o de materiales almacenados con

restricción horizontal.

T = fuerzas y efectos causados por efectos acumulados de variación de temperatura, retracción

de fraguado, flujo plástico, cambios de humedad, asentamiento diferencial o combinación de varios

de estos efectos.

W = carga de viento.

Page 76: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 75

B.2.4 — COMBINACIONES DE CARGAS MAYORADAS USANDO EL MÉTODO DE

RESISTENCIA

B.2.4.1 — APLICABILIDAD — Las combinaciones de carga y factores de carga dados en la

sección B.2.4.2 deben ser usados en todos los materiales estructurales permitidos por el

reglamento de diseño del material, con la excepción de aquellos casos en que el Reglamento

indique explícitamente que deba realizarse el diseño utilizando el método de los esfuerzos de trabajo.

Caso en el cual se deben utilizar las combinaciones de la sección B.2.3.1.

Nota Importante: Las combinaciones de carga dadas en B.2.4.2 contienen factores de cargas

menores que los que prescribía el Reglamento NSR-98, pero al mismo tiempo para cada uno de los

materiales estructurales en esta nueva versión del Reglamento (NSR-10) se han prescrito valores

de los coeficientes de reducción de resistencia, φ , menores que los que contenía el Reglamento

NSR-98, siendo los nuevos valores concordantes con la probabilidad de falla estructural que limita

el Reglamento. Por lo tanto es incorrecto, e inseguro, utilizar las nuevas ecuaciones de

combinación de carga de B.2.4.2 con los valores de los coeficientes de reducción de resistencia, φ ,

que contenía la NSR-98.

B.2.4.2 — COMBINACIONES BÁSICAS — El diseño de las estructuras, sus componentes

y cimentaciones debe hacerse de tal forma que sus resistencias de diseño igualen o excedan

los efectos producidos por las cargas mayoradas en las siguientes combinaciones:

1.4 (D+F) (B.2.4-1)

1.2 (D+F+T) + 1.6 (L+H) 0.5 (Lr ó G ó Le) (B.2.4-2)

1.2D+1.6 (Lr ó G ó Le) + (L ó 0.8W) (B.2.4-3)

1.2D+1.6W+1.0L+0.5 (Lr ó G ó Le) (B.2.4-4)

1.2D+1.0E+1.0L (B.2.4-5)

0.9D+1.6W+1.6H (B.2.4-6)

0.9D+1.0E+1.6H (B.2.4-7)

Las ecuaciones más generales de la carga última que van a ser más utilizadas en este libro son:

U = 1.4D

U = 1.2D + 1.6L

RESISTENCIA

Los factores de carga van a generar la carga última, que se utiliza en el diseño y análisis de los

elementos estructurales.

Page 77: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 76

u nM Mφ=

Momento Último

Momento Nominal

Factor de Reducción de Resistencia

-

-

-

u

n

M

M

φ

El factor de reducción de la resistencia, φ , varía de miembro a miembro, dependiendo si está en

tensión o compresión o dependiendo también del tipo de miembro.

Tres posibilidades en el comportamiento inelástico de vigas de concreto reforzado

• Falla a compresión.

• Falla a tensión.

• Falla balanceada.

Falla a compresión

El acero entra en fluencia después de que se presenta la falla en el concreto. Se trata de un fallo

repentino (frágil). La viga es conocida como una viga sobrereforzada.

Figura 68

Falla a tensión

El acero entra en fluencia antes de que falle el concreto. El concreto se aplasta en un fallo de

compresión secundaria. La viga es conocida como una viga subreforzada.

Page 78: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 77

Figura 69

Falla balanceada

El acero entra en fluencia al mismo tiempo que el concreto falla. La viga es conocida como una viga

en condición balanceada.

Figura 70

La falla a tensión de la viga subreforzada es la más conveniente. Es un tipo de falla que permite

soportar carga adicional antes de la falla y por su ductilidad puede ser visualmente apreciada antes

del colapso de la viga.

Page 79: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 78

Figura 71

Page 80: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 79

9. VIGAS SIMPLEMENTE REFORZADAS

Cuantía balanceada

bal =ρ Valor único cuando se presentan simultáneamente las siguientes condiciones:

c s0,003 = y = yε ε ε Usando la relación de triángulos semejantes: 0 003=

−y

b b

,

c d c

ε

Figura 72

La ecuación puede ser rescrita para encontrar bc

( )

( ) ( )

( ) ( )

0 003 0 003 0 003 0 003

0 003 0 003

0 003 0 003

0 003 600

6000 003

b y b b y

bb

y y

b s

sy y

, d , c c c , , d

c, d ,c

d, ,

c E,

d E f,

ε ε

ε ε

ε

− = ⇒ + =

= ⇒ =+ +

= = ++

Ecuación de momento nominal

0,85

0,85

2

y

y

y

c s

s

c

n s

C T f´ b a A f

A fa

f´ b

aM A f d

= ⇒ × × = ××=

×

= × −

Page 81: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 80

Cuantía Mínima mínρ (NSR-10)

C.10.5 — Refuerzo mínimo en elementos sometidos a flexión

C.10.5.1 — En toda sección de un elemento sometido a flexión cuando por análisis se requiera

refuerzo de tracción, excepto lo establecido en C.10.5.2, C.10.5.3 y C.10.5.4, el As proporcionado

no debe ser menor que el obtenido por medio de:

,min

0,25S w

y

cf´A b d

f= (C.10-3)

Pero no menor a 1,4 wy

db

f

C.10.5.2 — Para los elementos estáticamente determinados con el ala en tracción, As no debe ser

menor que el valor dado por la ecuación (C.10-3) remplazando bw por 2bw o el ancho del ala, el que

sea menor.

C.10.5.3 — Los requisitos de C.10.5.1 y C.10.5.2 no necesitan ser aplicados si en cada sección el As

proporcionado es al menos un tercio superior al requerido por análisis.

Determinación del coeficiente de reducción de resistencia

Figura 73

Page 82: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 81

Factores de reducción de resistencia φ

NSR-10 — C.9.3 — Resistencia de diseño

• Tensión Axial φ = 0.90

• Compresión axial

Miembro con refuerzo en espiral φ = 0.75

Otros miembros de refuerzo φ = 0.65

• Cortante y torsión φ = 0.75

NSR-10

Limitaciones relacionadas con la relación de refuerzo, ρ

La selección del acero será determinado por el límite inferior de la siguiente forma:

ws(min) w

0,25 1,4

y y

cf´ b dA b d

f f= ≥

son en & yc MPaf´ f

Valor muy pequeño para As ( )n crM < M

sε es muy grande (grandes deflexiones)

Cuando la viga se agrieta ( )n crM > M la viga falla inmediatamente porque ( )n crM < M

Requisitos adicionales para el valor de cuantía mínima

Si el (suministrado) (requerido por diseño)4

3

s sA A≥

Basado en el análisis, entonces el As (min) es no requerido. NSR-10 C.10.5.3

4

3n uM Mφ ≥ Para el (suministrado) sA

Page 83: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 82

Procedimiento de diseño para vigas simplemente reforzadas

1. Ubicación del refuerzo

Ubicar el refuerzo donde ocurre fisuramiento (región del concreto sometida a tracción). Los esfuerzos

de tracción en el concreto pueden ser debidos a:

a) Flexión

b) Carga axial

c) Retracción de fraguado.

2. Aspectos constructivos

La formaletería es costosa, por esto es necesario y recomendable tratar de volver a utilizarla en varios

pisos. Se deben uniformizar las dimensiones de las vigas y de los elementos estructurales. La

formaletería no viene en dimensiones intermedias diferentes a múltiplos de 50 mm y 100 mm.

3. Alturas o espesores de las vigas

TABLA C.9.5(a) – Alturas o espesores mínimos de vigas no preesforzadas o losas reforzadas en una dirección a menos que se calculen las deflexiones

Espesor mínimo, h

Simplemente apoyados

Con un extremo continuo

Ambos extremos continuos

En voladizo

Elementos Elementos que NO soporten o estén ligados a divisiones u otro tipo de

elementos susceptibles de dañarse debido a deflexiones grandes

Losas macizas en una dirección

�20 �24

�28 �10

Vigas o losas nervadas en una dirección

�16 �18.5

�21 �8

NOTAS: Los valores dados en esta tabla se deben usar directamente en elementos de concreto de peso normal y refuerzo grado 420 MPa. Para otras condiciones, los valores deben modificarse como sigue:

(a) Para concreto liviano estructural con densidad wc dentro del rango de 1440 a 1840 kg/m3, los valores de la tabla deben multiplicarse por (1,65-0,0003wc), pero no menos de 1.09.

(b) Para fy distinto de 420 Mpa, los valores de esta tabla deben multiplicarse por (0,4 + fy/700)

Page 84: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 83

Las dimensiones de la viga de sección transversal “b” y “h” son por lo general en múltiplos de 50mm

o 100mm para facilidad de encofrado. Las relaciones mostradas en la figura 78 son recomendaciones

con base a un mayor momento de inercia y nada tienen que ver con la NSR-10.

Figura 74

4. Recubrimiento del acero de refuerzo

El recubrimiento es igual a la dimensión entre la superficie de la losa o viga y el refuerzo.

¿Por qué es necesario el recubrimiento?

a) Para adherir el refuerzo al concreto.

b) Para proteger el refuerzo contra la corrosión.

c) Para proteger el refuerzo contra el fuego (los excesos de calentamiento provocan pérdida de la

resistencia).

d) Los recubrimientos adicionales utilizados en talleres, fábricas, etc. dan cuenta del control para la

abrasión y el desgaste.

NSR-10

C.7.7 — Protección de concreto para el refuerzo

C.7.7.1 — Concreto construido en sitio (no preesforzado).

A menos que en C.7.7.6 ó C.7.7.8 se exija un recubrimiento mayor de concreto, el recubrimiento

especificado para el refuerzo no debe ser menor que lo siguiente:

Page 85: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 84

Recubrimiento de concreto, mm

(a) Concreto colocado contra el suelo y expuesto permanentemente a él:

75 mm

(b) Concreto expuesto a suelo o a la intemperie:

Barras No. 6 (3/4”) ó 20M (20 mm) a No. 18 (2-1/4”) ó 55M (55 mm):

50 mm

Barras No. 5 (5/8”) ó 16M (16 mm), alambre MW200 ó MD200 (16 mm de diámetro) y menores

40 mm

(c) Concreto no expuesto a la intemperie ni en contacto con el suelo:

Losas, muros, viguetas:

Barras No. 14 (1-3/4”) ó 45M (45 mm) y No. 18 (2-1/4”) ó 55M (55 mm)

40 mm

Barras No. 11 (1-3/8”) ó 36M (36 mm) y menores

20 mm

Vigas, columnas:

Armadura principal, estribos, espirales

40 mm

Cáscaras y placas plegadas:

Barra No. 6 (3/4”) ó 20M (20 mm) y mayores

20 mm

Barras No. 5 (5/8”) ó 16M (16 mm), alambres MW200 ó MD200 (16 mm de diámetro) y menores

13 mm

5. Límites del espaciamiento del refuerzo

NSR-10

C.7.6 — Límites del espaciamiento del refuerzo

C.7.6.1 — La distancia libre mínima entre barras paralelas de una capa debe ser db , pero

no menor de 25 mm. Véase también C.3.3.2.

Page 86: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 85

C.7.6.2 — Cuando el refuerzo paralelo se coloque en dos o más capas, las barras de las capas

superiores deben colocarse exactamente sobre las de las capas inferiores, con una distancia libre entre

capas no menor de 25 mm.

C.7.6.3 — En elementos a compresión reforzados con espirales o estribos, la distancia libre

entre barras longitudinales no debe ser menor de

1,5 db, ni de 40 mm. Véase también C.3.3.2.

C.7.6.4 — La limitación de distancia libre entre barras también se debe aplicar a la distancia libre

entre un empalme por traslapo y los empalmes o barras adyacentes.

C.7.6.5 — En muros y losas, exceptuando las losas nervadas, la separación del refuerzo principal por

flexión no debe ser mayor de 3 veces el espesor del muro o de la losa, ni de 450 mm, excepto que en

secciones críticas de losas en dos direcciones no debe exceder 2 veces el espesor de la losa (véase el

Capítulo C.13). Cuando se trate de refuerzo de temperatura en losas la separación máxima no

debe exceder 5 veces el espesor de la losa ni 450 mm (véase C.7.12).

Dimensiones mínimas de recubrimiento del acero de refuerzo

Interior de la viga

Figura 75

Page 87: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 86

Disposición inadecuada del acero de refuerzo

Figura 76

C.3.3 — Agregados

C.3.3.1 — Los agregados para concreto deben cumplir con una de las siguientes normas:

(a) Agregado de peso normal: NTC 174 (ASTM C33),

(b) Agregado liviano: NTC 4045 (ASTM C330).

Se permite el uso de agregados que han demostrado a través de ensayos o por experiencias prácticas

que producen concreto de resistencia y durabilidad adecuadas, siempre y cuando sean aprobados por

el Supervisor Técnico.

C.3.3.2 — El tamaño máximo nominal del agregado grueso no debe ser superior a:

(a) 1/5 de la menor separación entre los lados del encofrado, ni a

(b) 1/3 de la altura de la losa, ni a

(c) 3/4 del espaciamiento mínimo libre entre las barras o alambres individuales de refuerzo, paquetes

de barras, tendones individuales, paquetes de tendones o ductos.

Estas limitaciones se pueden omitir si a juicio del profesional facultado para diseñar la trabajabilidad

y los métodos de compactación son tales que el concreto se puede colocar sin la formación de

hormigueros, vacíos o segregación en la mezcla.

Page 88: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 87

Figura 77

EJEMPLO 6

Para la viga mostrada en la figura determinar si la viga cumple con las disposiciones de la NSR-10.

En la primera parte considerar una viga que no tiene condiciones de exposición ambiental a agentes

agresivos ni se encuentra localizada cerca a zonas costeras para lo cual se selecciona en concreto con

f’c = 21MPa. Analizar la misma viga si es una viga en contacto directo con agua de mar por lo que

se tiene un f’c = 41MPa.

2

21

420

2550

y

c

s

f´ MPa

f MPa

A mm

===

Page 89: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 88

Cuantía de la viga

( )( )

225500,0187

350 390

sA mm

bd mm mmρ = = =

Cuantía mínima

cumple

1,4 21 1,40,0027 0,0033 (C.10.5)

4 4 420 420

0,0033 0,0187 0,003

mín

mín

y y

cf´ MPa

f f MPaρ

ρ

= ≥ ⇒ = ≥ =×

= ⇒ >

Localización eje neutro

2

1

420 2550171

0,85 0,85 21 350

171201

0,85

2010,52

390

ys

c

la viga noes subreforzada

A f MPa mma mm

f´ b MPa mm

a mmc mm

c mm

d mm

β

× ×= = =× × × ×

= = =

= = ∴

La deformación en el acero de refuerzo es:

390 2010, 003 0, 003 0, 0028

201

− − = × = × =

s

d c mm mm

c mmε

La viga está trabajando en la zona de transición cerca a la zona de compresión ϕ=0,65 la relación c/d

es mayor a 0,375 por lo tanto es recomendable rediseñar la viga. La otra opción es diseñar la viga

calculando el valor correspondiente al coeficiente de reducción de resistencia, lo cual implicaría una

viga trabajando en la zona de transición, lo cual no es muy recomendable.

Para el caso f’c = 41MPa

225500,0187

350 390

sA mm

bd mm mmρ = = =

×

Cuantía mínima

Page 90: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 89

( )1,4 41 1,4

0,0038 0,00334 4 420 420

0,0038 0,0187 0,0038 cumple

mín

mín

y y

cf´ MPa

f f MPaρ

ρ

= ≥ ⇒ = ≥ =×

= ⇒ >

Localización del eje neutro

2

1

420 255088

0,85 0,85 41 350

88116

0,76

1160,297

390

y

c

As f MPa mma mm

f´ b MPa mm

a mmc mm

c mm

d mm

β

× ×= = =× × × ×

= = =

= =

La deformación del acero es:

390 1160,003 0,003 0,0071

116

− − = × = × =

s

d c mm mm

c mmε

La viga está ubicada en la zona de tensión (φ=0,9). Esta segunda conformación de viga corresponde

a un diseño de acuerdo con la NSR-10.

EJEMPLO 7

Determinar el valor de L que causa que la sección alcance φMn

Notas aclaratorias: • Utilizar concreto f’c=21 MPa y acero de refuerzo fy=420 MPa. La viga no tiene condiciones de

exposición ambiental a agentes agresivos ni se encuentra localizada cerca a zonas costeras. • La carga muerta distribuida WD y la carga viva distribuida WL se aplican en toda la longitud de

la viga simplemente apoyada

3 No. 8

d = 440 mm

WD = 15 KN/m (incluye peso de la viga) WL = 20 KN/m

L=?

b = 300 mm

420yf MPa=21cf´ MPa=

Page 91: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 90

�� = 3 × 510��� = 1530��� = 1,53 × 10���� Por lo tanto se obtiene el siguiente valor de cuantía

� = ���� = 1530���300�� × 440�� = 0,0116

Se verifica el cumplimiento de la cuantía mínima:

C.10.5.1. En toda sección de un elemento sometido a flexión cuando por análisis se requiera

refuerzo de tracción, excepto lo establecido en C.10.5.2, C.10.5.3 Y C.10.5.4, el ! , proporcionado no debe ser menor que el obtenido por medio de:

",#$% =&. '()*+,*- ∗ /0 ∗ 1

Pero no menor a ;2. 3/01/*-

Entonces;

�567 = )8+948: ≥ 1,48: = √21<=>4 × 420<=> ≥ 1,4420

�567 = 0,0027 ≥ 0,0033; �567 = 0,0033

Por lo tanto se cumple la cuantía mínima ya que ,� > �567; 0,0116 > 0,0033

Por equilibrio de fuerzas

B = C

�� × 8: = 0,858+9 × > × � → > = �� × 8:0,858+9 × �

> = 1530��� × 420<=>0,85 × 21<=> × 300�� = 120�� Localización eje neutro:

Page 92: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 91

C.10.2.7.3. Para *′Fentre 17 y 28 MPa, el factor G2se debe tomar como 0.85. Para *′Fsuperior a

28 MPa, G2se debe disminuir en forma lineal a razón de 0.05 por cada 7MPa de aumento sobre 28

MPa. Sin embargo G2 no debe ser menor de 0.65 entonces, H = 0,85

Luego por C.10.2.7.1 se determina el eje neutro:

9 = >H = 120��0,85 = 141,18�� = 141��

Verificación falla tensión

9� = 141��440�� = 0,32 < 0,375 → ∅ = 0,9

La viga está ubicada en la zona de tensión (φ=0,9).

Deformaciones en el acero de refuerzo

KL = M� − 99 O × 0,003 = M440�� − 141��141�� O × 0,003 = 0,007

Momento resistente

<P = ∅<7 = 0,9 × �� × 8: Q� − >2R

Page 93: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 92

<P = ∅<7 = 0,9 × 1,53 × 10���� × 420<=> × M0,44� −0,12�2 O =

<P = 219,77ST −� = 220ST −�

Momento producido por cargas externas

U5V: = 1,2W + 1,6Y = 1,2 × 15ST� + 1,6 × 20ST� = 50ST�

<P =U5V: × Y�8

Entonces:

Y5VZ =[8<PU5V: = [8 × 220ST −�50ST/� = 5,93�

Verificación de condiciones de servicio h=L/16=370 mm< 500 mm.

EJEMPLO 8

La viga mostrada en la figura forma parte de la superestructura de un puente peatonal ubicado dentro

de un centro comercial por lo cual no tiene exposición ambiental, esta viga cubre una luz de 12 metros

en condición simplemente apoyada y soporta además de su peso propio, una carga muerta

correspondiente a la plataforma donde transitan los peatones y barandas de 2 KN/ m2 y una carga

viva de 5 KN/m2. Determinar el momento generado sobre la viga por las cargas externas y el

momento resistente de la viga en la condición c/d=0.375.

Notas aclaratorias:

• Utilizar concreto f’c=28 MPa y acero de refuerzo fy=420 MPa.

Page 94: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 93

Viga simplemente apoyada:

ℎ = Y16 = 12000��16 = 750��

El cálculo del recubrimiento se hace con base a las condiciones de exposición de la viga, en este

caso corresponde a una viga interior por lo cual se toma 40 mm de recubrimiento libre:

� = ℎ − (^_9`�^a�a_bcd�a�^_ + �aá�_c^d_fc^a�dTd. 3 + 10��) � = 750�� − 60�� = 690��

Se determina el peso de la viga de la siguiente manera:

�h = 600�� + 1200��2 × 750�� = 675000��� = 0,675��

Volumen de la viga:

ih = �j × Y = 0,675� × 12� = 8,1�� Finalmente, se puede obtener el peso de la viga:

Uj =ij × �_bfa�>��_�9db9^_cd

Según la NSR-10 en su Tabla B.3.2-1 (Masas de los materiales), se tiene una densidad para el

concreto reforzado de 2400 (kg/m3), tomando la aceleración de la gravedad como 10m/seg2 se tiene

una densidad de 24KN/m3.

Uj = 8,1�� × 24ST�� = 194,4ST Carga Muerta

Uk =Wk +Uj = 2ST�� + 194,4ST1,2� × 12� = 15,5 ST��

Uk = 15,5 ST�� × 1,2� = 18,6ST�

Carga Viva

Ul = 5ST�� × 1,2� = 6ST� Por B.2.4.2. Se obtiene la carga mayorada

Page 95: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 94

U5V: = 1,2Uk + 1,6Ul = 1,2 × M18,6ST� O + 1,6 × M6ST� O = 31,92 ST�

Por lo tanto el momento último por efecto de cargas externas es:

<P = U5V: × Y�8 = 31,92ST� × (12�)�8 = 574,56ST −�

La segunda parte del análisis implica la determinación del momento resistente de la viga en la

condición c/d=0.375.

mn = 0,375; 9 = 0,375 × 690�� = 258,75�� = 259��

C.10.2.7.3. Para *′Fentre 17 y 28 MPa, el factor G2se debe tomar como 0.85. Para *′Fsuperior a

28 MPa, G2se debe disminuir en forma lineal a razón de 0.05 por cada 7MPa de aumento sobre 28

MPa. Sin embargo G2 no debe ser menor de 0.65. H = 0,85fa8+o ≤ 28<=>

Entonces; > = H × > = 0,85 × 259�� = 220,15�� = 220��

Obtención del área a compresión del concreto:

�o = 1024�� + 1200��2 × 220�� = 244640��� = 0,24��

qr = ∑�6qr6∑�6 = (1024�� × 220��) × 110�� + tQ88�� × 220��2 R × 2u × Q13 × 220��R1024�� × 220�� + 2 × 12 (88�� × 220��)

Page 96: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 95

qr = 107,1�� = 107��

Ahora, por equilibrio de fuerzas;

C = B

0,858+9 × �m = �� × 8:

�L =0,858+9 × �m8: = 0,85 × 28<=> × 244640���420<=> = 13862,93��� = 0,01386��

Momento Último Resistente

<P = ∅<7 = ∅ × �L × 8: × (� − qr)= 0,9 × (13862,93���)(420<=>) M690�� − 107��2 O

<P = 3335,38ST −� <P = 576,56ST −� ≤ <PvwL6L = 3335,38ST −�

La viga está en la capacidad de resistir aproximadamente 7 veces más que lo requerido por cargas

externas, es importante resaltar que la gran mayoría de elementos estructurales que se encuentran

construidos trabajan en este rango, el cual es forzado por el cumplimiento de condiciones de servicio

en el dimensionamiento de los elementos estructurales. Las dimensiones mínimas por condiciones

de servicio son en la gran mayoría de los casos mayores a las requeridas por condiciones de

resistencia llevando a un diseño más conservador de los elementos de concreto reforzado e

introduciendo de esta forma un factor de seguridad adicional en el diseño de estructuras de concreto

reforzado.

En puentes es de especial cuidado el control de deflexiones por las luces grandes que generalmente

manejan, por lo general al ser estructuras simplemente apoyadas se deben diseñar los apoyos

adecuadamente de acuerdo al código de puentes. Una mala selección del espesor de la viga puede

llevar a condiciones visuales indeseables por valores altos de deflexión de la viga. En edificaciones

altas deflexiones en vigas pueden llevar a rompimiento de divisiones o mal funcionamiento de

puertas y ventanas.

Page 97: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 96

EJEMPLO 9

Diseñar la sección rectangular para los valores de cargas y cuantías presentadas en la figura. El peso

de la viga no está incluido. Mostrar los esquemas de la sección transversal incluyendo la organización

de las barras de refuerzo y sus espaciamientos. Asumir densidad del concreto de 23,5ST/�� , la

viga presenta condiciones de exposición exterior por lo que se debe seleccionar un 8+9 = 28<=> y

8: = 420<=>.

Para la condición balanceada.

Cx� = 600600 + 8: → Cx = 600600 + 8: � = 600600 + 420� = 0,59�

> = ��8:0,858+9 × � × ���� = �8:�0,858+9 >x = �x × � × 8:0,858+9 ; Cx = >xH

>x = H(0,59�) �x = H(0,59�) × 0,85 × 28<=>� × 8: = 0,85 ×(0,59) × 0,85 × 28<=>420<=> = 0,0284

� = 0,5�x = 0,5 × 0,0284 = 0,0142

> = �8:�0,858′9 = 0,0142(420<=>)0,85(28<=>) �; > = 0,25�

C.10.2.7.3.

H = 0.85fa8+o ≤ 28<=>

Page 98: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 97

Por C.10.2.7.1.

> = H9 = 0,859 = 0,25�

9� = 0,250,85 = 0,294 Viga localizada en la zona de tensión ∅ = 0,9

Momento último provocado por fuerzas externas:

C.9.2.1. U5V: = 1,2W + 1,6Y

<P = 1,6 × 50ST × 3� + M1,2 × 6ST� + 1,6 × 10ST� O × (6�) × (3�) + 1,2 × � × ℎ× M23,5 ST��O (6�)(3�) =

yz2 = {(|, {}~ −#+ (&|, { × / × � = {(|, {}~ −#+ (&|, { × / × (1 + &, &{#) Momento resistente de la viga

<P� = ∅<7,∅ = 0,9(��_�aób sin 9>^�>>�a>�) <7 = � × � × � × 8: Q� − >2R = 0,0142 × � × � × 420<=> M� − 0,25�2 O = 5218,5��� ST��

<P� = 0,9 M5218,5��ST��O � = 4696,65ST�� ���

Según NSR-10 . Tabla C.9.5 (a). El espesor mínimo para una viga en voladizo es:

ℎ567 = Y8 = 6�8 = 0,75� = 750��

ℎ ≈ 1,5� → � = ℎ1,5 = 750��1,5 = 500��

Las condiciones de exposición implican el uso de un recubrimiento libre de 50 mm y con base a

una selección preliminar de barras de refuerzo No. 8 se tienen los siguientes valores para el cálculo

de la altura efectiva:

ℎ = 750��

Page 99: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 98

� = 750�� − (50��(^_9`�^a�a_bcd�a�^_C. 7.7.1(�)) + 12.7��(_fc^a�d�>^^>Td. 4)+ 25��(�>^^>Td. 8) + 25��2 ) = 650�� = 0,65�

� = 500�� = 0,5�

<P = 657,6ST −� + 507,6ST� × 0,5� × (0,75�) = 847,95ST −�

<P� = 4696,65ST�� × (0,5�) × (0,65�)� = 992,17ST −�

Como <P� > <P → <d�_bcd�_fafc_bc_�_�>�a�> >�d�_bcdú�ca�d�^d�d9>�d�d^8`_^�>f. Determinar ��:

�� = � × � × � = 0,0142 × 500�� × 650�� = 4615��� 10 varillas No.8

�� = 10 × 510��� = 5100��� Diámetro barras No 8= 25,4 mm

Recubrimiento libre= 50 mm

Espaciamiento entre barras = 30 mm

�567 = Waá�_c^d�>^^>f × 5 + 2 × ^_9`�^a�a_bcd + 4 × _f�>9a>�a_bcd_bc^_�>^^>f< 500�� = �

Page 100: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 99

10. VIGAS DOBLEMENTE REFORZADAS

Efecto de la adición de refuerzo a compresión sobre la resistencia de una viga

Menos concreto es necesitado para resistir la C y por lo tanto el eje neutro se mueve hacia arriba.

;ysT A f C T= × =

Figura 78

Viga simplemente reforzada

1c; 2

yn sa

C C M A f d = = × −

Viga doblemente reforzada

( )

2c s

2 1y

C ;2

yn sa

C C M A f d

a a

′= + = × −

<

Page 101: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 100

Razones para la provisión de refuerzo a compresión

• Reducción de las deflexiones por carga sostenida.

• Ductilidad del hormigón en la zona de compresión.

• Transferencia de carga al acero de compresión.

• Reducción del esfuerzo en el concreto.

• Menos deflexión por carga sostenida.

Fig 5-14 Efecto del refuerzo a compresión en las deflexiones por carga sostenida

(MacGregor).

Figura 79

Aumento de la ductilidad

Reducido el esfuerzo en el bloque se incrementa la deformación en el acero y se obtiene mayor

curvatura.

Page 102: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 101

Fig 5-15 Efecto del refuerzo a compresión sobre la resistencia y la ductilidad de las

vigas sub-reforzadas (MacGregor).

bal > ρ ρ

Figura 80

Cambia el modo de falla de compresión a tensión

Cuando bal > ρ ρ

´ρ ρ−

Facilidad de construcción

Las barras de las esquinas son por lo general usadas para sostener y anclar los estribos.

Efecto de la adición de refuerzo a compresión

Comparar la distribución de deformaciones en dos vigas con el mismo As

Page 103: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 102

Figura 81

Sección 1

c1 1 1

11

0,85 0,85

0,85

s s

c c

s s

c

T A f

T C f´ b a f´ b c

A fc

f´ b

β

β

×

× ×

×

×

== = × = × ×

Sección 2

c1

2

1 2

21

0,85

0,85

0,85

s s

s s c

s s c

s s s s

c

T A f

T C C

A f f´ b a

A f f´ b c

A f A fc

f´ b

β

β

′ ′

′ ′

′ ′

×

×

×

×

×

=′= +

= × + ×

= × + × ×

− ×=×

Además de que As refuerza la zona de compresión de modo que es necesario menos concreto para

resistir un determinado valor de T.

El eje neutro asciende 2 1(c < c ) y sε incrementa s2 s1( )ε ε>

Page 104: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 103

Cuatro posibles modos de falla

• Subreforzado

Caso 1: Acero a tensión y compresión fluyen.

Caso 2: Sólo el acero a tensión fluye.

• Sobrereforzado

Caso 3: Sólo el acero a compresión fluye.

Caso 4: Falla del concreto.

Análisis de secciones rectangulares doblemente reforzadas

Comprobación de compatibilidad de deformaciones: asumir s'ε usando triángulos semejantes

( )( )s

s

' 0,0030,003

'

− ×′ ′= ⇒ =−

c d

c d c c

ε ε

Figura 82

( )

( )( )

( )( )

c s

1

1

1

0,85

0,85

'

0,85

y

y

y

s s

c

s s

c

c

A A fT C C a

f´ b

ac

A A fc

f´ b

d fc

β

βρ ρ

β

×

×

−′ ′= + ⇒ =

=

−=

−=

Page 105: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 104

La deformación en el acero de compresión es:

( )( )

s cu

1s

1

0,851 0,003

' y

c

d

c

f´ d

d f

ε ε

βε

ρ ρ

′ ′ = − ×

′′ = − × −

Figura 83

Verificación:

( )( )

( )( )

( ) ( )

1s

s

1

1

0,851 0,003

'

0,851 0,003

' 200000

0,85 600'

600

ys

y

y

y

y

y

y y

c

c

c

f

E

f´ d

d f

f´ d f

d f

f´ d

d f f

ε

βε

ρ ρε ε

βρ ρ

βρ ρ

=

′′ = − × −

′ ≥

′− × ≥ −

′ − ≥ −

Si la afirmación es verdadera, entonces:

( ) ( )2

y yn s sa

M A As f d A f d d′ ′ ′= − − + × −

Page 106: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 105

De otro modo la deformación en el acero de compresión es:

ssf Eε=

Calcular el esfuerzo en el acero de compresión.

( )( )1 0,85

200000 1 0,003' y

cs

f´ df

d f

βρ ρ

′ ′= × − × −

Volver atrás y calcular el equilibrio con fs’

( )c s

0,85

s y s s

c

T C C

A f A fa

f´ b

′ ′×

×

′ ′= + ⇒

− ×=

1

a

= Iterar hasta que el valor de c se ajuste para el sf

1 600sd

fc

′ = −

Volver atrás y calcular la capacidad de momento de la viga

( ) ( )2

yn s s s s sa

M A f A f d A f d d′ ′ ′ ′ ′= − − + −

Page 107: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 106

Procedimiento de diseño de vigas doblemente reforzadas:

A. Procedimiento cuando las dimensiones de la sección son conocidas

1. Calcular el valor para el diseño de momento, Mu .

2. Calcular d, dado que h es conocida.

60d h mm ≈ − Para una sola capa de refuerzo (barras de refuerzo No. 6 o inferiores).

90d h mm≈ − Para dos capas de refuerzo (barras de refuerzo No. 6 o inferiores).

3. Estimar el valor de c

d, el cual provocará una deformación, > 0,005 tε y encontrar el área 1sA

para una sección simplemente reforzada. Calcular c de d.

4. Determinar la capacidad de momento nominal proporcionado por 1sA

1

1

1 1

0,85

2

y

f y

cs

s

f´ b aA

f

aM A f d×

× ×=

= −

5. Encontrar la capacidad de momento nominal que debe ser proporcionada y que debe soportar

sA ′

1fuM

M Mφ

∆ = −

Si 0M∆ ≤ , el acero de compresión no se requiere para resistir uM

φ

Si 0M∆ > , diríjase al paso 6.

Nota:

Utilice 0 ,9=φ para flexión sin carga axial, que dependerá de la deformación en el acero de

tracción. NSR-10 Cap. 9.3.

6. Determine sA ′ requerido para resistir M∆

Asumir s y( ' )ε ε≥

Page 108: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 107

( ) ( )( )requerido y

sM

Ad d f

′ ∆=′−

7. Calcular la tracción total para el refuerzo requerido

( ) ( )1requerido requerido s s sA A A ′= +

8. Seleccione las barras de refuerzo para

s s(proporcionado) (requerido)A A≥

Confirme que las barras se ajustarán dentro de la sección transversal.

9. Confirme que s y'ε ε≥ , Si no regrese al paso 6 y sustituir s ssf = E ´ ε′ por fy para obtener el

valor correcto de ( )requerido sA ′

10. Calcular el momento Mn para las dimensiones de la sección y el refuerzo seleccionado.

Comprobar la resistencia n uM Mφ ≥

Mantener sobredimensionado en un 10%.

11. Comprobar si ρ siempre está dentro de los límites permitidos.

Page 109: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 108

EJEMPLO 10

Determinar el momento nominal Mn para la sección mostrada en la figura considerando el acero de

refuerzo a compresión. La viga hace parte de una estructura de almacenamiento de agua potable por

lo que se debe seleccionar como mínimo f’c = 28MPa.

2 2

2 2

28

420

450

390

' 60

300

2 º 6 2 284 568

4 º 7 4 387 1548

y

c

s

s

f´ MPa

f MPa

h mm

d mm

d mm

b mm

A N mm mm

A N mm mm

==

===

== = × == = × =

Determinar valores de cuantía

2

2

15480,0132

300 390

568' 0,0049

300 390

s

s

A mm

bd mm mm

A mm

bd mm mm

ρ

ρ′

= = =×

= = =×

Determinar el valor de cuantía efectiva

' 0,0132 0,0049 0,0083efρ ρ ρ= − = − =

Verificación cuantía mínima

1,4 28 1,40,0031 0,0033

4 4 420 420

0,0132 0,0033 cumple

mín

mín

y y

cf´ MPa

f f MPaρ

ρ ρ

= ≥ ⇒ = ≥ =×

> ⇒ >

Determinación cuantía mínima para viga simplemente reforzada

( ) ( ) ( )1

no cumple

0,85 ' 0,85 0,85 28 60600 600'

600 420 390 420 600 420

0,0083 0,0247

y

cf´ d

d f

βρ ρ

× × × − ≥ ≥ × − × −

El acero de refuerzo a compresión no ha alcanzado la fluencia.

Page 110: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 109

Utilizar procedimiento iterativo para determinar fs

( ) ( )

( ) ( )

1

1

0,85 '600 600

( ')

0,85 ' 0,85 0,85 28 60600 1 600 1 64,32

( ') 0,0083 390 420

y

y

cs

cs

f´ df

d f

f´ df MPa

d f

βρ ρ

βρ ρ

− = × − × ×

× × × = − = − = − × × × ×

Primera iteración:

2 2

1

1548 420 568 64,32101

0,85 0,85 28 0,85 300

60' 200000 1 0,003 244

101s s

ys s s

c

s

A f A f mm MPa mm MPac mm

f´ b MPa mm

mmf E MPa MPa

mm

β

ε

′ ′

× − × × − ×= = =× × × × × ×

= × = × − × =

Segunda iteración:

2 2

1

1548 420 568 24484

0,85 0,85 28 0,85 300

60' 200000 1 0,003 171

84s s

ys s s

c

s

A f A f mm MPa mm MPac mm

f´ b MPa mm

mmf E MPa MPa

mm

β

ε

′ ′× − × × − ×= = =× × × × × ×

= × = × − × =

Tercera iteración:

2 2

1

1548 420 568 17191

0,85 0,85 28 0,85 300

60' 200000 1 0,003 204

91s s

ys s s

c

s

A f A f mm MPa mm MPac mm

f´ b MPa mm

mmf E MPa MPa

mm

β

ε′

′ ′× − × × − ×= = =× × × × × ×

= × = × − × =

Cuarta iteración:

2 2

1

1548 420 568 20488

0,85 0,85 28 0,85 300

60' 200000 1 0,003 191

88s s

ys s s

c

s

A f A f mm MPa mm MPac mm

f´ b MPa mm

mmf E MPa MPa

mm

β

ε

′ ′

× − × × − ×= = =× × × × × ×

= × = × − × =

Quinta iteración:

2 2

1

1548 420 568 19189

0,85 0,85 28 0,85 300

60' 200000 1 0,003 196

89s s

s y s s

c

s

A f A f mm MPa mm MPac mm

f´ b MPa mm

mmf E MPa MPa

mm

β

ε

′ ′

× − × × − ×= = =× × × × × ×

= × = × − × =

Tomar fs’ = 196MPa y c = 89mm.

Page 111: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 110

Determinar momento nominal

( ) ( )

( )( ) ( )( )( )( )( )( )

3 2 3 2

3 2

'2

0,85 0,0891,548 10 420000 0,568 10 196000 0,39

2

0,568 10 196000 0,39 0,06

226,5

yn s s s s s

n

n

aM A f A f d A f d d

mM m KPa m KPa

m KPa m m

M KN m

′ ′ ′ ′

− −

= × − × − + × −

× = × − × − +

× −

= −

EJEMPLO 11

Determinar el momento máximo y su correspondiente momento nominal para la sección mostrada en la figura. La zona a compresión se encuentra en la parte superior. Determinar el refuerzo requerido en la zona a tracción. La viga forma parte de una estructura de transporte de aguas industriales por lo que f’c = 41MPa.

1

41

420

28 41 280,85 0,05 0,85 0,05 0,76

7 7

y

c

c

f´ MPa

f MPa

f´β

==

− − = − × = − × =

Page 112: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 111

Condición viga subreforzada

1

0,003540 203

0,005 0,003

0,76 203 154

= × = × = + +

= = × =

cu

cu s

c d mm mm

a c mm mm

εε ε

β

Verificación fluencia acero a compresión

cumple

( ) 0,003 (203 60)'

203420

' 0,0021 0,0021200000

cus

ss

y

c d

cf

E

εε

ε

× − × −= =

= ≥ = = →

Momento aportado por el refuerzo superior

( ) ( )( )( )6 2' 900 10 420000 0,54 0,06 181ys sM A f d d m KPa m KN m′ ′ −= × − = × − = −

Momento aportado por el bloque a compresión

( )

( )( )

1 20,85 0,85 0,1372

0,1540,85 41000 0,6 0,154 0,54 0,85 41000 0,44 0,154 0,12 0,54 0,137

2

1281

C Cc c c

c

c

aM f´ A d f´ A d

M

M KN m

= × × − − × × −

= × × × − − × × − −

= − Momento último que resiste la sección.

'

1281 181 1462

0,9 1462

1316

n c s

n

u n

u

M M M

M KN m

M M KN m

M KN m

φ

= += + = −= = × −= −

Condición de equilibrio

( ) ( )( )( ) ( )( ) ( ) 2

0,85 600 440 120

0,85 41 600 154 440 154 120 900 4207326

420

y ys c s

s

A f f´ a a A f

A mm

′× = × − − + ×

× × × − − + ×= =

Page 113: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 112

11. ANÁLISIS Y DISEÑO DE VIGAS T

Figura 84

Figura 85

Page 114: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 113

Si el eje neutro desciende, dentro del espesor de la losa se analiza la viga como una viga rectangular,

de lo contrario como una viga T.

Figura 86

Ancho de ala efectivo

Las partes cercanas a las almas son más altamente esforzadas que las áreas fuera del alma.

Figura 87

Page 115: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 114

Ancho Efectivo be

be es el ancho que es esforzado de manera uniforme para dar la misma fuerza de compresión que se

desarrolla actualmente en la zona de compresión de ancho b(actual).

Figura 88

NSR-10

C.8.12 — Sistemas de vigas T

C.8.12.1 — En la construcción de vigas T, el ala y el alma deben construirse monolíticamente o, de

lo contrario, deben estar efectivamente unidas entre sí.

C.8.12.2 — El ancho efectivo de la losa usada como ala de las vigas T no debe exceder 1/4 de la luz

de la viga, y el ancho sobresaliente efectivo del ala a cada lado del alma no debe exceder:

(a) 8 veces el espesor de losa, y

(b) la mitad de la distancia libre a la siguiente alma

Page 116: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 115

e

e f w

e actual

4

16

Lb

b h b

b b

≤ +≤

C.8.12.3 — Para vigas que tengan losa a un solo lado, el ancho sobresaliente efectivo del ala no debe

exceder:

(a) 1/12 de la luz de la viga,

(b) 6 veces el espesor de la losa, y

(c) la mitad de la distancia libre a la siguiente alma.

( )

e w

e f w

e actual w distancia libre a la siguiente alma

12

6

0,5

Lb b

b h b

b b b

≤ +

≤ +≤ = + ×

C.8.12.4 — En vigas aisladas, en las que solamente se utilice la forma T para proporcionar

con el ala un área adicional de compresión, el ala debe tener un espesor no menor de 1/2 del ancho

del alma, y un ancho efectivo no mayor de 4 veces el ancho del alma.

wf

e w

24

bh

b b

C.8.12.5 — Cuando el refuerzo principal de flexión en una losa que se considere como ala de una

viga T (excluyendo las viguetas) sea paralelo a la viga, se debe disponer de refuerzo perpendicular a

la viga en la parte superior de la losa de acuerdo con lo siguiente:

C.8.12.5.1 — El refuerzo transversal se debe diseñar para resistir la carga mayorada que

actúa sobre el ala suponiendo que ésta trabaja en voladizo. Para vigas aisladas debe

considerarse el ancho total del ala. Para otros tipos de vigas T, sólo es necesario considerar el

ancho sobresaliente efectivo del ala.

C.8.12.5.2 — El espaciamiento del refuerzo transversal no debe exceder de 5 veces el espesor de la

losa ni de 450 mm.

Page 117: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 116

Varias geometrías posibles de vigas T

Figura 89

Análisis de vigas T

Caso 1: fa h≤

Asumir s y ysf fε ε≥ ⇒ =

La viga se comporta en condición sub-reforzada. Comprobar fa h≤

Figura 94

Page 118: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 117

Equilibrio

e0,85

ys

c

A fT C a

f´ b

×= ⇒ =×

Figura 90

s y

1

s cu y

ac

d c

c

ε ε

β

ε ε ε

=

− = ≥

Figura 91

Page 119: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 118

Calcular M n

2yn s

aM A f d

= × −

Caso 2: fa h>

( )f w f

w w

0,85

0,85

y

c

c

s

C f´ b b h

C f´ b a

T A f

= × − ×= × ×

= ×

Figura 92

( )w ff

0,85

y

cs

f´ b b hA

f

× − ×=

Las aletas son consideradas como de compresión de acero equivalente

( )ff w

w0,85

ys s

c

A A fT C C a

f´ b

−= + ⇒ =

×

Page 120: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 119

Figura 93

Confirmar

f

1

s cu 0,005

a h

ac

d c

c

>

=

− = ≥

β

ε ε

Confirmar

f f1

1,18 ó 1,18

y

c

f

dh c h a d

ϖ ρ

ϖ ϖβ

=

≤ = ≤ =

Determinar los momentos nominales

( )1 2

1 f

f2 f

2

2

y

y

n n n

n s s

n s

M M M

aM A A f d

hM A f d

= +

= − −

= −

La definición de Mn1 y Mn2 para la viga T están dados como:

Page 121: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 120

Figura 94

El momento último Mu para la viga T está dado como:

0,9

u nM Mφφ

==

Procedimiento de diseño vigas T

• Determinar el valor del momento de diseño, Mu .

• Suponga que el valor de la sección resultante será la tensión controlada t 0,005 ≥ε de

manera que pueda tomarse 0,9=φ

• Calcular d, ya que h es conocida.

60d h mm ≈ − Para una capa de refuerzo (barras de refuerzo No. 6 o menores).

90d h mm ≈ − Para dos capas de refuerzo (barras de refuerzo No. 6 o menores).

• Determinar el ancho efectivo del ala, be

• Comprobar si la capacidad requerida del momento nominal se puede proporcionar con la

compresión en el ala solamente.

( )f1 e f1 f10,85 y / 2f fcC f´ b h M C d h×= × = −

f1Si uM Mφ> → Necesita utilizar el alma por debajo de los rebordes. Vaya al paso 4.

Page 122: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 121

f1Si uM Mφ≤ → Utilice el procedimiento de diseño para vigas rectangulares.

eb = b

ad - = 095d

2

NOTA: 0,9=φ Para flexión sin carga axial.

• Encontrar la capacidad de momento nominal proporcionada por los rebordes sobresalientes

solamente (sin incluir ancho del alma).

Para una sección en forma de T

( )f e w f0,85 cC f´ b b h= −

( )f f f / 2M C d h= −

• Encontrar la capacidad de momento nominal que debe ser proporcionada por el alma.

w f

MuM M

φ= −

• Calcular la profundidad del bloque de compresión, mediante la resolución de la siguiente

ecuación para a.

( )( )

w w

w w

/ 2

0,85 / 2c

M C d a

M f´ b a d a×

= −

= × −

• Encontrar el área de refuerzo requerida, s (req)A

( )

f f

w w w w

f wrequerido

/

/ , donde 0,85

y

y

s

s c

s s s

A C f

A C f C f´ b a

A A A

×

== = ×

= +

• Seleccione las barras de refuerzo para

s s(proporcionado) (requerido)A A ≥

Confirme que las barras se ajustarán dentro de la sección transversal. Puede ser necesario cambiar

los tamaños de barras para ajustar el acero en una capa e incluso para ir a dos capas de acero, en

estos casos es necesario recalcular la altuda efectiva “d”.

• Calcular el actual Mu para las dimensiones de la sección y el refuerzo seleccionado. Verificar la

resistencia n u M Mφ ≥ mantener el sobre-diseño en un 10%

• Comprobar si el As proporcionado está dentro de los límites permitidos.

s s(proporcionado) (minimo)A A ≥

Page 123: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 122

Limitaciones en el refuerzo de vigas T

Límites inferiores

• Alma de la viga T a compresión (parte inferior):

minw

mayor entre4

1, 4

y

y

c

s

A fb d

f

ρ

= =

• Zona de ancho efectivo a compresión (parte superior):

w

(min) e

e

menor entre

mayor entre

2

4

1,4

y

y

y

c

cs

f´b d

f

f´A b df

b df

=

• Si s s(proporcionado) (requerido)4

A A3

Basado en el análisis entonces (min)sA no es requerido.

para (proporcionado)4

3

n u sM M Aφ ≥

Nota: Confrontar con NSR-10 C.10.5.3

Requerimientos adicionales para vigas T cuando las alas se encuentran sometidas a esfuerzos

de tracción

NSR-10

C.10.6 — Distribución del refuerzo de flexión en vigas y losas en una dirección

C.10.6.6 — Cuando las alas de las vigas T están en tracción, parte del refuerzo de tracción

por flexión debe distribuirse sobre un ancho efectivo del ala como se define en C.8.12 o un ancho

igual a 1/10 de la luz, el que sea menor. Si el ancho efectivo del ala excede de 1/10 de la luz, se debe

colocar algún refuerzo longitudinal en las zonas más externas del ala.

( )1

10e compresiónb >

Page 124: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 123

EJEMPLO 12

Determinar el momento nominal y el momento último de la viga mostrada en la figura.

2

1400

75

2200

440

5733

345

21

300

5600

e

f

actual

w

y

s

c

b mm

t h mm

b mm

d mm

A mm

f MPa

f´ MPa

b mm

L mm

== =

=====

==

Verificar be

( )

56001400 (C.8.12.2)

4 416 16 75 300 1500

2200

e

e f w

e actual

L mmb mm

b h b mm mm mm

b b mm

≤ = =

≤ + = × + =

≤ =

Determinar la cuantía del refuerzo ρ y verificar que es mayor que mínρ . 25733

0,0434300 440w

sA mm

b d mm mmρ = = =

×

1, 4 1, 4

0,0041345

0,004121

0,00334 4 345

mín mín

y

y

c

f

f

ρ ρ= =

== =

×

0,0434 > 0,0041 cumple sección trabajando con refuerzo mínimo Determinar ω , verificar que el valor de c es mayor hf.

Page 125: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 124

( )

2

1 se analiza como viga T

5733 3450,153

1400 440 21

1,18 1,18 0,153 44075 93,4

0,85

1,18 75 1,18 0,153 440 79,4

0,85 0,85 21 1400 300

f

f

e w ff

y

y

c

cs

f mm MPa

f´ mm mm MPa

d mmh c mm mm

h a d mm mm mm

f´ b b h MPa mmA

f

ϖ ρ

ϖβϖ

= = × =×

× × ≤ = ⇒ ≤ = ≤ = ⇒ ≤ × × =

× − × × −= = ( ) 275

4268345

mm mmmm

MPa=

Determinar el valor de c y verificar la deformación unitaria en el acero, εs.

( ) ( )2 2

1

s

5733 4268 34594

0,85 0,85 21 300

111

4401 0,003 1 0,003 0,0089 0,005

111

f

w

ys s

c

mm mm MPaA A fa mm

f´ b MPa mm

ac mm

d mm

c mm

β

ε

− ×− ×= = =

× × × ×

= =

= − = − = >

El acero fluye en la zona de tracción.

Determinar los componentes de momento

( )

( )( )

( )

( )( )

1

3 2 3 21

2

3 22

1 2

2

0,0945,733 10 4,268 10 345000 0,44 199

2

2

0,0754,268 10 345000 0,44 593

2

199 593 792

f

ff

y

y

n s s

n

n s

n

n n n

u n

aM A A f d

mM m m KPa m KN m

hM A f d

mM m KPa m KN m

M M M KN m KN m KN m

M Mφ

− −

= − −

= × − × − = −

= −

= × − = −

= + = − + − = −= = ( )0,9 792 713KN m KN m− = −

Page 126: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 125

EJEMPLO 13 Determinar el ancho efectivo para la viga de borde y efectuar el análisis. Utilizar 4Nº8 para determinar el momento último. El sistema estructural mostrado en la figura no hace parte del sistema de resistencia sísmica por lo que se permite el uso de un acero importado con un fy=345 MPa. y no tiene condiciones de exposición ambiental (recubierto con piso y cielo raso) se permite el uso de un concreto f`c=21 MPa.

( )2

Columnas

345

21

2040

300 300

y

c

s

f MPa

f´ MPa

A mm

mm mm

===

×

Determinar be

( )( ) ( )_

6000300 800

12 126 6 200 300 1500

0,5 300 0,5 4700 2650

e w

e f w

e actual w luz libre

L mmb b mm mm

b h b mm mm mm

b b b mm mm mm

≤ + = + =

≤ + = × + =

≤ = + × = + × =

Page 127: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 126

Se selecciona be= 800mm

Verificación de mínρ

22040

0,02300 340w

sA mm

b d mm mmρ = = =

×

1,4 1, 40,0041

3500,0041

210,0033

4 4 345

mín mín

y

y

c

f

f

ρ ρ= =

== =

×

Cumple

Determinar ω y verificar que el valor de c es mayor que hf.

2

1 No cumple.

2040 3450,123

800 340 21

1,18 1,18 0,123 340200 58

0,85

1,18 200 1,18 0,123 340 49,3

f

f

y

c

f mm MPa

f´ mm mm MPa

d mmh c mm mm

h a d mm mm mm

ϖ ρ

ϖβϖ

= = × =×

× × ≤ = ⇒ ≤ = ≤ = ⇒ ≤ × × =

No cumple, efectuar análisis como viga rectangular.

Determinar el valor de c y verificar la deformación unitaria en el acero, εs.

22040 34549

0,85 0,85 21 800

ys

c

A f mm MPaa mm

f´ b MPa mm

× ×= = =× × × ×

1

s

4958

0,85

3401 0,003 1 0,003 0,0146 0,005

58

a mmc mm

d mm

c mm

β

ε

= = =

= − = − = >

El acero fluye en la zona de tracción.

( )( )3 2 0,0412,04 10 345000 0,34 225

2 2

0,9 225 203

yn s

u n

a mM A f d m KPa m KN m

M M KN m KN mφ

− = × × − = × − = −

= = × − = −

Page 128: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 127

EJEMPLO 14 Un sistema de entrepiso en concreto consta de vigas T paralelas y simplemente apoyadas, espaciadas

5000 mm entre centros y con luces entre apoyos de 10000 mm. La losa con espesor de 200 mm esta

vaciada monolíticamente con las almas de las vigas T que tienen un ancho bw=400mm y una altura

total medida de la parte superior de la losa, igual a h=800mm. La altura efectiva se tomará 75mm

menor que la altura total. Además de su propio peso cada viga T debe sostener una carga muerta de

4KN/m2 y una carga viva de 10KN/m2. El sistema estructural mostrado en la figura no presenta

condiciones de exposición ambiental por lo que se seleccionan como resistencias de los materiales

f’c=21MPa y fy=420MPa. Determinar el área de acero requerida a tensión y seleccione las varillas

de acero correspondientes.

Determinación peso de la viga

( ) ( )( )( )( )

3

3 3

5000 200 600 400 12,4

24 / 12,4 298viga

V L V m

W KN m m KN

= × + × × ⇒ =

= =

Carga muerta

( )( )

2 2

2 distribuida

2984 / 9,96 /

5 10

9,96 / 5 49,8 /

D

D

KNW KN m KN m

m m

W KN m m KN m

= + = ×

= × =

Carga viva

( )2 distribuida10 / 5 50 / LW KN m m KN m= × =

Page 129: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 128

Carga mayorada:

( ) ( )1,2 1,6

1,2 49,8 / 1,6 50 / 139,76 /

may D L

may

W W W

W KN m KN m KN m

= +

= × + × =

Determinación de Mu

( )( )22 139,76 / 101747

8 8may

uW L KN m m

M KN m×

= = = −

Determinación de eb

( )

100002500

4 416 16 200 400 3600

5000

2500

e

e f w

e

e

L mmb mm

b h b mm mm mm

b b mm

b mm

≤ = =

≤ + = × + =

≤ ==

Verificación Momento aletas

( )( )( )

( )

1

1 1

Utilizar procedimiento viga rectangular

0,85 0,85 21000 2,5 0,2 8925

0,28925 0,725 5578

2 2

1747 0,9 5578 5020

=

2

f e f

ff f

y

c

u

us

C f´ b h KPa m m KN

hM C d KN m KN m

M KN m KN m

MA

af dφ

= × × = =

= × − = − = −

= − ≤ × = − ⇒

0,85 e

ys

c

A fa

f´ b

×=× ×

Suponer 100=a mm (primer tanteo) 26847

64

==

As mm

a mm

Suponer 64=a mm (segundo tanteo) 26669

63

==

As mm

a mm

Suponer 63=a mm (tercer tanteo) 26664

63

==

As mm

a mm

Utilizar 10 varillas Nº10

Verificación 740,102 0,375

725

c mmok

d mm= = < →

Verificación ancho mínimo (refuerzo dos filas) para 5 varillas Nº10 y tamaño de agregado ¾” se

requieren 360mm < 400mm � cumple.

Page 130: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 129

EJEMPLO 15

La viga mostrada en la figura da soporte a una cubierta con su respectiva canal, se debe dimensionar

la viga, determinar el refuerzo inferior y el momento máximo que resiste la viga mostrada en la

figura.

Notas aclaratorias: • Utilizar concreto f’c=35 MPa y acero de refuerzo fy=420 MPa. La viga debe ser diseñadas

por condiciones de exposición ambiental. • La distancia de la fibra extrema a compresión al centroide del refuerzo a compresión es 60

mm.

C.10.2.7.3. Para *′Fentre 17 y 28 MPa, el factor G2se debe tomar como 0.85. Para *′Fsuperior a

28 MPa, G2se debe disminuir en forma lineal a razón de 0.05 por cada 7MPa de aumento sobre 28

MPa. Sin embargo G2 no debe ser menor de 0.65.

Entonces,

H = 0.85 − 0.05 t8+o − 287 u = 0,85 − 0,05 M35 − 287 O = 0,8 ≥ 0.65. C.8.12.3. Para vigas que tengan losa a un solo lado, el ancho sobresaliente efectivo del ala no debe

exceder:

(a) 1/12 de la luz de la viga,

Page 131: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 130

(b) 6 veces el espesor de la losa, y

(c) la mitad de la distancia libre a la siguiente alma.

Es decir, de (b) se tiene;

�w ≤ 6ℎ� + ��

De donde; ℎ� ≥ x��x�� = ���55����55� = 25�� De donde

� ≈ ℎ − 60��(19>�>^_8`_^�d) � ≈ ℎ − 90��(29>�>f^_8`_^�d)

� = ℎ − ^_9`�^a�a_bcd = 600�� − 60�� = 540��

Asumiendo ;

9� = 0,375

9 = 0,375 × � = 0,375 × 540�� = 202,5��

Por C.10.2.7.1.

> = H9 = 0,8 × 202,5�� = 162��

Verificando la fluencia del acero:

KL′9 − �+ = 0,0039 ; �bcdb9_f, KL+ = 0,003 9 − �+9

Page 132: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 131

= 0,003 M202,5�� − 60��202,5�� O = 0,0021 ≤ 0,375 Como ℎ�567 = 25��, �bcdb9_ff_cd�>,ℎ� = 200��

ℎ� = 200�� > > = 162��

Se analiza como viga rectangular.

Por equilibrio de fuerzas

C+ + C = B

��+ 8: + 0,858+9 × > × � = �L8:

�L = ��+ 8: + 0,858+9 × > × �8: = 800��� × 420<=> + 0,85 × 35<=> × 162�� × 500��420<=>

�� = 6537,5��� = 0,00654�� <P = ∅<7

∅ = 0,9 → ��_�aób sin 9>^�>��a>� <P = 0,9(���8: − ��+ 8:� Q� − >2R + ��+ 8:(� − �+))

= 0,9((6537,5��� × 420<=> − 800��� × 420<=>) M540�� − 162��2 O+ 800��� × 420<=>(540�� − 60��)

<P = 0,9 × 1267,35ST −�

<P = 1140,62ST −�

Page 133: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 132

12. CORTANTE

Figura 95

Distribución de los esfuerzos distribuidos a través de la sección transversal

VQ

Ibτ =

El esfuerzo cortante actuando en una viga rectangular

Figura 96

La ecuación del esfuerzo cortante de una viga rectangular viene dada por:

Page 134: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 133

VQ

Ibτ =

3

2

max

max ave

Momento de Inercia12

Q2 4 8

31,5

2

bhI

bh h bh

V

bhτ τ

= −

= × =

= × =

Nota: El máximo cortante se produce primero en el eje neutro.

La distribución ideal de esfuerzo cortante se puede describir como:

Figura 97

Page 135: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 134

Una descripción realista de la distribución de esfuerzos cortantes se muestra de la siguiente forma:

Figura 98

El esfuerzo cortante que actúa a lo largo de la viga puede ser descrito con un bloque de esfuerzo:

Figura 99

Usando el círculo de Mohr, el bloque de esfuerzo puede ser utilizado para encontrar el cortante

máximo.

Page 136: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 135

Agrietamiento inclinado de vigas de concreto reforzado

Patrones típicos de grietas para una viga de altura considerable

Figura 100

Las fisuras por flexión y cortante comienzan como una fisura por flexión y se propagan debido al

esfuerzo cortante. Las fisuras por flexión en vigas son verticales, perpendicular al eje neutro.

Figura 101

Page 137: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 136

Para una viga profunda las grietas se presentan como:

Fisuras generadas por esfuerzo cortante:

Inclinadas en diagonal, interceptándose la fisura con las barras longitudinales más las verticales o las

de refuerzo inclinado.

Figura 102

Las fisuras a cortante fallan en dos formas principalmente:

Figura 103

Page 138: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 137

13. DISEÑO A CORTANTE

Cuando no se usan estribos: cz ay dResistencia Total = v + v + v

czv - Cortante en la zona de compresión

ayv - Trabazón en el agregado

dv - Fuerza de dovela en las barras longitudinales.

Nota:

czv Incrementa de V V

a bd by

Figura 104

Factores que intervienen en la resistencia del concreto al esfuerzo cortante (sin refuerzo a

cortante)

• La resistencia del concreto a la tracción afecta la generación de fisuras diagonales.

• Relación de refuerzo longitudinal, ρw

ww

sA

b dρ = (Restringe las grietas)

Page 139: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 138

Para w w0,00075 0,0025: 0,17c cV f´ b dρ λ≤ ≤ ≅ ×

• Relación luz de aplicación de la carga que genera esfuerzos cortantes versus altura efectiva de la

viga, a / d … M / (Vd)

2 a

d≤ ⇒ Un diseño a cortante más detallado es requerido

2 a

d> ⇒ Esta relación tiene poco efecto

Figura 105

• El aumento en el tamaño de la viga lleva por lo general a un incremento en la profundidad de la

viga reduciendo el esfuerzo cortante en fisuras inclinadas.

• Fuerzas axiales

Tensión Axial: Reduce las cargas en las fisuras inclinadas

Compresión Axial: Incrementa las cargas en las fisuras inclinadas.

Función y determinación de la resistencia del refuerzo a cortante

El refuerzo a cortante es proporcionado para asegurar que la capacidad a flexión en viga sea

completamente desarrollada, garantizando un modo de falla a flexión en condición de viga sub-

reforzada, pues la falla por cortante es frágil. Actúa como "pinzas" para impedir la ampliación de las

fisuras generadas por cortante. El refuerzo a cortante debe anclarse adecuadamente a fin de

desarrollar el esfuerzo de fluencia para el cual es diseñado.

Page 140: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 139

Refuerzo a cortante

Estribos

( )v sin cosys

A f dV

s

α α+× ×=

o v90y

sA f d

Vs

α × ×= ⇒ =

Figura 106

Page 141: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 140

Barras inclinadas

( )v sin cosys

A f dV

s

α α+× ×=

o vs1, 41

45yA f d

Vs

α × ×= ⇒ =

Figura 107

Page 142: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 141

Procedimiento de diseño

• Determinar Vu

• Determinar φVc

• Verificar φVc

En caso afirmativo, se requiere refuerzo a cortante (ir al paso 4)

En caso negativo. Cumple.

1

2u cV Vφ≥ → En caso afirmativo, se requiere refuerzo a cortante (ir al paso 4)

En caso negativo. Cumple.

• Si1

2

c u cV V Vφ φ≤ ≤ → Ubicar refuerzo mínimo

( )( )

min

0,350,062 ww

vyt yt

cb sb s

A f´f f

= ≤

También:

( )max 600 C.11.4.5.12

ds mm≤ ≤

• Si calular (req'd) , u c sV V Vφ≥ →

u n c s

us u c s c

V V V V

VV V V V V

φ φ φ

φ φφ

≤ = +

⇒ = − ⇒ = −

Verificar

( )0,66 C.11.4.7.9ws cV f´ b d≤

Nota:

Si cumple OK, sino cumple hay que rediseñar.

• Resolver para el espaciamiento de estribos requerido (resistencia) Suponiendo estribos # 3, # 4 ó

# 5.

v yt

s

A f ds

V≤ De la ecuación C.11-15

• Verifique requisito mínimo de acero (Ec. C.11-14)

max 0,350,062v yt yt

wwc

A f fs

bf´ b= ≤

Page 143: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 142

• Verifique requisito espaciamiento máximo (C.11.4.5)

( )

max

max

Si

Nota: Si Ilegal

0,33 600 2

Si 0,33 300 4

0,66

w

w

w

s c

s c

s c

dV f´ b d s mm

dV f´ b d s mm

V f´ b d

≤ → ≤ ≤

≥ → ≤ ≤

Use el espaciamiento más pequeño.

Ubicación del cortante máximo para el diseño a cortante de vigas

Miembros no pretensados

Secciones ubicadas a menos de una distancia d de la cara del apoyo pueden ser diseñados para el

cortante, Vu, que corresponde al calculado a una distancia d.

Figura 108

La compresión lleva la carga directamente en el apoyo. Cuando:

• La reacción en el apoyo introduce compresión en las zonas extremas del miembro.

Ninguna carga concentrada ocurre a d de la cara de apoyo.

Figura 109

Page 144: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 143

EJEMPLO 16

Debe proyectarse una viga rectangular para soportar una fuerza cortante mayorada de 140 KN. No

se usa refuerzo a cortante. Por condiciones de exposición ambiental usar f’c = 28MPa ¿Cuáles deben

ser las dimensiones mínimas de la viga?

140

140

0,75uw w

u

u

V KN

V KN

b d b dϑ

φ

=

= =× × × ×

Determinar el valor de fuerza cortante para la cual no se requiere refuerzo

0,17 0,17 1 28 0,89 (C.11 3)2C

u C cf´ MPa MPaϑϑ ϑ λ= ⇒ = × × = × × = −

Igualando las dos expresiones se tiene

32 2

3

140 0,89 10 140 2 140419476

2 0,75 2 0,75 0,75 0,89 10ww w

c KN KPa KNb d m mm

b d b d

ϑ × ×= ⇒ = ⇒ × = =× × × × × ×

Tomando wb = 600mm y d = 700mm.

Page 145: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 144

EJEMPLO 17

Diseñar el refuerzo transversal de la viga mostrada en la figura. ¿Qué parte de la viga requiere

refuerzo a cortante? La viga hace parte de un sistema de entrepiso sin ningún tipo de exposición

ambiental.

• Cortante en el apoyo

100 5,5275

2apuV KN×= =

• Esfuerzo crítico en el concreto

0,17 0,17 1 21 0,78 (C.11 3)C cf´ MPa MPaϑ λ= × × = × × = −

• Diagrama de esfuerzos cortantes

0, 2754, 21

0,75 0,3 0, 29

0, 2453,75

0,75 0,3 0, 29

u

u

MNMPa

MNMPa

ϑ

ϑ

= =× ×

= =× ×

11

22

27502495

4, 21 4, 21 0,39

27502240

4, 21 4.21 0,78

LdmmLd mm

MPa

LdmmLd mm

MPa

= ⇒ =−

= ⇒ =−

Se requieren estribos hasta una distancia de 2495mm.

Page 146: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 145

EJEMPLO 18

Diseñar el refuerzo transversal de la viga mostrada en la figura de acuerdo a las fuerzas cortantes

indicadas. La viga por ser de cubierta presenta condiciones de exposición ambiental y estará en

contacto directo con el agua por lo que f’c=28MPa y fy=420 MPa.

1. DISEÑO VIGA SOPORTE IZQUIERDO

• Determinar valor de la fuerza cortante a una distancia “d” de la cara de la columna.

( )1

1

426 120 / 0,34 385,2

0,3853,77

0,75 0,4 0,34

d

u d

V KN KN m m KN

MNMPaϑ

= − =

= =× ×

Esfuerzo crítico en el concreto

1

1

Determinar

0,17 0,17 1 28 0,899 (C.11 3)

3,77 0,899

2,87

c

u d C s

s u d c

cf´ MPa

MPa MPa

MPa

ϑ λϑ ϑ ϑϑ ϑ ϑ

= × × = × × = −≥ ⇒ > →

= − =

Seleccionando estribos cerrados diámetro 1/2” tres ramas

2

2

387 420

387 420141

2,87 400

v

v

s w

y

y

A mm f MPa

A f mm MPas mm

b MPa mmϑ

= =

× ×= = =× ×

Verificación de requerimientos mínimos (C.11.4.5)

a) max387 420 420

1239 30,35 0,35 4000,062 0,062 400 28

v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

Page 147: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 146

b) 0,33 0,33 28 1,75 3,77 0,89 2,88 (C.11.4.5.3)cf´ MPa MPa MPa MPa× ⇒ × = > − =

No cumple por lo cual hay que reducir el espaciamiento calculado a la mitad y verificar

espaciamiento máximo.

14171

2= ≅S mm

Usar el menor valormax 300 71 85 3004

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤ →

Colocar 5 estribos ϕ ½” tres ramas c/71mm

• Determinar el valor de la fuerza cortante a una distancia “2d” de la cara de la columna.

( )2 426 120 / 0,34 2 344,4= − × =dV KN KN m KN

2

0,3443,37

0,75 0,4 0,34u d

MNMPa

m mϑ = =

× ×

Seleccionando estribos cerrados diámetro 1/2” tres ramas.

( ) ( )

2

2

2

387 420

387 420163

3,37 0,89 400

v

v

u d c w

y

y

A mm f MPa

A f mm MPas mm

b MPa MPa mmϑ ϑ

= =

× ×= = =− × − ×

Verificación requerimientos mínimos (C.11.4.5)

max387 420 420

a) 1239 30,35 0,35 4000,062 0,062 400 28

v

ww

y y

c

A × f fS mm m

bb × f´

×= ≤ ⇒ = ≤ =× ×× × ×

b) 0,33 0,33 28 1,75 3,37 0,89 2,48 (C.11.4.5.3)cf´ MPa MPa MPa MPa× ⇒ × = > − =

No cumple por lo cual hay que reducir el espaciamiento calculado a la mitad y verificar

espaciamiento máximo.

Page 148: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 147

16382

2= ≅S mm

Usar el menor valormax 300 82 85 3004

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤ →

( )2 5 71 50

82

− × −=

dN

Colocar 4 estribos diámetro 1/2” tres ramas c/82 mm

• Determinar el valor de la fuerza cortante a una distancia “3d” de la cara de la columna.

( )3

3

426 120 / 0,34 3 303,6

0,3032,97

0,75 0, 4 0,34

d

u d

V KN KN m KN

MNMPa

m mϑ

= − × =

= =× ×

Seleccionando estribos cerrados ϕ=1/2” tres ramas

( ) ( )

2

2

3

387 420

387 420195

2,97 0,89 400

v

v

u d c w

y

y

A mm f MPa

A f mm MPas mm

b MPa MPa mmϑ ϑ

= =

× ×= = =− × − ×

Verificación requerimientos mínimos (C.11.4.5)

max387 420 420

a) 1239 30,35 0,35 4000,062 0,062 400 28

v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 2,97 0,89 2,08 ( .11.4.5.3)cf´ MPa MPa MPa MPa C× ⇒ × = > − =

No cumple por lo cual hay que reducir el espaciamiento calculado a la mitad y verificar

espaciamiento máximo.

19597

2= ≅S mm

Usar el menor valor.max 300 97 85 3004

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤ →

( ) ( )3 4 82 5 71 50

85

dN

− × − × −= � 4 estribos diámetro 1/2” tres ramas c/85 mm.

Page 149: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 148

• Determinar el valor de la fuerza cortante a una distancia “4d” de la cara de la columna.

( )4

4

426 120 / 0,34 4 263

0, 2632,58

0,75 0, 4 0,34

d

u d

V KN KN m KN

MNMPa

m mϑ

= − × =

= =× ×

Seleccionando estribos cerrados diámetro 3/8” tres ramas

( ) ( )

2

2

3

213 420

213 420132

2,58 0,89 400

v

v

u d c w

y

y

A mm f MPa

A f mm MPas mm

b MPa MPa mmϑ ϑ

= =

× ×= = =− × − ×

Verificación requerimientos mínimos (C.11.4.5)

213 420 420a) max 682 3

0,35 0,35 4000,062 0,062 400 28v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 2,58 0,89 1,69 (C.11.4.5.3)cf´ MPa MPa MPa MPa× ⇒ × = > − =

Cumple por lo cual no hay que reducir el espaciamiento calculado a la mitad, verificar

espaciamiento máximo.

Usar el menor valor.max 600 132 170 6002

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤

( ) ( ) ( )4 4 85 4 82 5 71 50

132

dN

− × − × − × −= � 3 estribos φ 3/8” tres ramas c/132mm.

• Determinar el valor de la fuerza cortante a una distancia “5d” de la cara de la columna.

( )

( )( )

5

5

426 120 / 0,34 5 222

0,2222,17

0,75 0,4 0,34

d

u d

V KN KN m KN

MNMPa

m mϑ

= − × =

= =×

Seleccionando estribos cerrados diámetro 3/8” dos ramas

( ) ( )

2

2

3

142 420

142 420116

2,17 0,89 400

v

v

u d c w

y

y

A mm f MPa

A f mm MPas mm

b MPa MPa mmϑ ϑ

= =

× ×= = =− × − ×

Page 150: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 149

Verificación requerimientos mínimos (C.11.4.5).

142 420 420a) max 455 3

0,35 0,35 4000,062 0,062 400 28v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 2,17 0,89 1,28 (C.11.4.5.3)cf´ MPa MPa MPa MPa× ⇒ × = > − =

Cumple por lo cual no hay que reducir el espaciamiento calculado a la mitad, verificar

espaciamiento máximo.

max Usar el menor valor.600 116 170 6002

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤ →

( ) ( ) ( )5 (3 132) 4 85 4 82 5 71 50

116

dN

− × − × − × − × −= � 2 estribos ϕ 3/8” dos ramas

c/116mm.

• Determinar el valor de la fuerza cortante a una distancia “6d” de la cara de la columna.

( )6 426 120 / 0,34 6 181.2= − × =dV KN KN m KN

6

0,1811,77

0,75 0,4 0,34u d

MNMPa

m mϑ = =

× × Seleccionando estribos cerrados diámetro 3/8” dos ramas

( ) ( )

2

2

3

142 420

142 420169

1,77 0,89 400

v

v

u d c w

y

y

A mm f MPa

A f mm MPas mm

b MPa MPa mmϑ ϑ

= =

× ×= = =− × − ×

Por requerimientos mínimos colocar estribos ϕ 3/8” c/170mm para el resto de la viga hasta el

punto de cortante cero.

2. DISEÑO VIGA SOPORTE DERECHO

• Determinar valor de la fuerza cortante a una distancia “d” de la cara de la columna.

( )1

1

489,9 120 / 0,34 449,1

0,4494,4

0,75 0,4 0,34

d

u d

V KN KN m KN

MNMPaϑ

= − =

= =× ×

Seleccionando estribos cerrados diámetro 1/2” tres ramas

Page 151: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 150

( ) ( )

2

2

1

387 420

387 420116

4,4 0,89 400

v

v

u d c w

y

y

A mm f MPa

A f mm MPas mm

b MPa MPa mmϑ ϑ

= =

× ×= = =− × − ×

Verificación de requerimientos mínimos (C.11.4.5)

max387 420 420

a) 1239 30,35 0,35 4000,062 0,062 400 28

v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 4,4 0,89 3,50 ( .11.4.5.3)cf´ MPa MPa MPa MPa C× ⇒ × = > − =

No cumple por lo cual hay que reducir el espaciamiento calculado a la mitad y verificar

espaciamiento máximo Este valor se aproxima al valor obtenido por 0,66 3,49cf´× = .

11658

2= ≅S mm

max 300 58 85 3004

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤

Colocar 6 estribos diámetro 1/2” tres ramas c/58mm.

• Determinar valor de la fuerza cortante a una distancia “2d” de la cara de la columna.

( )2

2

489,9 120 / 0,34 2 408,3

0,4084

0,75 0,4 0,34

d

u d

V KN KN m KN

MNMPaϑ

= − × =

= =× ×

Seleccionando estribos cerrados diámetro 1/2” tres ramas

2387 420v yA mm f MPa= =

( ) ( )2

1

387 420131

4 0,89 400v

u d c w

yA f mm MPas mm

b MPa MPa mmϑ ϑ× ×= = =

− × − ×

Page 152: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 151

Verificación de requerimientos mínimos (C.11.4.5)

387 420 420a) max 1239 3

0,35 0,35 4000,062 0,062 400 28v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 4 0,89 3,11 (C.11.4.5.3)cf´ MPa MPa MPa MPa× ⇒ × = > − =

No cumple por lo cual hay que reducir el espaciamiento calculado a la mitad y verificar

espaciamiento máximo.

13166

2= ≅S mm

max 300 66 85 3004

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤

( )2 6 58 505

66

− × −= =

dN � Colocar 5 estribos diámetro 1/2” tres ramas c/66mm.

• Determinar valor de la fuerza cortante a una distancia “3d” de la cara de la columna.

( )3

3

489,9 120 / 0,34 3 367,5

0,3673,6

0,75 0,4 0,34

d

u d

V KN KN m KN

MNMPa

m mϑ

= − × =

= =× ×

Seleccionando estribos cerrados diámetro 1/2” tres ramas

2387 420v yA mm f MPa= =

( ) ( )2

3

387 420150

3,6 0,89 400v

u d c w

yA f mm MPas mm

b MPa MPa mmϑ ϑ× ×= = =

− × − ×

Verificación de requerimientos mínimos (C.11.4.5)

387 420 420a) max 1239 3

0,35 0,35 4000,062 0,062 400 28v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 3,6 0,89 2,71 ( .11.4.5.3)cf´ MPa MPa MPa MPa C× ⇒ × = > − =

No cumple por lo cual hay que reducir el espaciamiento calculado a la mitad y verificar el

espaciamiento máximo.

Page 153: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 152

15075

2= ≅S mm

max 300 75 85 3004

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤

( ) ( )3 5 66 6 58 504

75

− × − × −= =

dN � Colocar 4 estribos diámetro 1/2” tres ramas c/75mm.

• Determinar valor de la fuerza cortante a una distancia “4d” de la cara de la columna.

( )4

4

489,9 120 / 0,34 4 326,7

0,3263,2

0,75 0,4 0,34

d

u d

V KN KN m KN

MNMPa

m mϑ

= − × =

= =× ×

Seleccionando estribos cerrados diámetro 1/2” tres ramas

2387 420v yA mm f MPa= =

( ) ( )2

4

387 420176

3,2 0,89 400v

u d c w

yA f mm MPas mm

b MPa MPa mmϑ ϑ× ×= = =

− × − ×

Verificación de requerimientos mínimos (C.11.4.5)

387 420 420a) max 1239 3

0,35 0,35 4000,062 0,062 400 28v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 3,2 0,89 2,31 ( .11.4.5.3)cf´ MPa MPa MPa MPa C× ⇒ × = > − =

No cumple por lo cual hay que reducir el espaciamiento calculado a la mitad y verificar el

espaciamiento máximo.

17688

2= ≅S mm

max 300 88 85 3004

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤

( ) ( ) ( )4 4 75 5 66 6 58 504

85

dN

− × − × − × −= = � Colocar 4 estribos ϕ ½” tres ramas

c/85mm.

Page 154: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 153

• Determinar valor de la fuerza cortante a una distancia “5d” de la cara de la columna.

( )5

5

489,9 120 / 0,34 5 285,9

0,2862,8

0,75 0,4 0,34

d

u d

V KN KN m KN

MNMPa

m mϑ

= − × =

= =× ×

Seleccionando estribos cerrados diámetro 1/2” dos ramas

2258 420v yA mm f MPa= =

( ) ( )2

5

258 420142

2,8 0,89 400v

u d c w

yA f mm MPas mm

b MPa MPa mmϑ ϑ× ×= = =

− × − ×

Verificación de requerimientos mínimos (C.11.4.5)

258 420 420a) max 826 3

0,35 0,35 4000,062 0,062 400 28v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 2,8 0,89 1,91 ( .11.4.5.3)cf´ MPa MPa MPa MPa C× ⇒ × = > − =

No cumple por lo cual hay que reducir el espaciamiento calculado a la mitad y verificar

espaciamiento máximo.

14271

2= ≅S mm

max 300 71 85 3004

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤

( ) ( ) ( ) ( )5 4 85 4 75 5 66 6 58 505

71

dN

− × − × − × − × −= = �

Colocar 5 estribos diámetro 1/2” dos ramas c/71mm.

• Determinar valor de la fuerza cortante a una distancia “6d” de la cara de la columna.

( )6

6

489,9 120 / 0,34 6 245,1

0,2452,4

0,75 0,4 0,34

d

u d

V KN KN m KN

MNMPa

m mϑ

= − × =

= =× ×

Seleccionando estribos cerrados diámetro 3/8” dos ramas

2142 420v yA mm f MPa= =

Page 155: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 154

( ) ( )2

5

142 42099

2,4 0,89 400v

u d c w

yA f mm MPas mm

b MPa MPa mmϑ ϑ× ×= = =

− × − ×

Verificación de requerimientos mínimos (C.11.4.5)

258 420 420a) max 826 3

0,35 0,35 4000,062 0,062 400 28v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 2,4 0,89 1,51 ( .11.4.5.3)cf´ MPa MPa MPa MPa C× ⇒ × = > − =

Cumple por lo cual no hay que reducir el espaciamiento calculado a la mitad, verificar

max 600 99 170 6002

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤ espaciamiento máximo.

( ) ( ) ( ) ( ) ( )6 5 71 4 85 4 75 5 66 6 58 504

99

dN

− × − × − × − × − × −= =

Colocar 4 estribos diámetro 1/2” dos ramas c/99mm.

• Determinar valor de la fuerza cortante a una distancia “7d” de la cara de la columna.

( )7

7

489,9 120 / 0,34 7 204,3

0,2042

0,75 0,4 0,34

d

u d

V KN KN m KN

MNMPa

m mϑ

= − × =

= =× ×

Seleccionando estribos cerrados diámetro 3/8” dos ramas

2142 420v yA mm f MPa= =

( ) ( )2

5

142 420134

2 0,89 400v

u d c w

yA f mm MPas mm

b MPa MPa mmϑ ϑ× ×= = =

− × − ×

Verificación de requerimientos mínimos (C.11.4.5):

142 420 420a) max 455 3

0,35 0,35 4000,062 0,062 400 28v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 2 0.89 1,11 ( .11.4.5.3)cf´ MPa MPa MPa MPa C× ⇒ × = > − =

Cumple por lo cual no hay que reducir el espaciamiento calculado a la mitad, verificar

espaciamiento máximo.

Page 156: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 155

max 600 134 170 6002

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤

( ) ( ) ( ) ( ) ( ) ( )7 4 99 5 71 4 85 4 75 5 66 6 58 502

134

dN

− × − × − × − × − × − × −= =

Colocar 2 estribos diámetro 1/2” dos ramas c/134mm.

• Determinar valor de la fuerza cortante a una distancia “8d” de la cara de la columna.

( )7

7

489,9 120 / 0,34 8 163,5

0,1641,61

0,75 0,4 0,34

d

u d

V KN KN m KN

MNMPa

m mϑ

= − × =

= =× ×

Seleccionando estribos cerrados diámetro 3/8” dos ramas

2142 420v yA mm f MPa= =

( ) ( )2

5

142 420207

1,61 0,89 400v

u d c w

yA f mm MPas mm

b MPa MPa mmϑ ϑ× ×= = =

− × − ×

Verificación de requerimientos mínimos (C.11.4.5)

142 420 420a) max 455 3

0,35 0,35 4000,062 0,062 400 28v

ww

y y

c

A f fS mm m

bb f´

× ×= ≤ ⇒ = ≤ =× ×× × × ×

b) 0,33 0,33 28 1,75 1,61 0.89 0,72 ( .11.4.5.3)cf´ MPa MPa MPa MPa C× ⇒ × = > − =

Cumple por lo cual no hay que reducir el espaciamiento calculado a la mitad, verificar

espaciamiento máximo.

max 600 207 170 6002

dS mm mm mm mm≤ ≤ ⇒ ≤ ≤ .

Para el resto de la viga colocar estribos diámetro 3/8” dos ramas c/170mm.

Page 157: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 156

14. TORSIÓN

Distribución de esfuerzos sobre una sección transversal sujeta a torsión

Figura 110

Máximo esfuerzo cortante, maxτ

max 2x yτ η Τ=

Donde

η= Factor de forma

Τ = Momento torsor

x, y= Dimensiones de la sección transversal

El factor de forma es diferente para los casos lineales y no lineales.

Page 158: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 157

Modo de falla:

La falla a torsión del concreto simple se produce de repente con una fisura de tracción inclinada en

una de las caras más amplias, entonces se extiende en las caras estrechas. El aplastamiento del

concreto se produce en la cara opuesta más amplia.

Resistencia a la torsión, upΤ del concreto simple.

Varias teorías se han presentado para el cálculo de resistencia a la torsión del hormigón simple

incluyendo teorías plásticas, elásticas, y de flexión oblicua.

• Flexión Oblicua

Figura 111

Τ = Momento torsor aplicado

twM, T = Son los momentos de flexión y torsión respectivamente sobre el plano de 4

π

( )

2

2 2

22

3 2

TM=

2

2

2

6 3 2

3upTp

t x y

u

b y

y x x yS

TM

S x yσ

=

= =

= = =

Donde,

puT = Torsión última de hormigón simple, cuando σ alcanza a tσ

Page 159: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 158

( )

2

22

3

0.85 0.85 0,62 0,527

0,527 0,1763

p t

t

r p

u

r c c

c c c u

x yT

f f´ f´

x yT f´ x y f´ T

σ

σ λ λ

λ λ

=

= ≈ =

= = =

Resistencia a la torsión contribuida por el acero

Considere el sistema que consiste en estribos de acero longitudinal y transversal. 1 1,x y Son las

dimensiones del armazón de acero como se muestra en la figura:

Figura 112

• Momento torsional con respecto al eje vertical delos estribos

( ) 11 1 1ts s

yT A f x

sα=

Donde,

tA Área de un brazo de estribo

sf Esfuerzo en esa sección

s Espaciamientos estribos

• Momento torsional con respecto al eje horizontal de los estribos

( ) 12 2 1ts s

xT A f y

sα=

• Momento torsional total

Page 160: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 159

( )1 1 1 2

1 1

t

tt

ss

ss

A fT x y

sA f

T x ys

α α

α

= +

=

tα = Determinado experimentalmente

Concepto de diseño

• Capacidad de torsión máxima total, uT

u c sT T T= +

Donde,

cT = Capacidad a torsión contribuida por el concreto.

sT = Capacidad a torsión contribuida por el acero

( ) 0,4pc uT Tβ β= ≈

Por lo tanto

20,8c cT f´ x y=

El coeficiente β representa la reducción en la resistencia a la torsión proporcionada por el concreto

después de la fisuración. Tras la formación de fisuras el esfuerzo del concreto y la deformación

son parcialmente transferidos al acero. La rigidez y la resistencia del sistema dependerán de la

cantidad de refuerzo transversal y longitudinal.

• La falla final puede ser en uno de los siguientes caminos:

Subreforzada:

Tanto el acero longitudinal y transversal fallan antes.

Sobrereforzada:

El concreto es aplastado antes de que entre en acción el acero.

Parcialmente sobre o sub -reforzada

Page 161: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 160

Para elementos subreforzados tα es independiente de la relación de acero:

Figura 113

• Sugerencia del código

1

1

0,66 0,33 1,50t

y

xα = + ≤

Funciones del refuerzo longitudinal

• Anclar los estribos, especialmente en las esquinas.

• Controla la ampliación de la fisura.

Condición Subrefuerzada

1 12l t

x yA A

s

+≤

Donde,

lA Volumen por longitud de acero longitudinal

El acero entra en fluencia.

Torsión combinada con flexión - Torsión combinada con cortante

En general el cortante existe al mismo tiempo con la flexión. La existencia de cortante reducirá la

capacidad de resistir en torsión. Así, es necesario considerar el caso de la torsión combinada con

cortante.

• Para vigas con refuerzo transversal

Torsión pura: u c sT T T= +

Cortante puro: u c sV V V= +

Page 162: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 161

Figura 114

• Diseño para torsión

Igual interacción como en los miembros sin refuerzo transversal.

• Exceso de torque

Más allá de lo resistido por el concreto, la misma cantidad de refuerzo se proporciona en los

miembros sujetos a torsión más cortante como serían requeridos para los miembros puramente

torsionales.

Este refuerzo torsional se añade al que se requiere para llevar a momentos de flexión y cortante.

( )u n c sT T T Tφ φ≤ = +

Donde

uT Factor de torque

φ Factor de capacidad de reducción para torsión = 0.75

nT Resistencia nominal para la torsión

cT Momento de torsión soportado por el hormigón

sT Momento de torsión soportado por el acero

2 2

1

o

o

o

c

c

c

TT

T V

V T

= +

Donde

20,8 'o cT f x y= Torsión pura

2o cV f´ bd= Cortante puro

2 0,40,4o

o T

T x y

V bd C= =

Page 163: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 162

2T

bdC

x y=

Suponer

c u

c u

V V

T T=

De tal manera que

2

2 2

1 1

0,8 2

0,4 1 2,51

T

T

t t vy y

c cc

uu

uu

s s

f´ x y f´ bdT Vc

TV CVC T

A f A f dT x y V

s s

α

= = ++

= =

( )u c s n

u cs

T T T T

T TT

φ φφ

φ

= + =−=

1 1 1 1

( )t

t t

s

y y

u csT s T TA

f x y f x y

φα α φ

−= =

• 4Ts Tc≤ se requiere para asegurar fluencia del acero primero.

• La separación mínima de los estribos de torsión 1 14( ) ó 12 inx y+

Condición que debe cumplirse para no considerar efectos de torsión

• Los efectos torsionales pueden despreciarse si

2

1

0,5 ( )n

i ii

u cT f´ x yφ=

< ∑

Donde

2

1

( )n

i ii

x y=∑ Suma de los pequeños rectángulos para formas irregulares.

Page 164: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 163

Secciones Huecas

Figura 115

• Cuando 4

xh > , considerar la sección transversal en forma de sólido.

• Cuando 10 4

x xh≤ ≤ asumirlo como sólido, pero multiplicar 2( )x y∑ por 4

h

x

• Cuando 10

xh < , se considera como una sección de pared delgada. Compruebe si hay

inestabilidad (pandeo local).

� Formulación general del post-agrietamiento comportamiento de flexión, cortante, y tensión

interacción en vigas R / C.

� Discusión de las aplicaciones: los sistemas de carriles-guía de hormigón de monorriel de

levitación magnética y la infraestructura de transporte.

� Ejemplo de diseño: cortante y torsión.

Procedimiento de diseño de elementos sometidos a torsión según la NSR-10

1. Determinar los diagramas de cortante, momento y torsión.

2. Determinar las dimensiones de la viga, las cuales deben ser adecuadas para resistir los momentos

de flexión y además que cumplan con los límites máximos permitidos para control de deflexión.

3. Determinar si la torsión debe ser considerada C.11.5

(a) en elementos no preesforzados:

2

0,083 cp

cp

u cA

T f´P

φ λ

Page 165: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 164

(b) en elementos preesforzados:

2

0,083 10,33

cp cp

cp

u cc

A fT f´

P f´φ λ

λ

≤ +

(c) en elementos no preesforzados sometidos a tracción axial o fuerzas de compresión:

2

0,083 10,33

cp u

cp g

u cc

A NT f´

P A f´φ λ

λ

≤ +

4. Verificar si la sección transversal del elemento es adecuada C.11.5.3.1. Las dimensiones de la

sección transversal deben ser tales:

(a) en secciones sólidas:

2 2

20

0,661,7

h

w h w

uu cc

T PV Vf´

b d A b dφ

+ ≤ +

(b) en secciones huecas:

20,66

1,7h

w oh w

uu cc

T PV Vf´

b d A b dφ

+ ≤ +

5. Determinar el refuerzo requerido por flexión y el área de refuerzo requerido por cortante. El área

del refuerzo por cortante debe expresarse en términos de Av/s (área de acero de estribo por unidad

de longitud). Este valor debe ser combinado con el área del refuerzo de estribos requeridos por

torsión. Nota: verificar requisitos para diseño a cortante según la NSR-10.

,v

y

s us c

A V VV V

s f d φ= = −

6. Determinar el área del acero para estribos requerido por torsión en términos de At/s

02t

yt

uA T

s A f Cotφ θ=

Donde A0 debe determinarse por análisis, excepto que se permite tomar A0 igual a 0.85 A0h; θ no

debe tomarse menor a 30° ni mayor que 60°, se permite usar: (a) θ = 45° en elementos no

preesforzados o con un preesforzado con una fuerza efectiva de preesforzado no menor a un

40por ciento de la resistencia a tracción del refuerzo longitudinal.

Page 166: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 165

7. Combine el área de acero requerida para cortante y torsión y seleccione el diámetro de las barras

de refuerzo. Exprese At/s en términos de Av/s. Para un estribo con dos ramas tenemos:

2( )

= +

v v tA A Atotal

s s s

El espaciamiento del refuerzo transversal por torsión no debe exceder el menor valor entre Ph/8,

ni 300 mm.

8. Verificar el área de acero mínimo de estribos cerrados

2 0,35v t w

yt

A A b

s s f + ≥

9. Determinar el área de refuerzo longitudinal por torsión

2cotyttL h

y

fAA p

s fθ

=

Donde θ tiene el mismo valor utilizado en (6) y At/s el valor calculado en (6). El área mínima

total de refuerzo longitudinal para torsión debe calcularse como:

min

0,42 cp yttL h

y y

cf´ A fAA p

f s f = −

Donde ALmin no puede ser menor que cero, a At/s no debe tomarse menor que 0,175bw/fyt. El

refuerzo longitudinal por torsión debe distribuirse uniformemente alrededor del perímetro de la

sección transversal

10. Este paso es opcional. Se permite reducir el área de refuerzo longitudinal para torsión en la zona

de compresión por flexión en una cantidad igual a Mu/ (0,9dfy).

11. Combinar el refuerzo longitudinal por flexión y torsión y seleccionar el diámetro de las barras

de refuerzo.

Page 167: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 166

EJEMPLO 19

Diseñar la viga mostrada en la figura. Esta viga forma parte de una estructura interior sin exposición

a la interperie.

21f c MPa′ =

420yf MPa= (Referencia longitudinal)

240MPa (Referencia transversal)

250

200

20

u

u

u

M KN m

V KN

T KN m

= −== −

• Determinar si la torsión debe ser considerada

2

0,083 cp

cp

u cA

T f´P

φ λ

≤ × ×

( )C.11.5.2.2

( )

20,3 0,65 0,195

2 0,3 0,65 1,9

cp

cp

A m

P m

= × =

= + =

20,1950, 75 0,083 1,0 21 5,71 20

1,9uT KN m KN m

≤ × × × × = − < −

No se pueden despreciar los efectos de la torsión

• Verificar si la sección del elemento es adecuada

2

22

0

0,661,7

h

w wh

uu cc

T PV Vf´

b d A b dφ

×+ ≤ + × ×

( )( )

0,17

300 2 40 220

650 2 40 570

wcV f c b d

x mm

y mm

λ ′= × ×

= − =

= − =

( )2

0 0,57 0, 22 0,1254

2 0,57 0, 22 1,58h

h

A m

P m

= × == + =

Page 168: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 167

( )2 23 6

2

200 10 20 10 15800,75 0,17 21 0,66 21

300 590 1,7 125400

× × ×+ ≤ × + × ×

2 21,64 / 2,85 /N mm N mm≤ →Cumple

• Determinar el refuerzo requerido por flexión

2 0,85

yy

su s

c

a A fM A f d a

f´ bφ × = × − → = ×

(1)

2y

us

MA

af dφ

= −

(2)

Solucionando por iteraciones:

Asumimos viga rectangular 500b mm= con 80a mm=

22250 1000

12030,08

0,9 420000 0,592

sA mm×= = × −

Reemplazando en (2)

1203 42057

0,85 21 500a mm

×= =× ×

22250 1000

11780,057

0,9 420000 0,592

sA mm×= = × −

Reemplazando en (2)

1178 42055

0,85 21 500a mm

×= =× ×

22250 1000

11760,055

0,9 420000 0,592

sA mm×= = × −

Reemplazando en (2)

1176 42055

0,85 21 500a mm

×= =× ×

Cumple con el valor de c/d en zona segura. Seleccionamos 2 7 2 6No No+ área 21342mm=

230 500 cumpleminb mm mm= < →

• Determinar el área de refuerzo por cortante

Page 169: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 168

( )200

0,17 0,17 1,0 21 0,3 0,59 137,89w

u c s

c c

V KN V V

V f´ b d KN

φ

λ

= = +

= × × = × × × × ⇒

cumple200

137,89 128,78 0,33 21 0,3 0,59 1000 267,670,75

us c

s

VV V

V KN KN

φ= −

= − = < × × × = →

2128,780,909 /

240000 0,59v vy

y

s

s

A f d A VS mm mm

V S f d

× ×= ⇒ = = =× ×

• Determinar el área de acero para estribos requerido por torsión.

02t

yt

nA T

s A f=

×

2026,67

0,75

un

TT KN m

φ= = = −

2

0 00,85 0,85 0,1254 0,10659hA A m= = × =

6226,67 10

0,5213 /2 106590 240

tAmm mm

s

×= =× ×

• Determinar área acero combinada por cortante y torsión.

22( ) 0,909 2 0,5213 1,9516 /V V tA A Atotal mm mm

s s s= + = + × =

Seleccionar estribos No. 3 de dos ramas 2142VA mm=

14273

1,9516s mm= =

Verificar 10NSR−

1580198 300

8 8hP

s mm m≤ = = < → Cumple

Área mínima de estribos

2 2 cumple2

1,9516 / 0,35 0,4375 /V t w

T

A A bmm mm mm mm

s s fy+ = > = →

• Determinar el área del refuerzo longitudinal por torsión:

22400,5213 1580 471

420ytt

L hy

fAA P mm

S f

= = × × =

Page 170: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 169

min

2min

0,42 0,42 21 195000 2400,5213 1580

420 420

423

cp ytTL h

L

y y

cf´ A fAA P

f S f

A mm

× = − = × ×

=

2 2 cumple0,5213 / 0,175 0,2187 /t w

yt

A bmm mm mm mm

S f= > = →

• El máximo espaciamiento entre las barras de refuerzo longitudinal es de 300mm. Se divide en 3

áreas iguales para ser colocadas en la parte superior, inferior y en la mitad de la altura de la

sección de la viga.

22471

1573 3LA mm

As mm= = = (2 barras 05N )

Las barras longitudinales deben tener un diámetro de al menos 0,042 veces el espaciamiento

entre estribos, pero no menos de diámetro 03N .

0, 042 73 3mm mm× =

Verificación 130 300minb mm mm= < →Cumple.

Page 171: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 170

15. ADHERENCIA Y ANCLAJE

Las fuerzas desarrolladas en la viga por la carga aplicada de forma perpendicular a su eje neutro se

pueden apreciar en la siguiente figura:

Figura 116

Fuerzas en las barras de refuerzo

El esfuerzo de adherencia proporciona un mecanismo de transferencia de fuerzas entre el concreto y

el refuerzo.

Figura 117

Page 172: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 171

Condición de equilibrio para la barra de refuerzo

0

04

4

2b

b b

bd

y

y

Fuerza de adherenciaF T 0

df d l

f dl

π π µ

µ

= ⇒ − =

⇒ − =

⇒ =

Esfuerzo de adherencia=µ

( )bar

cCoeficiente de fricción k f´

k f φ≈

=

Nota: El esfuerzo de adherencia es cero en las fisuras.

Fuentes de transferencia por adherencia

• La adhesión entre el concreto y refuerzo.

• Fricción.

• Trabazón mecánica.

La concentración de esfuerzos en bordes causa la ocurrencia de agrietamiento.

Nota: Estas propiedades se pierden rápidamente cuando el concreto es sometido a tracción.

Fuerza de interacción entre el acero y el hormigón.

Figura 118

La separación generada por las grietas ocasiona la pérdida de la transferencia de adherencia. El

refuerzo se puede utilizar para restringir estas fisuras.

Page 173: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 172

La distribución de esfuerzos dentro de una viga se ve afectada por:

• Distancia mínima al borde y el espaciamiento de las barras.

• Resistencia a la tracción del hormigón.

• El esfuerzo de adherencia promedio a lo largo de las barras (Aumento de esfuerzo de adherencia

da lugar a mayor fuerza de cuña).

El fisuramiento generado por fuerzas de adherencia puede ser clasificado en tres tipos: en el primer

caso se tiene un recubrimiento inferior mayor al lateral, por lo cual la fisura se propagará

predominantemente en dirección horizontal, en el segundo caso se da cuando los dos recubrimientos,

lateral e inferior son iguales, la dirección predominante es en cualquiera de los dos sentidos y

dependerá de factores locales como la ubicación de agregados gruesos que impidan la propagación

de la fisura, finalmente cuando el recubrimiento inferior es menor al lateral las fisuras se propagarán

predominantemente en dirección vertical.

Figura 119

Figura 120

Page 174: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 173

El fisuramiento del hormigón se produce a lo largo de las barras, ya sea en planos verticales como

en la figura (a) o en un plano horizontal como en la figura (b). Tal división viene en gran parte de la

acción de acuñamiento cuando el corrugado de la barra deformada genera fuerza en el hormigón.

El tipo de fisuramiento horizontal frecuentemente comienza con una fisura diagonal. La acción de

dovela incrementa la tendencia al fisuramiento. Esto indica que las fisuras generadas por cortante y

las generadas por flexión están a menudo estrechamente relacionadas entre sí.

Figura 121

Expresiones de código para determinar la longitud de desarrollo de barras en tracción

Longitud de desarrollo dl

Se define como la menor longitud de la barra en la que el esfuerzo de la barra puede incrementar de

cero a la resistencia a la fluencia, fy. La longitud de desarrollo dl es utilizada debido a que los

esfuerzos de adherencia, µ, varían a lo largo de un barra sometida a tensión.

Page 175: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 174

Figura 122

NSR-10 - CAPITULO C.12

LONGITUDES DE DESARROLLO Y EMPALMES DEL REFUERZO

C.12.1 — Desarrollo del refuerzo — Generalidades

C.12.1.1 — La tracción o comprensión calculada en el refuerzo de cada sección de elementos de

concreto estructural debe ser desarrollada hacia cada lado de dicha sección mediante una longitud

embebida en el concreto por medio de gancho, barra corrugada con cabeza o dispositivo mecánico,

o una combinación de ellos. Los ganchos y barras corrugadas con cabeza no se deben emplear para

desarrollar barras en compresión.

C.12.1.2 — Los valores de cf´ usados en este Capítulo no deben exceder de 8.3 MPa.

C.12.1.3 — Además de los requisitos establecidos en este Capítulo que afectan el detalle del refuerzo,

se deben cumplir los requisitos de integridad estructural de C.7.13.

Page 176: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 175

C.12.2 — Desarrollo de barras corrugadas y de alambres corrugados a tracción

C.12.2.1 — La longitud de desarrollo para barras corrugadas y alambre corrugado en tracción,dl ,

debe determinarse a partir de C.12.2.2 ó C.12.2.3, con los factores de modificación de C.12.2.4 y

C.12.2.5, pero dl no debe ser menor que 300 mm.

C.12.2.2 — Para barras corrugadas o alambres corrugados, dl debe ser:

Espaciamiento y recubrimiento Barras No. 6 (3/4”)

ó 20M (20 mm) o

menores y

alambres

corrugados

Barras No. 7 (7/8”)

ó 22M (22 mm) y

mayores

Espaciamiento libre entre barras o alambres que

están siendo empalmados o desarrolladas no menor

que db , recubrimiento libre no menor que db , y

estribos a lo largo de dl no menos que el mínimo del

Título C del Reglamento NSR-10 o espaciamiento

libre entre barras o alambres que están siendo

desarrolladas o empalmadas no menor a 2db y

recubrimiento libre no menor a db

2,1t e

b

y

c

fd

ψψλ

1,7t e

b

y

c

fd

ψψλ

Otros casos

1,4t e

b

y

c

fd

ψψλ

1,1

t eb

y

c

fd

ψ ψ λλ

C.12.2.3 — Para barras corrugadas y alambres corrugados dl debe ser:

d

tr1,1

t e sb

b

b

y

c

fl d

c Kf´

d

ψ ψ ψ

λ

= +

(C.12-1)

Page 177: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 176

En donde el término trb

b

c K

d

+

no debe tomarse mayor a 2.5 y

tr

40 trAK

s n=

× (C.12-2)

En donde n es el número de barras o alambres que se empalman o desarrollan dentro del plano de

hendimiento. Se puede usar Ktr = 0 como una simplificación de diseño aún si hay refuerzo transversal

presente.

C.12.2.4 — Los factores a usar en las expresiones para la longitud de desarrollo de barras y alambres

corrugados en tracción en C.12.2 son los siguientes:

(a) Cuando para el refuerzo horizontal se colocan más 300 mm de concreto fresco debajo de la

longitud de desarrollo o un empalme, 1.3tψ = . Otras situaciones 1.0tψ =

(b) Barras o alambres con recubrimiento epóxico con menos de 3db de recubrimiento, o separación

libre menor de 6db , 1.5eψ = . Para todas las otras barras o alambres con recubrimiento epóxico,

1.2eψ = . Refuerzo sin recubrimiento y refuerzo recubierto con cinc (galvanizado), 1.0eψ = .

No obstante, el producto t eψ ψ no necesita ser mayor de 1.7.

(c) Para barras No. 6 (3/4”) ó 20M (20 mm) o menores y alambres corrugados, 0.8sψ = . Para barras

No. 7 (7/8”) ó 22M (22 mm) y mayores, 1.0sψ = .

(d) Donde se use concreto liviano, λ no debe exceder de 0.75 a menos que se especifique fct (véase

C.8.6.1).

Donde se use concreto de peso normal, λ = 1.0.

C.12.2.5 — Refuerzo en exceso

Se permite reducir dl en ( As requerido) / ( As suministrado) cuando el refuerzo en un elemento

sometido a flexión excede el requerido por análisis, excepto cuando se requiere específicamente

anclaje o desarrollo para fy o el refuerzo sea diseñado según C.21.2.1.6.

C.12.3 — Desarrollo de barras corrugadas y alambres corrugados a compresión

Page 178: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 177

C.12.3.1 — La longitud de desarrollo para barras corrugadas y alambre a compresión, dcl , se debe

calcular a partir de C.12.3.2 y de los factores de modificación de C.12.3.3, pero dcl no debe ser menor

de 200 mm.

C.12.3.2 — Para las barras corrugadas y alambres corrugados, dcl debe tomarse como el mayor entre

0,24b

y

c

fd

f´λ

y ( )0,043 byf d , donde λ se toma como indica C.12.2.4 (d) y la constante 0.043 tiene

la unidad de mm2/N

C.12.3.3 — Se permite multiplicar la longitud dcl en 12.3.2 por los siguientes factores:

a) El refuerzo excede lo requerido por el análisis

(As Requerido)/(As Proporcionado)

b) El refuerzo está confinado por una espiral cuya barra tiene un diámetro no menor de 6 mm y no

más que 100 mm de paso o dentro de estribos No. 13 de acuerdo con C.7.10.5, y espaciadas a

distancias no mayores que 100 mm medidos entre centros………………………………………0.75

EJEMPLO 20

Para una viga de concreto reforzado, con una altura efectiva de 540 mm y un ancho de 300 mm,

reforzada con 5 varillas No. 6 y recubrimientos del refuerzo medidos a centro de barra de 60 mm,

determinar la longitud de desarrollo de las barras. La viga se encuentra simplemente apoyada y no

presenta exposición a condiciones ambientales.

21

420y

cf´ MPa

f MPa

==

Verificación de las condiciones de recubrimiento de concreto.

Para barras de diámetro ¾”, db = 19mm.

Recubrimiento libre = 60mm-10mm = 50mm > db

Page 179: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 178

Separación libre entre barras

( )300 2 60219 26

º 4b b

mm mmb recubrimientoS d mm mm d

N Espacios

− ×− ×= − = − = >

Las barras están confinadas por estribos Nº 3, por lo tanto se cumplen las condiciones de la ecuación.

( )

Refuerzo colocado parte inferior viga

Refuerzo si

= C.12.2.22,1×λ

= 1,0 (C.12.2.4)

= 1,0

d t e

b

t

e

y

c

l f ψ ψ

d f´

ψ

ψ

( )n recubrimiento epóxico (C.12.2.4)

= 21 = 4,6 < 8,3 C.12.1.2

420×1,0×1,0 = = 44

2,1×1× 21d

b

cf´ MPa MPa

l

d

Por lo tanto 44 19 836dl mm mm= × =

Para el caso general tenemos ( Ktr = 0 ) (C.12.2.3)

Barras Nº 6 o menores

= (C.12.2.3)

1,1

= 1,0 (C.12.2.4)

= 0,8 (C.1

d t e s

b tr

b

t e

s

y

c

L f ψ ψ ψ

d c + K× λ f´

d

ψ = ψ

ψ

2.2.4)

C = dimensión del espaciamiento o recubrimiento del refuerzo .

Menor distancia desde el centro de la barra a la superficie más cercana del concreto, C1 o la mitad

de la separación centro a centro de las barras que se desarrollan, C2.

1 60

2 60 300 2 602 0,5 2 0,5 23

4

23

231,5 1,5 1,21 1,5

19

420 1 1 0,844 44 19 836

1,1 1 21 1,5

tr

b

dd

b

espacios

usar

c mm

bc c mm

N

c mm

c Ksi

d

ll mm

d

=

− × − × = ⇒ = × = °

=

+ < ⇒ = ⇒

× × ×= = ⇒ = × =× × ×

Page 180: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 179

EJEMPLO 21

Solucionar el ejemplo anterior si las barras están recubiertas por epóxico y el As requerido para el

análisis es 1200mm2.

( )

Refuerzo colocado parte inferior viga

Refuer

C.12.2.22,1

= 1,0 (C.12.2.4)

= 1,5

d t e

b

t

e

y

c

l f ψ ψ =

d × λ f´

ψ

ψ

( )2

2

zo con recubrimiento epóxico (C.12.2.4)

= 21 = 4,6 MPa < 8,3 MPa C.12.1.2

12000,85

1420

420×0,85×1,0×1,5 = = 56

2,1×1× 21d

b

cf´

As req mmRs

As sum mm

l

d

= = =

Por lo tanto 56 19 1064dl mm mm= × =

Desarrollo de barras - secciones críticas

Miembros sometidos a flexión

Las secciones críticas para el desarrollo del refuerzo en elementos sometidos a flexión son:

• Puntos de máximo esfuerzo.

• Puntos donde las barras son cortadas.

• Cara del apoyo.

• En los puntos de inflexión en donde el momento cambia de signo.

Secciones críticas para el refuerzo de momento negativo

Tres secciones son críticas para el refuerzo de momento negativo:

Sección 1:

Se encuentra en la cara del apoyo, cuando tanto el momento negativo como el esfuerzo presentan sus

valores máximos. Dos longitudes de desarrollo, X1 y X2 deben ser revisadas y chequeadas.

Page 181: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 180

Figura 123

Sección 2:

Es la sección donde parte de la barra de refuerzo negativo puede ser terminada. Para desarrollar la

fuerza de tensión total, las barras deben extenderse a una distancia X2 antes de que puedan ser

terminadas. Una vez que parte de las barras se terminan las barras restantes desarrollan el esfuerzo

máximo.

Sección 3:

Es un punto de inflexión. Las barras se extenderán a una distancia X3 más allá de la sección 3: X3

debe ser igual o mayor que la profundidad efectiva d, 12db ó 1/16 de la luz libre, el que sea mayor.

Por lo menos 1/3 del refuerzo total previsto para el momento negativo en el apoyo se extenderá a una

distancia X3 más allá del punto de inflexión.

Page 182: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 181

Secciones críticas para el refuerzo de momento positivo

Sección 4:

Localizada donde el momento máximo positivo y esfuerzos son máximos. Dos longitudes de

desarrollo X1 y X2 tienen que ser chequeadas. La longitud X1 es la longitud de desarrollo dl

especificada por la NSR-10 C.12.11. La longitud X2 es igual o mayor que la profundidad efectiva d,

12db.

Sección 5:

Es donde parte de las barras de refuerzo positivo pueden ser cortadas. Para desarrollar la fuerza de

tensión total, las barras deben extenderse a una distancia X2. Las barras restantes tendrán un esfuerzo

máximo debido a la terminación de parte de las barras. En la cara de la sección de apoyo 1, por lo

menos 1/4 del refuerzo de momento positivo en miembros continuos deben llevarse a lo largo de la

misma cara del miembro en el apoyo, de acuerdo con la NSR-10 C.12.11.1. Para vigas simplemente

apoyadas por lo menos 1/3 del refuerzo debe llevarse y anclarse en el apoyo.

Sección 6:

Es en los límites de los puntos de inflexión; de acuerdo al capítulo C.12.11.3 de la NSR-10.

Longitud de desarrollo para barras en compresión

NSR-10

C.12.3 — Desarrollo de barras corrugadas y alambres corrugados a compresión

C.12.3.1 — La longitud de desarrollo para barras corrugadas y alambre a compresión, dcl , se debe

calcular a partir de C.12.3.2 y de los factores de modificación de C.12.3.3, pero dcl no debe ser menor

de 200 mm.

C.12.3.2 — Para las barras corrugadas y alambres corrugados, dcl debe tomarse como el mayor entre

0,24b

y

c

fd

f´λ

y ( )0,043 byf d , donde λ se toma como indica C.12.2.4 (d) y la constante 0.043 tiene

la unidad de mm2/N

Page 183: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 182

C.12.3.3 — Se permite multiplicar la longitud dcl en 12.3.2 por los siguientes factores:

a) El refuerzo excede lo requerido por el análisis

(As Requerido)/(As Proporcionado)

b) El refuerzo está confinado por una espiral cuya barra tiene un diámetro no menor de 6 mm y no

más que 100 mm de paso o dentro de estribos No. 13 de acuerdo con C.7.10.5, y espaciadas a

distancias no mayores que 100 mm medidos entre centros …………………………................... 0.75

Nota:

dc dl l< Generalmente porque:

• Es favorecido por el efecto de compresión en el apoyo.

• El debilitamiento producido por la generación de las grietas de tracción por flexión no afecta a

las barras en compresión.

C.12.4 — Desarrollo de paquetes de barras

C.12.4.1 — La longitud de desarrollo de cada barra individual dentro de un paquete de barras

sometido a tracción o a comprensión, debe ser aquella de la barra individual aumentada un 20

por ciento para un paquete de 3 barras y en un 33 por ciento para un paquete de 4 barras.

C.12.4.2 — Para determinar los valores adecuados de espaciamiento y recubrimiento en C.12.2.2,

así como el parámetro de confinamiento en C.12.2.3 y el factor eψ en C.12.2.4(b), un paquete de

barras debe ser tratado como una sola barra de un diámetro derivado del área total equivalente y

con un centroide que coincide con el del paquete de barras.

Page 184: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 183

16. GANCHOS ESTÁNDAR

Un gancho se utiliza al final de una barra cuando su longitud de empotramiento recta es menor que

la longitud de desarrollo en condición de barra recta requerida. El diámetro mínimo de curvatura,

medida en el interior de la barra principal de un gancho estándar D es:

Figura 124

La distribución de esfuerzos para un gancho de 90° bajo una fuerza P se muestra en la siguiente

figura:

Figura 125

Page 185: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 184

NSR-10

CAPÍTULO C.7 — DETALLES DEL REFUERZO

C.7.1 — Ganchos estándar

El término “gancho estándar” se emplea en el Título C del Reglamento NSR-10 con uno de los

siguientes significados:

C.7.1.1 — Doblez de 180º más una extensión de 4db, pero no menor de 65 mm en el extremo libre

de la barra.

C.7.1.2 — Doblez de 90º más una extensión de 12db en el extremo libre de la barra.

C.7.1.3 — Para estribos y ganchos de estribo

(a) Barra No. 5 (5/8”) ó 16M (16 mm) y menores, doblez de 90º más 6db de extensión en el extremo

libre de la barra, ó

(b) Barra No. 6 (3/4”) ó 20M (20 mm), No. 7 (7/8”) ó 22M (22 mm), y No. 8 (1”) ó 25M (25 mm),

doblez de 90º más extensión de 12db en el extremo libre de la barra, ó

(c) Barra No. 8 (1”) ó 25M (25 mm) y menor, doblez de 135º más extensión de 6db en el extremo

libre de la barra.

C.7.1.4 — En los estribos de confinamiento requeridos en el Capítulo C.21 en estructuras de

capacidad de disipación de energía moderada (DMO) y especial (DES), para construcción sismo

resistente, deben emplearse ganchos sísmicos con un doblez de 135º o más, con una extensión de 6db

pero no menor de 75 mm, que abraza el refuerzo longitudinal del elemento y se proyecta hacia el

interior de la sección del elemento. En los ganchos suplementarios el doblez en los extremos debe

ser un gancho sísmico de 135º, o más, con una extensión de 6db, pero no menor de 75 mm, y se

permite que en uno de los extremos se utilice un gancho de 90º, o más, con una extensión de 6db.

Los ganchos sísmicos están definidos en C.2.2

Page 186: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 185

Los ganchos resisten a tracción por esfuerzos de adherencia en la superficie de la barra.

Figura 126

Ganchos estándar para anclaje a tracción

El uso de ganchos estándar para anclaje a tracción:

Los ganchos proporcionan un anclaje adicional cuando hay insuficiente longitud disponible para

desarrollar una barra.

Nota:

A los ganchos no se les permiten el refuerzo de compresión desarrollado.

Page 187: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 186

C.12.5 — Desarrollo de ganchos estándar en tracción

C.12.5.1 — La longitud de desarrollo para barras corrugadas en tracción que terminen en un

gancho estándar (véase C.7.1), dhl se debe calcular de C.12.5.2 y los factores de modificación de

C.12.5.3, pero dhl no debe ser menor que el mayor de b8d y 150 mm.

C.12.5.2 — Para las barras corrugadas, dhl debe ser ( )0, 24 e by cψ f / λ f´ d con eψ igual a 0.75

para concreto con agregados livianos. Para otros casos, eψ y λ deben tomarse igual a 1.0.

C.12.5.3 — La longitud dhl en C.12.5.2 se puede multiplicar por los siguientes factores cuando

corresponda:

a) Para ganchos de barras No. 36 y menores, con recubrimiento lateral (normal al plano del

gancho) no menor de 65 mm, y para ganchos de 90º, con recubrimiento en la extensión de la barra

más allá del gancho no menor de 50 mm…….................................................................................0.7

b) Para ganchos de 90º de barras No. 36 y menores que se encuentran confinados por estribos

perpendiculares a la barra que se está desarrollando, espaciados a lo largo de dhl a no más de

b3d ; o bien, rodeado con estribos paralelos a la barra que se está desarrollando y espaciados a no

más de b3d a lo largo de la longitud de desarrollo del extremo del gancho más el doblez ....... 0.8

c) Para ganchos de 180º de barra No. 11 (1-3/8”) o 36M (36 mm) y menores que se encuentran

confinados con estribos perpendiculares a la barra que se está desarrollando, espaciados a no más

de b3d a lo largo de dhl .......................................................................................................0.8

d) Cuando no se requiera específicamente anclaje o longitud de desarrollo para yf , y se dispone

de una cuantía de refuerzo mayor a la requerida por análisis. ( As requerido) /( As proporcionado).

En C.12.5.3 (b) y C.12.5.3(c), db es el diámetro de la barra del gancho, y el primer estribo debe

confinar la parte doblada del gancho, a una distancia menor a 2db del borde externo del gancho.

C.12.5.4 — Para barras que son desarrolladas mediante un gancho estándar en extremos discontinuos

de elementos con recubrimiento sobre el gancho de menos de 65 mm en ambos lados y en el

borde superior (o inferior), la barra con el gancho se debe confinar con estribos, perpendicular a

Page 188: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 187

la barra en desarrollo, espaciados en no más de 3db a lo largo de dhl . El primer estribo debe

confinar la parte doblada del gancho dentro de 2db del exterior del doblez, donde db es el

diámetro de la barra con gancho. En este caso, no deben aplicarse los factores de C.12.5.3. (b) y

(c).

C.12.5.5 — Los ganchos no deben considerarse efectivos para el desarrollo de barras en

comprensión.

Figura 127

Diseño de ganchos estándar para anclaje a tracción

Longitud de desarrollo para barras enganchadas,

dh dh

dh b dh

Multiplicadores

Cuando, 8 y 150

l l

l d l mm

= ×≥ ≥

La longitud de desarrollo básica para barras enganchadas = dhl

Cuando fy = 420 MPa

dh

0,24 eb

y

c

fl d

ψλ

=

Page 189: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 188

Condiciones Multiplicadores

Recubrimiento de concreto para ganchos de

180° para barras N° 11 o menores.

Recubrimiento Lateral ≥ 65 mm.

(Normal plano gancho)

0,7

Recubrimiento de concreto para ganchos de

90° para barras N° 11 o menores.

Recubrimiento Lateral ≥ 65 mm.

Recubrimiento en la extensión de la barra más

allá del gancho.

Recubrimiento Extensión ≥ 50 mm.

0,7

Estribos

Para barras N° 11 o menores

Gancho con estribos verticales u horizontales

espaciados a lo largo de d hl a una distancia

no superior a 3db cuando db es diámetro de la

barra enganchada.

No importa si es de 90° ó 180°

0,8

Exceso de refuerzo

Donde el anclaje o desarrollo para fy no se

especifica requerida.

( As requerido) / ( As suministrado)

Page 190: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 189

EJEMPLO 22

Determinar la longitud de desarrollo requerido para las barras Nº8 superiores de la viga de voladizo

que se une la columna, si las barras son rectas y con ganchos de 90º y 180º. Las barras están

confinadas por estribos Nº3 espaciados a 150mm en toda la longitud de la viga en voladizo. La viga

no presenta condiciones de exposición ambiental.

• Barras rectas

Verificación de las condiciones de recubrimiento del concreto.

Para barras de diámetro 1” db=25mm.

Recubrimiento libre 70 13 57 bmm mm mm d= − = >

Separación libre entre barras:

( )º

300 2 70225 28

3b b

recubrimiento

N espacios

mm mmbd mm mm d

− ×− × − = − = >

Las barras están confinadas por estribos Nº3, por lo tanto se cumplen las condiciones de la

ecuación.

( )Para barras Nº8 (C.12.2.2)

Determinación factores (C.12.2.4

1,7

d t e

b

y

c

l f =

d ×l f´

ψ ψ

)

Refuerzo colocado parte inferior viga con más de 300 mm de concreto

Refuerzo sin recubrimiento epóxico

Por lo tanto

= 1,3

= 1,0

420×1,3×1,070

1,7×1× 21

70×25 1750

t

e

d

b

d

ψ

ψ

l = =

d

l = mm = mm

Page 191: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 190

Verificación longitud de desarrollo de las barras en el voladizo.

recubrimmiento lateral<

No cumple

1400

1750 50 1400 dl mm

mm mm mm

++ <

• Barras con ganchos 90º

Ninguna modificación aplica por lo tanto

0, 24 0, 24× 420×1= 22 (C.12.5.2)

1× 21

22× 25 550 8 200

550 (C.12.5.3)

55

hb e

b

hb b

dh

y

c

l × f × = =

d l f´

l = mm = mm > d = mm

l = mm

ψ

Cumple0 50 1400 mm + mm < mm →

Verificación longitud del gancho

( )

No cumple, luego no es posible colocar el gancho de 90º en la viga.

25 1912 3 400 2 70

2 2400 238

b b b

mm mmd d d mm mm

mm mm

+ + ≤ − × − −

• Barras con ganchos 180º

0,24 0,24× 420×1 = 22 (C.12.5.2)

1× 21

22× 25 550 8 200

Ninguna modificación aplica por lo tanto 550

hb e

b

hb b

dh

y

c

l × f × = =

d l f´

l = mm = mm > d = mm

l = mm

ψ

(C.12.5.3)

Verificación longitud del gancho

cumple6 200 238b b bd d d mm mm+ + = ≤ →

Se puede usar ganchos a 180° con un ldh =550 mm de los cuales 200mm deben ir en el gancho.

Page 192: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 191

EJEMPLO 23

Determinar el anclaje de las barras en la columna de acuerdo a la figura. La columna forma parte de

una estructura ubicada en una zona de amenaza sísmica alta y por lo tanto resiste cargas laterales. La

viga no presenta condiciones de exposición ambiental.

21

420y

cf´ MPa

f MPa

==

• Longitud de desarrollo básico para barras de gancho

8 150

0,24 0,24 420 122 (C.12.5.2)

1 21

22 25 550

dh hb hb b hb

hb e

b

hb

y

c

factores dondel l l d y l mm

l f

d f´

l mm mm

ψλ

= × ≥ ≥× × × ×= = =

×= × =

• Verificación recubrimiento concreto

Recubrimiento lateral: 50mm<65mm No cumple

Recubrimiento gancho 50mm

• Verificación de estribos

cumple usar factor70 3 75 0,8 (C.12.5.3)

550 0,8 440b

dh

mm d mm

l mm mm

< = → == × =

Longitud anclaje disponible de la columna

400 50 350acl mm mm= − =

Las barras Nº8 no alcanzan a desarrollar ldh dentro de la columna.

Como la viga hace parte de estructura ubicada en zona de amenaza sísmica alta y resiste cargas

laterales, las barras Nº8 deben anclarse de tal forma que puedan desarrollar fy en la cara de los

Page 193: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 192

apoyos. Lo ideal en este caso es redimensionar los elementos estructurales o disminuir el diámetro

de las barras longitudinales, pero en este caso es imposible por lo cual se plantea el siguiente

procedimiento:

( )Para barras Nº

Factores

Refuerzo colocado parte inferior viga con más de 300mm de concreto

Refuerzo sin recubrimiento epóxico

6 (C.12.2.2)1,7

(C.12.2.4)

1,3

=1,0

d t e

b

t

e

y

c

l f

d f´

ψ ψλ

ψψ

= ≥×

= →→

Entonces

420 1,3 1,070

1,7 1 21

70 25 1750

d

b

d

l

d

l mm mm

× ×= =× ×

= × =

( ) ( )3 3 25 236bd d mm mmπ π π= = × =

Esta solución implica aspectos constructivos para lograr ubicar el gancho del refuerzo dentro de la

columna.

Page 194: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 193

17. PROCEDIMIENTO DE CORTE DEL ACERO DE REFUERZO

Puntos de corte de barras

¿Por qué se deben ubicar puntos de corte para el acero de refuerzo? Por aspectos económicos.

Figura 128

Factores que afectan la localización de los puntos de corte del acero de refuerzo

• Las barras no son necesarias para resistir las fuerzas de tracción o las barras restantes son

adecuadas (determinado por los diagramas de cortante y momento).

• Las barras deben extenderse a cada lado de la sección para desarrollar fuerza de la barra en esa

sección.

• Las mayores concentraciones de esfuerzo ocurren cuando las barras de tensión son cortadas en

las regiones de cortante moderado a alto, esto conduce a la formación de fisuras.

• Los requisitos del código de construcción especificados (buenas prácticas).

• Las incertidumbres en las cargas (consideraciones sísmicas).

Mantener puntos de corte a un mínimo con el propósito de simplificar el diseño y construcción.

Page 195: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 194

Determinación de la ubicación de puntos de corte a flexión

Dada una viga simplemente apoyada con una carga distribuida.

Figura 129

NRS-10

C.12.10 — Desarrollo del refuerzo de flexión — Generalidades

C.12.10.3 — El refuerzo se debe extender más allá del punto en el que ya no es necesario para resistir

flexión por una distancia igual a d ó 12db, la que sea mayor, excepto en los apoyos de vigas

simplemente apoyadas y en el extremo libre de voladizos.

Page 196: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 195

Figura 130

Page 197: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 196

Procedimiento general - puntos de corte de barras

• Determinar los puntos de corte teóricos de flexión y el diagrama de momentos.

• Extraer las barras para satisfacer los requerimientos de la NSR-10 (C.7.13, C.12.1, C.12.10,

C.12.11 y C.12.12)

• Diseñar estribos adicionales para los puntos donde las barras son cortadas en la zona de tensión a

flexión (C.12.10.5)

Reglas generales para el corte de barras

Todas las barras

Regla 1.

Las barras deben extender el largo de d o 12 db más allá de los puntos de corte a la flexión, excepto

en los apoyos o los extremos de los voladizos (C.12.10.3).

Regla 2.

Las barras deben extenderse por lo menos ld desde el punto esfuerzo máximo de la barra o desde los

puntos de corte de flexión de barras adyacentes (C.12.10.2 C.12.10.4 y C.12.12.2).

Barras – Momento positivo

Regla 3.

Integridad estructural

Soportes simples

Por lo menos un tercio de la parte del refuerzo del momento positivo se debe extender 150 mm en

los soportes (C.12.11.1).

Vigas interiores continuas con estribos cerrados

Al menos una cuarta parte del refuerzo de momento positivo se debe extender 150 mm en el soporte

(C.12.11.1 y C.7.13.2.3).

Al menos una cuarta parte del refuerzo de momento positivo debe ser continuo o se debe empalmar

cerca del apoyo con un empalme a tensión clase A y en apoyos no continuos debe ser terminada con

un gancho estándar. (C.7.13.2.3).

Page 198: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 197

Vigas continuas perimetrales

Al menos una cuarta parte del refuerzo momento positivo requerido en el centro de la luz se hará

continuo alrededor del perímetro de la losa y debe ser confinado por estribos cerrados o estribos con

ganchos de 135 grados alrededor de barras superiores. La continuidad del refuerzo, puede ser

proporcionada por el empalme de refuerzo inferior o cerca del apoyo con empalmes a tensión clase

A (C.7.13.2.3).

Vigas que forman parte de un marco que es parte del sistema primario de resistencia a carga

lateral del edificio

Este refuerzo debe estar anclado para desarrollar la resistencia a la fluencia especificada fy, en la

cara del soporte (C.12.11.2)

Regla 4.

Los Estribos

En el punto de momento positivo de inflexión y en los apoyos simples, el refuerzo de momento

positivo debe satisfacer la siguiente ecuación (C.12.11.3). Un aumento del 30% en el valor de Mn/Vu

se permitirá cuando los extremos de refuerzo están confinados por la reacción de compresión

(generalmente cierto para soportes simples).

d a

n

u

Ml l

V≤ +

Barras - Momento Negativo

Regla 5.

El refuerzo de momento negativo debe estar anclado en o a través de columnas de soporte o de los

miembros que dan apoyo a la viga ( C.12.12.1).

Regla 6.

Integridad Estructural

Vigas Interiores

Por lo menos un tercio del refuerzo de momento negativo se debe extender por el mayor de d, 12 db

o (ln / 16) más allá del punto de inflexión de momento negativo (C.12.12.3).

Además de la regla satisfactoria anterior, una sexta parte del refuerzo de negativo que se precisa en

el apoyo debe ser continuo en la mitad del tramo. Esto puede lograrse por medio de un empalme a

tensión clase A en la mitad del tramo (C.7.13.2.2).

Page 199: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 198

Consideraciones adicionales

Vigas con capacidad moderada de disipación de energía (DMO) (C.21.3.4)

C.21.3.4.1. El ancho del elemento, bw, no debe ser menor que 200 mm.

C.21.3.4.2. La excentricidad respecto a la columna que le da apoyo no puede ser mayor que el 25%

del ancho del apoyo medido en la dirección perpendicular a la dirección del eje longitudinal de la

viga.

C.21.3.4.3. En cualquier sección de la viga el refuerzo superior e inferior no debe tener una cuantía,

ρmin, inferior la que se obtiene con la ecuación C.10-3, ni debe exceder 0,025. Debe haber al menos

dos barras continuas con diámetro igual o superior a Nº 4 (1/2”) ó 12M (12 mm), tanto arriba como

abajo.

C.21.3.4.4. La resistencia a momento positivo en la cara del nudo no debe ser menor que un tercio

de la resistencia a momento negativo proporcionada en esa misma cara del nudo. La resistencia a

momento negativo o positivo, en cualquier sección a lo largo de la longitud del elemento, no debe

ser menor de un quinto de la resistencia máxima a momento proporcionada en la cara de cualquiera

de los nudos.

C.21.3.4.5. No se permiten empalmes por traslapo dentro de los nudos.

Diagramas de momento de resistencia

La resistencia de una viga es una función de su profundidad, d, ancho, b, y el área de acero, As. Es

una práctica común cortar las barras de acero donde ya no son necesarias para resistir los esfuerzos

de flexión. En vigas continuas de momento positivo las barras de acero pueden ser dobladas por lo

general a 45 °, para proporcionar un refuerzo a la tracción de los momentos negativos sobre el

soporte. La capacidad de momento nominal de una viga de hormigón sub-reforzado es:

2

yn sa

M A f d× = −

Donde

s

0,85

y

c

A fa

f´ b×

×=

Page 200: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 199

La resistencia al momento último de una barra, Mnb es:

b bs y2

na

M A f d = × −

Donde

bsA es el área de la barra.

La intersección de las líneas de momento de resistencia con el diagrama de momentos de flexión

generado por cargas externas indica los puntos teóricos donde cada barra puede ser terminada.

Empalme de barras

¿Por qué necesitamos los empalmes de barras? Para tramos largos cuando los diámetros comerciales

no permiten cubrir estas distancias en un solo tramo.

Tipos de empalmes

• Empalmado y soldado (debe desarrollar 125% de la resistencia a la fluencia).

• Conectores mecánicos, (debe desarrollar 125% de la resistencia a la fluencia).

• Unión de empalmes.

Empalme de traslapo a tensión

Tipos de empalmes

• Empalme con contacto.

• Empalme sin contacto.

Distancia ≤ 150 mm.

Distancia ≤ Longitud del empalme.

La longitud de empalme es la distancia que las dos barras se superponen.

NRS-10

C.12.15 — Empalmes de alambres y barras corrugadas a tracción.

C.12.15.1 — La longitud mínima del empalme por traslapo en tracción debe ser la requerida

para empalmes por traslapo Clases A o B, pero no menor que 300 mm, donde:

Empalme por traslapo Clase A 1,0 dl

Empalme por traslapo Clase B 1,3 dl

Donde dl se calcula de acuerdo con C.12.2 para desarrollar fy, pero sin los 300 mm mínimos de

C.12.2.1 y sin el factor de modificación de C.12.2.5.

Page 201: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 200

C.12.15.2 — Los empalmes por traslapo de alambres y barras corrugadas sometidas a tracción deben

ser empalmes por traslapo Clase B, excepto que se admiten empalmes por traslapo de Clase A

cuando:

(a) el área de refuerzo proporcionada es al menos el doble que la requerido por análisis a

todo lo largo del empalme por traslapo y

(b) la mitad, o menos, del refuerzo total está empalmado dentro de la longitud de empalme por

traslapo requerido.

C.12.15.3 — Cuando se empalman por traslapo barras de diferente diámetro en tracción, la longitud

del empalme por traslapo debe ser el mayor valor entre el dl de la barra de mayor tamaño y el valor

de la longitud del empalme en tracción de la barra de diámetro menor.

C.12.15.4 — Los empalmes soldados o mecánicos utilizados donde el área de refuerzo

proporcionada es menor del doble de la requerida por el análisis, deben cumplir con los requisitos de

C.12.14.3.2 o de C.12.14.3.4.

C.12.15.5 — Los empalmes soldados o mecánicos que no cumplen con los requisitos de C.12.14.3.2

ó C.12.14.3.4 se permiten para barras No. 5 (5/8”) ó 16M (16 mm) o menores si cumplen con

C.12.15.5.1. a C.12.15.5.3:

C.12.15.5.1 — Los empalmes deben estar escalonados cuando menos 600 mm.

C.12.15.5.2 — Al calcular las fuerzas de tracción que pueden ser desarrolladas en cada sección, el

esfuerzo en el refuerzo empalmado debe tomarse como la resistencia especificada del empalme, pero

no mayor que fy. El esfuerzo en el refuerzo no empalmado debe tomarse como fy veces la relación

entre la menor longitud anclada más allá de la sección y dl , pero no mayor que fy.

C.12.15.5.3 — La fuerza de tracción total que puede ser desarrollada en cada sección debe ser de al

menos el doble que la requerida por el análisis, y al menos 140 MPa veces el área total del refuerzo

proporcionado.

C.12.15.6 — Los empalmes en elementos de amarre en tracción se deben hacer con un

empalme soldado o mecánico completo, de acuerdo con C.12.14.3.2 ó C.12.14.3.4, y los empalmes

en las barras adyacentes deben estar escalonados por lo menos a 750 mm.

C.12.16 — Empalmes de barras corrugadas a compresión

Page 202: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 201

C.12.16.1 — La longitud de un empalme por traslapo en compresión debe ser de y0.071f bd , para

fy igual a 420 MPa o menor, o y(0.13f 24) bd− para fy mayor que 420 MPa, pero no debe ser menor

que 300 mm. Para f’c menor que 21 MPa, la longitud del empalme por traslapo debe incrementarse

en 1/3.

EJEMPLO 24

Para la viga simplemente apoyada mostrada en la figura. Determine la localización de los puntos de

corte de barras. No considerar el peso de la viga ni afectaciones por exposición a intemperie.

21

420y

cf´ MPa

f MPa

==

Diagrama de momentos.

Page 203: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 202

Determinar la ubicación del eje neutro para el momento máximo

( )2

1

0,850,85

4 510 420137

0,85 21 350

137161

0,85

1610,374 0,375 0,9

430

yy

ss c

c

A fA f f´ a b a

f´ b

mm MPaa mm

MPa mm

a mmc mm

c mm

d mm

β

φ

×× = × × ⇒ =×

× ×= =

× ×

= = =

= = ≤ → =

Determinar momento nominal máximo que resiste la viga.

( )6 0,1374 510 10 420000 0,43

2 2

309,73

yn s

n

aM A f d

M KN m

− = × − = × × × −

= −

Verificación capacidad viga

( )0,9 309,73 279 275u nM M KN m KN m KN m OKφ= = − = − ≥ − →

Determinar el momento último de una barra Nº8.

( )( )6 0,1370,9 510 10 420000 0,43

2 2

70

barra

barra

yu s

u

aM A f d KN m

M KN m

φ −× = − = × × − −

= −

Por lo tanto tenemos

Mu (1 barra) = 70 KN-m Mu (2 barras) = 139,5 KN-m

Mu (3 barras) = 209,25 KN-m Mu (4 barras) = 279 KN-m

Page 204: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 203

Determinar longitud de desarrollo

( )Para barras Nº

Determinación factores

Refuerzo colocado parte inferior viga sin más de 300mm de concreto.

Refuerzo sin recubrimie

6 (C.12.2.2)1,7

(C.12.2.4)

1,0

= 1,0

d t e

b

t

e

y

c

l f

d f´

ψ ψλ

ψψ

= ≥×

= →→ nto epóxico.

Por lo tanto

420 1,0 1,054

1,7 21

54 25 1350

d

b

d

l

d

l mm mm

× ×= =

= × =

Determinar punto en el diagrama de momentos correspondiente al momento aportado por 3Nº8.

• Extremo izquierdo

( ) ( )1,5 160

275 16057,5

2

M x Mo m x Mo

m

∴= + − =−= =

Ahora se iguala el momento que soportan 3 barrasN°8 con esta ecuación para saber a que distancia

se cortarían teóricamente las barras en el extremo izquierdo.

( ) ( )160 57,5 1,5

209,25 1601,5 2,36

57,5

M x x

x m

= + −−= + =

• Extremo derecho

( ) ( )275 57,5 3,5M x x= + −

Ahora se iguala el momento que soportan 3 barrasN°8 con esta ecuación para saber a que distancia

se cortarían teóricamente las barras en el extremo derecho.

( )209,25 275 57,5 3,5

209,25 2753,5 4,64

57,5

x

x m

= − −−= + =

Puntos de corte de la primera barra

La mayor entre d y 12db � 430al mm=

Extremo izquierdo � 2,36 0, 43 1,93m m m− =

Extremo derecho � 4, 64 0, 43 5, 07m m m+ =

5,07-1,93=3,14 esta es la longitud de la barra cortada y tiene que ser mayor que 2ld=2700 mm

por lo que cumple

Page 205: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 204

Determinar punto en el diagrama de momentos correspondiente al momento aportado por 2Nº8.

( ) ( )160 0

106,71,5

M x m x

m

=−= =

( ) ( )106,7M x x=

• Extremo izquierdo

( )139,35 106,7 1,31x x m= → =

• Extremo derecho

( )139,35 160 106,7 5,5 5,69x x m= − − → =

Puntos de corte de la segunda barra

Extremo izquierdo � 1,31 0, 43 0,88m m m− =

Extremo derecho � 5, 69 0, 43 6,12m m m+ =

Verificación corte de varillas consecutivas

2,36 0,88 1,48 1,35

6,12 4,64 1,48 1,35d d

d d

l l Cumple

l l Cumple

− ≥ ⇒ ≥ = →− ≥ ⇒ ≥ = →

Según el C.12.11.1 al menos 1/3 del refuerzo para el momento positivo en elementos simplemente

apoyados debe extenderse dentro del apoyo. Por lo tanto no se pueden efectuar más cortes, las

restantes 2Nº8 deben llevarse a los apoyos.

Verificación empotramiento de los apoyos

1,3 1,3 139,350 1,69 (C.12.11.3)

107,5d a

n

u

Ml l

V

× ×≤ + ⇒ + =

Lo anterior se cumple

Page 206: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 205

18. LOSAS

Clasificación

Sistemas de soporte a cargas verticales

• Placa plana

• Losa plana (con ábacos y/o capiteles)

• Losa aligerada armada en una dirección

• Losa aligerada armada en dos direcciones

Un sistema de losas puede tener pórticos cargueros y/o pórticos sísmicos.

Comportamiento

• Losa en una dirección

Figura 131

Principio de franja unitaria

Se asume que una franja unitaria cortada de tal forma que forme ángulos rectos con las vigas de

apoyo, puede ser considerada como una viga rectangular de ancho unitario con altura h igual al

espesor de la losa y una luz lx. Esta simplificación en la cual se toma una franja unitaria se debe

apoyar en la suposición una relación de Poisson igual a cero.

Figura 132

Page 207: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 206

• Losa en dos direcciones

Principio de compatibilidad de deformaciones:

4 45 5;

384 384

l s

s s l ll s s l

w l w l

EI EI

δ δ

δ δ δ δ δ

=

× × × ×= = ⇒ = =× ×

4 44 4

4 4 4 4

4

4 4

s l total

s l s ls s l

s l s l total s l

l s

total s l

w w w

w l w lw l w l

w w l l w l l

w l

w l l

+ =

× = × ⇒ = ⇒ =+ + +

=+

Suponer:

4 4

4 4 4 4

1 11

2 2l s l l s

s total l l total s s

l w l w l

l w l l w l l= ⇒ = = ⇒ = =

+ +

4 4

4 4 4 4

16 16 12

16 17 16 17l s s l s

s total s s total s s

l w l w l

l w l l w l l= ⇒ = = ⇒ = =

+ +

Es importante resaltar sí 2l sl l > , es mejor tomar la losa con un comportamiento en una sola

dirección. La relación entre luces es lo que define si el comportamiento es en una o dos

direcciones.

Figura 133

Page 208: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 207

19. LOSAS ARMADAS EN UNA DIRECCIÓN

Conceptos generales

Alternancia de cargas

Debido a la naturaleza variable de la carga viva, en algunos casos cuando la carga viva es

considerable en magnitud con respecto a la carga muerta, es necesario hacer un análisis de alternancia

de cargas. Es posible realizar este análisis utilizando líneas de influencia.

Figura 134

Formación de rotulas plásticas Las viguetas no forman parte del sistema de resistencia sísmica de la edificación. La vigueta debe

diseñarse para estas consideraciones, pero a la vez debe controlar fisuramiento en la unión viga-

vigueta, en las condiciones de servicio, es decir, la vigueta debe comportarse como simplemente

apoyada pero con cierto momento para evitar la fisuramiento, el cual de llegarse a presentar puede

resultar muy costoso si afecta pisos y acabados.

Page 209: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 208

Diseño losas en una dirección (C.13.1.6)

Una losa se considera que trabaja en una dirección cuando se cumple una de las siguientes

condiciones:

• Cuando tiene dos bordes libres, sin apoyo vertical, y tiene vigas o muros, en los otros dos bordes

opuestos aproximadamente paralelos. C.13.1.6.1.

• Cuando el panel de losa tiene forma aproximadamente rectangular con apoyo vertical en sus

cuatro lados, con una relación de la luz larga a la luz corta mayor que 2. C.13.1.6.2.

• Cuando una losa nervada tiene sus nervios principalmente en una dirección. C.13.1.6.3.

Dimensionamiento

Para determinar el espesor de una losa armada en una dirección se puede efectuar un análisis de

deflexiones o utilizar los valores dados en la tabla C.9.5(a).

TABLA C.9.5(a) – Alturas o espesores mínimos de vigas no preesforzadas o losas reforzadas en una dirección a menos que se calculen las deflexiones

Espesor mínimo, h

Simplemente apoyados

Con un extremo continuo

Ambos extremos continuos

En voladizo

Elementos Elementos que NO soporten o estén ligados a divisiones u otro tipo de

elementos susceptibles de dañarse debido a deflexiones grandes

Losas macizas en una dirección

�20 �24

�28 �10

Vigas o losas nervadas en una dirección

�16 �18.5

�21 �8

NOTAS: Los valores dados en esta tabla se deben usar directamente en elementos de concreto de peso normal y refuerzo grado 420 MPa. Para otras condiciones, los valores deben modificarse como sigue: (c) Para concreto liviano estructural con densidad wc dentro del rango de 1440 a 1840 kg/m3, los

valores de la tabla deben multiplicarse por (1.65-0.0003wc), pero no menos de 1.09. (d) Para fy distinto de 420 Mpa, los valores de esta tabla deben multiplicarse por (0.4 + fy/700)

Page 210: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 209

Determinación cargas de diseño

• Las cargas de los elementos no estructurales se deben obtener con base a lo planteado en el título

B de la NSR-10.

• Se deben realizar análisis completos usando las densidades, volúmenes y pesos de los elementos

no estructurales.

• Realizar análisis por cargas mínimas.

• Seleccionar las cargas vivas según el tipo de uso u ocupación (tabla B.4.2.1-1) recordando que

estos valores son las cargas vivas mínimas. En bodegas es usual y recomendado tomar como

carga muerta adicional el 25% de la carga viva.

Refuerzo longitudinal de la losa C.13.3

• El área de refuerzo en cada dirección para sistemas de losas en dos direcciones debe determinarse

a partir de los momentos en las secciones críticas, pero no debe ser menor que la requerida en

C.7.12.2.1. C.13.3.1.

• El espaciamiento del refuerzo en las secciones críticas no debe exceder de 2 veces el espesor de

la losa, excepto para aquellas porciones de la superficie de la losa nervadas o celulares. El

refuerzo de la losa localizado sobre los espacios celulares debe colocarse como se requiere en

C.7.12. C.13.3.2.

• El refuerzo para momento positivo perpendicular a un borde discontinuo debe prolongarse hasta

el borde de la losa y tener una longitud embebida recta o en gancho, de por lo menos 150 mm en

las vigas, muros o columnas perimetrales. C.13.3.3

• El refuerzo para momento negativo perpendicular a un borde discontinuo debe doblarse, formar

ganchos o anclarse en las vigas, muros o columnas perimetrales, para que desarrolle su capacidad

a tracción en la cara del apoyo, de acuerdo con las disposiciones del Capítulo C.12. C.13.3.4

• Cuando la losa no esté apoyada en una viga perimetral o muro en un borde discontinuo, o cuando

la losa se proyecte en voladizo más allá del apoyo, se permite el anclaje del refuerzo dentro de

la losa. C.13.3.5

• En muros y losas excepto las nervadas la separación del refuerzo principal por flexión no debe

ser mayor a 3 veces el espesor del muro o losa ni menor que 450mm C.7.6.5

Page 211: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 210

Refuerzo por temperatura C.7.12

El refuerzo por contracción y temperatura debe colocarse debido a efectos de retracción que se

generan a medida que la pasta de cemento se endurece provocando esfuerzos de tracción en el

concreto de la losa, estos esfuerzos son conocidos como esfuerzos de retracción que generan

fisuramiento en el concreto.

• En losas estructurales donde el refuerzo a flexión se extiende en una sola dirección, se debe

colocar refuerzo normal al refuerzo a flexión para resistir los esfuerzos debidos a retracción y

temperatura. C.7.12.1

• El refuerzo de retracción y temperatura debe proveerse de acuerdo con C.7.12.2 ó C.7.12.3.

C.7.12.1.1

• Cuando los movimientos por retracción y temperatura están restringidos de manera significativa,

deben considerarse los requisitos de C.8.2.4 y C.9.2.3. C.7.12.1.2

• El refuerzo corrugado, que cumpla con C.3.5.3, empleado como refuerzo de retracción y

temperatura debe colocarse de acuerdo con lo siguiente C.7.12.2:

• La cuantía de refuerzo de retracción y temperatura debe ser al menos igual a los valores dados a

continuación, pero no menos que 0.0014 C.7.12.2.1:

(a) En losas donde se empleen barras corrugadas Grado 280 o 350 = 0.0020

(b) En losas donde se empleen barras corrugadas Grado 420 o refuerzo electrosoldado de

alambre=0.0018

(c) En losas donde se utilice refuerzo de una resistencia a la fluencia mayor que 420 MPa, medida

a una deformación unitaria de 0.35 por ciento 0.0018 x420/fy

• El refuerzo de retracción y temperatura no debe colocarse con una separación mayor de 5 veces

el espesor de la losa ni de 450 mm. C.7.12.2.2

• En todas las secciones donde se requiera, el refuerzo por retracción y temperatura debe ser capaz

de desarrollar fy en tracción de acuerdo con el Capítulo C.12. C.7.12.2.3

Page 212: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 211

Requisitos adicionales - Protección del refuerzo C.7.7

• Recubrimiento de refuerzo si la losa esta contra el suelo o a la intemperie debe ser como mínimo

75mm C.7.7.1.

• Si las barras del refuerzo son menores que la número 11 el recubrimiento debe ser como mínimo

20 mm.

• Para barras mayores que numero 11 el recubrimiento debe ser como mínimo 40 mm.

• El corte del refuerzo en losas y viguetas se realiza igual al de una viga que no forma parte del

sistema de resistencia sísmica de la edificación.

Losas armadas en una dirección

• Losas macizas: estas losas se usan en el diseño de escaleras o en entrepisos y cubiertas

correspondientes a luces muy pequeñas, ya que en luces considerables se generan altos costos,

otro aspecto es que aumentan en forma considerable la masa de la estructura. También son muy

usadas para ubicar cargas concentradas como tanques de almacenamiento de agua potable. Para

el análisis y diseño de este tipo de losas se usa el método de franja unitaria, en el cual se toma

una franja de la losa como una viga y se diseña a flexión, siendo una viga de poco peralte con un

ancho b, para el diseño supuesto unitario, de espesor h y altura efectiva d. En la norma NSR-10

en el titulo E.5 se proporcionan procedimientos simplificados para el dimensionamiento y

cálculo de este tipo de losas.

• Losas aligeradas: logran reducción de la masa del entrepiso suprimiendo parte del concreto con

ayuda de elementos de menor peso. Si la losa aligerada lleva loseta inferior debe cumplir con las

disposiciones de la NSR-10 y como mínimo se debe reforzar con alambrón cada 300 mm en

ambas direcciones o con malla de gallinero con ojo de 25 mm y tener un espesor mínimo de 20

mm y máximo de 30 mm. E.5.1.5. La placa superior debe cumplir con los requerimientos de la

NSR-10 y se puede diseñar a flexión y cortante asumiendo que la loseta es una viga doblemente

empotrada con una luz libre igual al ancho del aligeramiento.

Dimensionamiento de viguetas

• Los nervios principales y los nervios transversales o riostras, de losas nervadas en una dirección,

no pueden tenerse en cuenta para efectos de rigidez ante fuerzas horizontales del sistema de

resistencia sísmica. El elemento, paralelo a la viguetería, que enlaza las columnas, debe cumplir

Page 213: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 212

los requisitos para vigas dados en el Capítulo C.21 y su rigidez puede tenerse en cuenta en el

análisis ante cargas horizontales.

• El ancho de las nervaduras no debe ser menor de 100 mm en su parte superior y su ancho

promedio no puede ser menor de 80 mm; y debe tener una altura no mayor de 5 veces su ancho

promedio. C.8.13.2.

• Para losas nervadas en una dirección, la separación máxima entre nervios, medida centro a

centro, no puede ser mayor que 2.5 veces el espesor total de la losa, sin exceder 1.20 m. Para

losas nervadas en dos direcciones, la separación máxima entre nervios, medida centro a centro,

no puede ser mayor que 3.5 veces el espesor total de la losa, sin exceder 1.50 m. C.8.13.3

• Cuando se trate de losas nervadas en una dirección, deben colocarse viguetas transversales de

repartición con una separación libre máxima de 10 veces el espesor total de la losa, sin exceder

4.0 m. C.8.13.3.1

• Estas viguetas transversales de repartición deben diseñarse, a flexión y a cortante, de tal manera

que sean capaces de transportar la carga total (muerta más viva) de cada nervio a los dos nervios

adyacentes. C.8.13.3.2

• En el diseño de los elementos donde se apoyen estas viguetas transversales de repartición debe

considerarse el efecto de la carga que puedan transportar considerando una carga aferente

equivalente al doble de la carga total que lleva un nervio típico principal. C.8.13.3.3

• Las losas nervadas que no cumplan con las limitaciones de C.8.13.1 a C.8.13.3, deben diseñarse

como losas y vigas. C.8.13.4

• Cuando se empleen aligeramientos fabricados con arcilla cocida u concreto que tengan una

resistencia unitaria a la compresión por lo menos igual al f’c de las viguetas: C.8.13.5

• Se permite incluir la pared vertical del elemento de aligeramiento que está en contacto con la

vigueta en los cálculos de resistencia al cortante y momento negativo. Ninguna otra parte de los

aligeramientos debe incluirse en los cálculos de resistencia. C.8.13.5.1.

• La porción vaciada en sitio de la loseta superior debe tener al menos 45 mm de espesor, pero ésta

no debe ser menor de 1/20 de la distancia libre entre los nervios. El espesor de la losa de concreto

vaciada en sitio sobre aligeramientos permanentes de concreto, de arcilla cocida, o plaquetas

Page 214: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 213

prefabricadas, la parte vaciada en sitio del espesor mínimo de la loseta superior puede reducirse

a 40 mm. C.8.13.5.2

• Cuando se utilicen encofrados o aligeramientos removibles que no cumplan con C.8.13.5: El

espesor de la losa no debe ser menor que 1/12 de la distancia libre entre las nervaduras, ni menor

de 50 mm. C.8.13.6.1

• La losa debe llevar refuerzo perpendicular a las viguetas que cumpla lo requerido por flexión,

considerando las concentraciones de carga, si las hay, pero no menor que el que se estipula en

C.7.12. C.8.13.6.2

• Cuando en la losa se coloquen ductos o tuberías embebidas según lo permitido en C.6.3, el

espesor en cualquier punto de ésta debe ser al menos 25 mm mayor que la altura total del ducto

o tubería. Tales ductos o tuberías no deben afectar significativamente la resistencia del sistema.

C.8.13.7.

Análisis para losas en una dirección

• Se permite diseñar un sistema de losas mediante cualquier procedimiento que satisfaga las

condiciones de equilibrio y compatibilidad geométrica, si se demuestra que la resistencia de

diseño en cada sección es por lo menos igual a la resistencia requerida en C.9.2 y C.9.3, y se

cumplen todas las condiciones de funcionamiento incluyendo los límites especificados para las

deflexiones. C.13.5.1

• El diseño para cargas gravitacionales de sistema de losas, incluyendo la losa y las vigas (cuando

las hay) entre apoyos, y las columnas de apoyo o muros que formen pórticos ortogonales, se

puede hacer mediante el Método de diseño directo de C.13.6 o el Método del Pórtico Equivalente

de C.13.7. C.13.5.1.1

• La losa y las vigas (si las hay) entre los apoyos deben diseñarse para los momentos mayorados

dominantes en cada sección.C.13.5.2

• Cuando la carga gravitacional, viento, sismo u otras fuerzas laterales causen transferencia de

momento entre la losa y la columna, una fracción del momento no balanceado debe ser

transferida por flexión, de acuerdo con C.13.5.3.2 y C.13.5.3.3. C.13.5.3

• El diseño para la transmisión de carga desde la losa a los muros y columnas de apoyo por medio

de cortante y torsión debe estar de acuerdo con el Capítulo C.11. C.13.5.4.

Page 215: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 214

Análisis aproximado para losas en una dirección C.13.5.5

• Las losas que trabajan en una dirección, macizas o aligeradas, construidas monolíticamente con

sus apoyos, pueden analizarse como losas continuas sobre apoyos simples, con luces iguales a

las luces libres de la losa y despreciando el ancho de las vigas y su efecto torsional. C.13.5.5.1

• En lugar de un análisis detallado, en las losas en una dirección pueden utilizarse los siguientes

momentos y cortantes aproximados en lugar de un método más exacto de análisis, siempre y

cuando se cumplan los siguientes requisitos: C.13.5.5.3

(a) Haya dos o más vanos,

(b) Los vanos son aproximadamente iguales, sin que el mayor de los vanos adyacentes exceda

en más de 20 por ciento al menor,

(c) Las cargas estén uniformemente distribuidas,

(d) La carga viva no mayorada L no exceda en 3 veces la carga muerta no mayorada D,

(e) Los elementos sean prismáticos.

Metodología de los coeficientes de cortante y momento de acuerdo a la ACI

2( )u m u nM C W l=

2u n

u v

W lV C

=

uW Carga viva y muerta total mayorada por unidad de longitud

mC Coeficiente de momento

vC Coeficiente de cortante

nl Longitud del tramo abierto para el tramo en cuestión para - uM en la cara interior del

soporte exterior, + uM y uV

nl Promedio de la longitud tramo abierto para tramos adyacentes para - uM en los soportes

interiores.

Page 216: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 215

Para el cálculo de los momentos negativos, ln se toma como el promedio de las luces libres de

los vanos adyacentes.

Momento positivo Vanos extremos

El extremo discontinuo no está restringido…....................................................................... 2u nw /11l

El extremo discontinuo es monolítico con el apoyo…....................................................... 2u nw / 14l

Vanos interiores.........................................................................................................................2

u nw / 16l

Momento negativo en la cara exterior del primer apoyo interior

Dos vanos..................................................................................................................................... 2u nw / 9l

Más de dos vanos.......................................................................................................................2

u nw / 10l

Momento negativo en las demás caras de apoyos interiores..................................................... 2

u nw /11l

Momento negativo en la cara de todos los apoyos para: Losas con luces que no excedan de 3 m, y vigas en las cuales la relación entre la suma de las rigideces de las columnas y la rigidez de la viga, exceda de 8 en cada extremo del vano. ...........................................................................................................................................

2u nw / 12l

Momento negativo en la cara interior de los apoyos exteriores para los elementos construidos monolíticamente con sus apoyos

Cuando el apoyo es una viga de borde.. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2u nw / 24l

Cuando el apoyo es una columna............................................................................................. 2u nw / 16l

Cortante en elementos extremos en la cara del primer apoyo interior................................u n1.15w / 2l

Cortante en la cara de todos los demás apoyos .........................................................................

u nw / 2l

EJEMPLO 25

Determinar los momentos de diseño de una losa de entrepiso que se va a construir para una vivienda

de uso residencial con particiones en mampostería, la losa se encuentra apoyada sobre muros de

mampostería con un espesor de 150 mm, estos muros se encuentran separados entre sí 3200 mm,

f´c= 21MPa y fy= 420MPa.

Dimensionamiento losa

del tipo de vigueta más crítico (C.9.5(a))3200

= = 0, 216

mmh m

Page 217: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 216

Se usará una losa aligerada de 200 mm de espesor con aligeramiento en ladrillos de arcilla huecos de

150 200 400× × mm, peso promedio de cada ladrillo es 10 kg y una placa superior con un espesor

de 50 mm.

Verificación del espesor y separación de las viguetas C.8.13.2 y C.8.13.3

200 5 100 500h mm mm mm= ≤ × =

100 100

500 2,5 2,5 200 500

500 1200

b mm mm

s mm h mm mm

s mm mm

= ≥= ≤ × = × == ≤

Verificación del espesor de la placa superior C.8.13.5.2

50 40

40050 20

20 20l

t mm mm

s mmt mm = mm

= ≥

= ≥ =

Determinación de las cargas

Elementos no estructurales tabla B.3.4.3-1. Cuando la altura de entrepiso es igual o inferior a 3 m y

la losa tiene un uso residencial las cargas son:

2 2Muros Pisos=3 =1,6 KN m KN m

2

2

2

2

Peso losa: peso loseta + peso vigueta + pesoladrillos

Peso loseta

Peso vigueta

Peso ladrillos

Peso losa

= 0,05×24= 0,12

= 0,1×0,15×24/0,5=0,072 ;

= 2×5×0,1=1 ;

= 0,12+0,072+1 = 1,192

KN m

KN m

KN m

KN m

2

2

Carga viva (Tabla B.4.2.1-1)

Carga última,

= 1,8

= 1,2×(3+1,6+1,192)+1,6×1,8 = 9,8 u

KN m

W KN m

Con una separación de 500 mm la carga linealmente distribuida sobre las viguetas es:

u 0,5 4,9 -W KN m× =

Momento máximo negativo en los extremos apoyados en los muros C.13.5.5.3

2×= =2,1 -

24

W lM KN m

Momento máximo positivo 2×

= =6,3 -8

W lM KN m

Page 218: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 217

EJEMPLO 26

Diseñar la losa armada en una dirección de la planta estructural mostrada en la figura 5 sobre la cual

actúa una carga viva en los balcones de 5 KN/m2 y en los interiores de 1,8 KN/m2, las columnas están

dimensionadas con una sección cuadrada de 250 mm, la estructura se encuentra ubicada en una zona

de amenaza sísmica intermedia y por ser un sistema de entrepiso no presenta exposición ambiental.

f´c= 21MPa y fy= 420MPa.

Nota: Longitud máxima de barras 9 m.

El espesor de la losa está dado por los valores de la tabla C.9.5-(a) de la NSR-10.

h = (4,05-0,25)/18,5 = 205,4 mm, el espesor de la losa se tomará de 250 mm.

Características de la losa

• Ladrillo de (200 x 200 x 400) mm.

• Viguetas de 100 x 250 mm separadas cada 500 mm desde ejes.

• Placa superior de 50 mm con varillas N° 2 cada 300 mm.

Verificación del espesor y separación de las viguetas C.8.13.2 y C.8.13.3

250 5 100 500 h mm mm mm= ≤ × =

Page 219: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 218

100 100

500 2,5 =2,5 250 625

500 1200

b mm mm

s mm h mm mm

s mm mm

= ≥= ≤ × × == ≤

Verificación del espesor de la placa superior C.8.13.5.2

50 40

400 50 = 20

20 20l

t mm mm

s mmt mm mm

= ≥

= ≥ =

Distribución de viguetas

Cargas sobre las viguetas

Carga muerta

Viguetas: en cada m2 de losa caben 2 viguetas.

3 2 2

21 0,1 0,2 24 0,96

1

KN KNWvigueta m m m

m m m = × × × × =

27,76

KN

m

Ladrillo: el ladrillo usado pesa 10 Kg y caben 10 ladrillos por m2.

2

2 2

10 1010 1,00

1

mKg Vol KNsWladrillo

Vol m m

× = × × =

Page 220: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 219

Placa superior: se usa concreto reforzado.

3 20,05 24 1,20

KN KNWplaca m

m m= × =

Se toma una carga de 3,00 KN/m2 para muros y 1,60 KN/m2 para pisos asumiendo altura entrepiso menor de 3 metros.

Carga viva Tabla B.4.2.2-1. NSR-10 (uso residencial)

Balcones. 25

KN

m

Interiores. 21,8

KN

m

Carga última balcón. 2 2 21,2 7,76 1,6 5 17,31

KN KN KNWub

m m m= × + × =

Carga última interior. 2 2 21,2 7,76 1,6 1,8 12,19

KN KN KNWui

m m m= × + × =

Carga por vigueta; están separadas cada 0,5 m desde ejes.

Balcón

17,31 0,5 8,66KN

Wubm

= × =

Interior

12,19 0,5 6,096KN

Wuim

= × =

Vigueta tipo I

Alternancia de cargas vivas C.8.11.2

a. Carga muerta y carga viva mayoradas en todos los vanos.

b. Carga muerta mayorada en todos los vanos con la carga viva mayorada en dos vanos adyacentes.

Page 221: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 220

c. Carga muerta mayorada en todos los vanos con la carga viva mayorada en vanos alternados.

Diseño del refuerzo a flexión

Vigueta ICaso M(KN-m) + M(KN-m) -

a 5,9 8,65,5 7,44,9 9,05,7 9,24,9 6,96,8 7,5

Momentos máximos

b

c

2

2

2 2min

91

125

0,0033 100 210 70

As mm

As mm

As mm mm mm

+

==

= × × =

Utilizar 1 varilla N° 4 2129As mm= para momento positivo.

Utilizar 1 varilla N° 4 2129As mm= para momento negativo.

Page 222: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 221

Verificación longitud de desarrollo para viguetas C.7.13.2.1

En la construcción con viguetas, como se define en C.8.13.1 a C.8.13.3, al menos una barra de la

parte inferior debe ser continua o debe empalmarse por traslapo con un empalme por traslapo de

tracción Clase B, o un empalme mecánico o soldado que cumpla con C.12.14.3, y en los apoyos no

continuos debe ser anclado para desarrollar fy en la cara del apoyo usando un gancho estándar que

cumpla con C.12.5 o una barra corrugada con cabeza que cumpla con C.12.6.

• Longitud de desarrollo

( )Para barras Nº 6 (C.12.2.2)2,1

420 1 112,7 555

2,1 1 21

t ed b

d

y

c

fl d

l mm

ψ ψλ

= ≤ ×

× ×= × =× ×

• Empalme por traslapo Clase B (C.12.15.1)→1,3dl

Traslapo 1,3 555 721,5mm mm× =

Diseño de refuerzo de fisuramiento

Para evitar fisuraciones en los apoyos discontinuos se coloca un refuerzo calculado a partir de un

momento para una viga simplemente apoyada con una carga distribuida.

• Apoyo izquierdo

( )22 8,66 1

0, 424 24

KNmWu l mMu KN m

××= = = −

26As mm=

Utilizar 1 varilla N° 2 232As mm=

Longitud de desarrollo

420 1 16,4 280

2,1 1 21dl mm

× ×= × =× ×

Longitud de desarrollo básica para barras enganchadas

edh

dh

y

c

0,24ψ f 0,24 1 4206,4 141 8 52

λ f´ 1 21

141 150

bl d mm d mm

l mm mm

× × = = × = ≥ = ×

= ≥

Page 223: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 222

Utilizar dh 150l mm=

• Apoyo derecho

( )22 8,66 3

3, 2524 24

KNmWu l mMu KN m

××= = = −

241As mm=

Utilizar 1 varilla N° 3 271As mm=

Longitud de desarrollo

420 1 19,5 415

2,1 1 21dl mm

× ×= × =× ×

Longitud de desarrollo básica para barras enganchadas

edh

dh

y

c

0,24ψ f 0,24 1 4209,5 209 8 76

λ f´ 1 21

209 150

bl d mm d mm

l mm mm

× × = = × = ≥ = ×

= ≥

Nota: Utilizar multiplicadores cuando sea necesario.

Puntos(m) M(KN-m)+ M(KN-m)- As(mm 2)+ Varillas As(mm2)- Varillas As (fis.)

0 0 Anclaje 1 N° 2

Sección

crítica

6,8 91 1N° 4

9,2 125 1N°4

10,7 0 Anclaje 1 N° 3

Cortante

Estribos de 3/8” cada 105 mm, en la luz del extremo de 1 m se coloca en toda la longitud.

Page 224: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 223

Vigueta tipo II

Puntos(m) M(KN-m)+ M(KN-m)- As(mm 2)+ Varillas As(mm2)- Varillas As (fis.)

0 0 Anclaje 1 N° 2

Sección

crítica

4,5 59 1N° 4

6,3 84 1N°4

10,7 0 Anclaje 1 N° 3

Cortante

Estribos de 3/8” cada 105 mm, en la luz del extremo de 1 m se coloca en toda la longitud.

Page 225: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 224

Vigueta tipo III

Puntos(m) M(KN-m)+ As(mm2)+ Varillas As (mm2) (fis.) Varillas

0 0 Anclaje 29 1 N° 2

Sección

crítica 6,9 92 1N° 4

3 0 Anclaje 29 1 N° 2

Cortante

Estribos de 3/8” cada 105 mm

Vigueta tipo IV

Puntos(m) M(KN-m)+ M(KN-m)- As(mm 2)+ Varillas As(mm2)- Varillas As (fis.)

0 0 Anclaje 1 N° 2

Sección

crítica

5,6 74 1N° 4

7,1 95 1N°4

4,4 0 Anclaje 1 N° 3

Cortante

Estribos de 3/8” cada 105 mm, en la luz del extremo de 1 m se coloca en toda la longitud.

Page 226: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 225

Vigueta tipo V

Puntos(m) M(KN-m)+ M(KN-m)- As(mm 2)+ Varillas As(mm2)- Varillas As (fis.)

0 0 Anclaje 1 N° 2

Sección

crítica

3,8 42 1N° 4

5,2 69 1N°4

6,15 0 Anclaje 1 N° 2

Cortante

Estribos de 3/8” cada 105 mm, en la luz del extremo de 1 m se ponen en toda la longitud.

Desarrollo de barras para As-: las barras deben tener una longitud embebida más allá del punto de

inflexión, no menor que d , 12db ó ln/16 , la que sea mayor.(C.12.12.3). Las fuerzas de cortantes

críticas se obtienen en las secciones críticas a cortante. Las viguetas no hacen parte del sistema de

resistencia sísmica, el espaciamiento se compara con d/2= (210 mm)/2= 105 mm en toda la longitud.

Page 227: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 226

20. LOSAS ARMADAS EN DOS DIRECCIONES

Comparación del comportamiento de los sistemas de losas en una y dos direcciones

• Las losas en una dirección llevan la carga en una dirección.

• Las losas en dos direcciones llevan la carga en dos direcciones.

Figura 135

• Las losas en una y dos direcciones llevan la carga en dos direcciones.

Figura 136

Page 228: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 227

• Las losas en una dirección poseen una relación de: lado largo/lado corto > 2,0

Figura 137

Page 229: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 228

Figura 138

• La luz óptima para un sistema de losa maciza unidireccional sobre vigas es de 3 m a 5 m.

Se puede utilizar para luces mayores con costos relativamente más altos y mayores deflexiones.

• La luz óptima para un sistema de losa aligerada unidireccional es de 5 m a 8 m.

El encofrado es relativamente costoso

sw Carga tomada por la dirección corta

lw Carga tomada por la dirección larga

A Bδ δ=

EI

Bw

EI

Aw

384

5

384

5 4l

4s =

4s

s l4l

Para B 2A 16w B

w ww A

= = ⇒ =

Para B / A> 2, diseñar como losa unidireccional

Page 230: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 229

Figura 139

Diseño de losas en dos direcciones

Equilibrio estático para losas en dos direcciones

Figura 140

Analogía de la losa bidireccional para planchas y vigas de piso

Sección A-A

Momento por unidad de ancho de longitud en las planchas

21

8

wlM⇒ =

Momento total

( )22

f 1 8

lM wl⇒ =

Page 231: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 230

Carga uniforme para cada viga

1

2

wl⇒

Sección B-B

Momento en una viga

21 2

lb 2 8

wl lM

⇒ =

Momento total en ambas vigas

( )22

1 8

lM wl⇒ =

La carga completa se trasladó de Este a Oeste por las planchas y luego fue trasladado de Norte a

Sur por las vigas; lo mismo es verdad para una losa bidireccional o cualquier otro sistema de piso.

Conceptos generales de diseño

Método directo de diseño

Limitado a los sistemas de losa para cargas uniformemente distribuidas y apoyadas sobre columnas

equidistantes. El método utiliza un conjunto de coeficientes para determinar el momento del diseño

en las secciones críticas. El sistema de losa bidireccional que no cumpla con las limitaciones de la

NSR-10 debe ser analizado siguiendo procedimientos más precisos.

Método del pórtico equivalente

Un edificio de tres dimensiones se divide en una serie de dos dimensiones de pórticos equivalentes

por el corte de la construcción a lo largo de las líneas a mitad de la luz entre las columnas. Los

pórticos resultantes se consideran por separado en las direcciones longitudinales y transversales del

edificio y son tratados planta por planta.

Page 232: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 231

Figura 141. Sección equivalente longitudinal y transversal

Figura 142. Elevación del pórtico

Page 233: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 232

Figura 143. Vista en perspectiva

Métodos de análisis

Análisis elástico

La losa de hormigón puede ser tratada como una placa elástica. Se puede utilizar el método de

Timoshenko para analizar la estructura. Análisis de elementos finitos.

Análisis plástico

El método por rendimiento utilizado para determinar el estado límite de la losa considerando líneas

de influencia.

El método de bandas, donde la losa se divide en franjas y la carga sobre la losa se distribuye en dos

direcciones ortogonales y las bandas se analizan como vigas.

El análisis óptimo presenta métodos para minimizar el refuerzo basado en el análisis plástico.

Análisis no lineal

Simula la verdadera carga-deformación característica de una losa de hormigón armado con el método

de elementos finitos que toma en consideración la no linealidad de la relación esfuerzo-deformación

de los miembros individuales.

Page 234: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 233

Columnas y bandas intermedias

La losa se descompone en columna y bandas intermedias para el análisis.

Figura 144

Espesor de losa mínimo para el diseño de losas bidireccionales (NSR-10)

C.9.5.3 — Elementos reforzados en dos direcciones (no preesforzados)

C.9.5.3.1 — Debe emplearse la sección C.9.5.3 para definir el espesor mínimo de

losas u otros elementos reforzados en dos direcciones diseñados de acuerdo con las

disposiciones del Capítulo C.13 y que se ajusten a los requisitos de C.13.6.1.2. El espesor de

las losas sin vigas interiores que se extiendan entre los apoyos en todos sentidos debe satisfacer

los requisitos de C.9.5.3.2 ó C.9.5.3.4. El espesor de las losas con vigas que se extiendan entre

los apoyos en todos sentidos debe satisfacer los requisitos de una de C.9.5.3.3 ó C.9.5.3.4.

Page 235: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 234

TABLA C.9.5 (b) — Deflexión máxima admisible calculada

Tipo de elemento Deflexión considerada Límite de deflexión Cubiertas planas que no soporten ni estén

ligadas a elementos no estructurales susceptibles de sufrir daños debido a deflexiones grandes.

Deflexión inmediata debida a la carga viva, L l/180*

Entrepisos que no soporten ni estén ligados a elementos no estructurales susceptibles de sufrir daños debido a deflexiones grandes.

Deflexión inmediata debida a la carga viva, L l/360

Sistema de entrepiso o cubierta que soporte o esté ligado a elementos no estructurales susceptibles de sufrir daños debido a deflexiones grandes.

La parte de la deflexión total que ocurre después de la unión de los elementos no estructurales (la suma de la deflexión a largo plazo debida a todas las cargas permanentes, y la deflexión inmediata debida a cualquier carga viva adicional)†

l/480‡

Sistema de entrepiso o cubierta que soporte o esté ligado a elementos no estructurales no susceptibles de sufrir daños debido a deflexiones grandes.

l/240§

* Este límite no tiene por objeto constituirse en un resguardo contra el empozamiento de aguas. Este último se debe verificar mediante cálculos de deflexiones adecuados, incluyendo las deflexiones debidas al agua estancada, y considerando los efectos a largo plazo de todas las cargas permanentes, la contraflecha, las tolerancias de construcción y la confiabilidad en las medidas tomadas para el drenaje. † Las deflexiones a largo plazo deben determinarse de acuerdo con C.9.5.2.5 ó C.9.5.4.3, pero se pueden reducir en la cantidad de deflexión calculada que ocurra antes de unir los elementos no estructurales. Esta cantidad se determina basándose en datos de ingeniería aceptables correspondiente a las característica tiempo-deflexión de elementos similares a los que se están considerando. ‡ Este límite se puede exceder si se toman medidas adecuadas para prevenir daños en elementos apoyados o unidos. § Pero no mayor que la tolerancia establecida para los elementos no estructurales. Este límite se puede exceder si se proporciona una contraflecha de modo que la deflexión total menos la contraflecha no exceda dicho límite.

C.9.5.3.2 — El espesor mínimo de las losas sin vigas interiores que se extiendan entre los

apoyos y que tienen una relación entre lados no mayor que 2, debe cumplir con lo requerido en

la tabla C.9.5(c) y no debe ser inferior que los siguientes valores:

(a) Losas sin ábacos como se definen en C.13.2.5125 mm

(b) Losas con ábacos como se definen en C.13.2.5100 mm

C.9.5.3.3 — El espesor mínimo h para losas con vigas que se extienden entre los apoyos en

todos los lados debe ser:

(a) Para αfm igual o menor que 0.2, se aplican las disposiciones de C.9.5.3.2.

Page 236: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 235

(b) Para αfm mayor que 0.2 pero no mayor que 2.0, h no debe ser menor que:

(C.9-12)

Pero no menor que 125 mm.

(c) Para αfm mayor que 2.0, h no debe ser menor que:

yn

f0.8

1400h

36 9

+

=+ β

l

(C.9-13)

Y no menor que 90 mm.

(d) En bordes discontinuos debe disponerse una viga de borde que tenga una relación de rigidez

αf no menor de 0.80, o bien aumentar el espesor mínimo requerido por las ecuaciones (C.9-

12) ó (C.9-13), por lo menos un 10 por ciento en el panel que tenga un borde discontinuo.

TABLA C.9.5(c) - Espesores mínimos de losas sin vigas interiores*

fy ,

MPa †

Sin ábacos ‡ Con ábacos ‡

Paneles exteriores

Paneles interiores

Paneles exteriores

Paneles interiores

Sin vigas

de borde

Con vigas de borde§

Sin

vigas de borde

Con vigas de borde§

280 n

3 3l

n

3 6l

n

3 6l

n

3 6l

n

40l

n

40l

420 n

3 0l

n

3 3l

n

3 3l

n

3 3l

n

3 6l

n

3 6l

520 n

2 8l

n

31l

n

31l

n

31l

n

3 4l

n

3 4l

* Para construcción en dos direcciones,ln, es la luz libre en la dirección larga, medida entre caras de los apoyos en losas sin vigas y entre caras de las vigas, para losas con vigas u otros apoyos en otros casos. †Para fy entre los valores dados en la tabla, el espesor mínimo debe obtenerse por interpolación lineal. ‡ Ábaco, como se define en C.13.2.5.

( )

yn

fm

f0.8

1400h

36 5 0.2

+

=+ β α −

l

Page 237: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 236

§ Losas con vigas entre las columnas a lo largo de los bordes exteriores. El valor de αf para la viga de borde no debe ser menor que 0.8.

El término ln en (b) y (c) corresponde a la luz libre en la dirección larga medida cara a cara de

las vigas. El término ᵦ en (b) y (c) corresponde a la relación de la luz libre en la dirección larga a

la luz libre en la dirección corta de la losa.

C.9.5.3.4 — Puede utilizarse espesores de losas menores que los mínimos requeridos en

C.9.5.3.1, C.9.5.3.2 y C.9.5.3.3 cuando las deflexiones calculadas no exceden los límites

de la tabla C.9.5(b). Las deflexiones deben calcularse tomando en cuenta el tamaño y la forma

del panel, las condiciones de apoyo y la naturaleza de las restricciones en los bordes de la

losa. El módulo de elasticidad del concreto, Ec, debe ser el especificado en C.8.5.1. El momento

de inercia efectivo, I e, debe ser el obtenido por medio de la ecuación (C.9-8); se permite emplear

otros valores si los resultados del cálculo de la deflexión concuerdan razonablemente con los

resultados de ensayos de alcance apropiado. La deflexión adicional a largo plazo debe calcularse

de acuerdo con C.9.5.2.5.

Definición de relación de rigidez viga-losa, Α

Las cuentas para el efecto la rigidez de las vigas situadas a lo largo del borde del piso, reduce las

desviaciones del panel adyacente a las vigas.

Rigidez a la flexión de la viga

Rigidez a la flexión de la losaα =

scs

bcb

scs

bcb

E

E

/4E

/4E

I

I

lI

lI ==α

cbE = Módulo de elasticidad de la viga de concreto

sbE = Módulo de elasticidad de la losa de concreto

bI = Momento de inercia de la viga no fisurada

sI = Momento de inercia de la losa no fisurada

Con anchura delimitada lateralmente por línea central de los paneles adyacentes a cada lado de la

viga.

Page 238: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 237

Viga y secciones de la losa para determinar α

Figura 145

Figura 146

Page 239: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 238

Figura 147

Definición de la viga de sección transversal.

Los gráficos pueden ser utilizados para calcular α

Losas sin ábacos 120 minh mm=

Losas con ábacos 100 minh mm=

EJEMPLO 27

El sistema de losa esa compuesto por placas y vigas en dos direcciones soportadas en columnas de

450 mm x 450 mm. Determinar el mínimo espesor de losa requerido para el sistema. Usar

f´c = 28 MPa y fy = 420 MPa

Page 240: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 239

Sección A-A

Se asume 150 4h mm x y h= = <

( )Cumple

450 -150 300 300 4

300 4 150

300 600

mm mm mm mm h

mm mm

mm mm

= ⇒ <<< →

( )( )

450 2 300 1050 8

1050 450 8 150

1050 1650 Cumple

e e wb mm b < b h= + = ⇒ +

< + ×< →

( )( )( ) ( )( )( )( )( ) ( )( )

150 1050 75 450 300 300179

150 1050 450 300y mm

+=

+=

Para largoα

( )( ) ( ) ( )( ) ( )3 3

2 21050 150 450 3001050 150 104 450 300 121

12 12bI = + + +× × × ×

4 6 44987807500 4988 10bI mm mm== ×

( )( )3

6 45000 1501406 10

12sI mm= = ×

6

largo 6

4988 103,55

1406 10b

s

= =EI

EIα × =

×

Para cortoα

( )( )3

6 46000 1501688 10

12I mm= = ×

6

corto 6

4988 102,95

1688 10b

s

EI

EIα ×= = =

×

largo corto1

3,55 2,953,25

2 2m

α αα

+ += = =

Sección B-B

( )( )( ) ( )( )( )( )( ) ( )( )

700 150 75 300 400 300195

700 150 300 400y mm

+= =

+

Page 241: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 240

Para largoα

( )( ) ( ) ( )( ) ( )3 3

2 2400 450 300 150400 450 30 300 150 120

12 12bI = + × × + + × ×

6 44217 10bI = mm×

( )( )3

6 42500 150703 10

12sI mm= = ×

6

largo 6

4217 106,0

703 10b

s

EI=

EIα ×= =

×

Para cortoα

( )( )3

6 43000 150844 10

12s =I mm= ×

6

corto 6

4217 105

844 10b

s

EI=

EIα ×= =

×

Coeficiente β

largo

corto

4506000 - 2

2 1,22

4505000 - 2

2

l

lβ =

= =

2,95 2,95 3,55 6, 0

4mα + + +=

3,86mα =

Page 242: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 241

2,95 3,55 3,55 5, 0

4mα+ + +=

3,76mα =

2,95 3,55 5, 0 6, 0

4mα + + +=

4,375mα =

Espesor mínimo para 2mα >

450 4006000 5575

2 2n mm= − − =l

( )36 9

4200,8 5575 0,8

1400 1400131 90

36 9 1,22

n

yf

h mm mmβ

=+

+ + = = >

+ ×

l

El espesor mínimo de la losa requerido es de 131 mm, por aspectos constructivos se selecciona un

espesor de losa h=150 mm.

Page 243: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 242

21. COLUMNAS

Análisis y diseño de columnas cortas

Columna corta

• Miembro estructural vertical.

• Transmite cargas de compresión axial con o sin momento.

• Transmite cargas de pisos y techos a la cimentación.

Estribos

Espiral

Figura 148

Page 244: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 243

Configuración del refuerzo transversal:

• Estribos

Aproximadamente el 95% de todas las columnas de los edificios poseen una configuración del

refuerzo en estribos. La esencia de la presencia de estribos en columnas es para restringir los

efectos de pandeo localizado en las barras longitudinales y así proporcionar confinamiento al

núcleo

• Espiral

Recientes investigaciones han mostrado la bondad de este tipo de refuerzo transversal en

columnas, conformando un elemento más dúctil y menos propenso a sufrir pandeo local de

barras longitudinales durante eventos sísmicos.

Comportamiento elástico de columnas

Un análisis elástico utilizando el método de sección transformada sería:

Para carga concentrada, P

t

cc s

Pf l

A nA=

+ Esfuerzo uniforme sobre la sección

s cf n f=

s c/n E E=

cA Área del concreto

sA Área del acero

El cambio en la deformación del concreto con respecto al tiempo afecta y afectará los esfuerzos

en el concreto y en el acero como se muestra en la siguiente figura:

Esfuerzo en el concreto

Figura 149

Page 245: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 244

Esfuerzo en el acero

Figura 150

Un análisis elástico en columnas no funciona pues los efectos de deformación y retracción

afectan la deformación en el concreto como se muestra en la siguiente figura:

Figura 151

Dentro del comportamiento elástico hay que tener en cuenta la deformación y la retracción de

fraguado del concreto, por lo tanto es imposible calcular las deformaciones en el acero y en el

concreto utilizando un análisis elástico.

Por lo tanto, no es posible calcular las deformaciones reales en una columna de concreto reforzado

para todas las cargas que actúan a través del tiempo. Como resultado, el método de esfuerzos

admisibles, procedimiento fundamentado en un análisis elástico se encontró que era inaceptable.

Las columnas de hormigón armado han sido diseñadas por el método de resistencia desde 1940.

Page 246: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 245

Comportamiento, capacidad nominal y de diseño bajo cargas axiales concéntricas

• Comportamiento inicial hasta la carga nominal – Columnas con estribos y con espiral.

Figura 152

Figura 153

( )0 0,85 g t t yc s sP f´ A A A f= × − +

gA bh= Área bruta.

tsA Área longitudinal del acero.

cf ´ Resistencia a la compresión de concreto.

yf Resistencia a la fluencia del acero.

Page 247: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 246

0,85 Factor que depende de las condiciones de curado consolidación de la columna.

• Máxima Capacidad Nominal Para Diseño

( ) 0maxnP rP=

r Factor de reducción que tiene en cuenta efectos accidentales por flexión.

0, 75r = Estribos

0,8r = Espiral C.10.3.6.1

• Requerimientos para el acero longitudinal, stA

tg

g

sA

Aρ =

NRS-10

C.10.9 — Límites del refuerzo de elementos a compresión (columnas)

C.10.9.1 — El área de refuerzo longitudinal, tsA , para elementos no compuestos a compresión

no debe ser menor que 0,01 gA ni mayor que 0,04 gA . Para estructuras con capacidad de

disipación de energía moderada (DMO) y especial (DES) en el Capítulo C.21 se restringe el área máxima admisible.

g0,01 0,04ρ≤ ≤

C.10.9.2 — El número mínimo de barras longitudinales en elementos sometidos a compresión debe ser de 4 para barras dentro de estribos circulares o rectangulares, 3 para barras dentro de estribos triangulares y 6 para barras rodeadas por espirales, que cumplan con C.10.9.3.

C.10.9.3 — La cuantía volumétrica del refuerzo en espiral, sρ , no debe ser menor que el valor

dado por:

0, 45 1gs

h yt

c

c

A f´

A fρ

= −

Donde el valor de ytf a usar en la ecuación (C.10-5) no debe ser mayor de 700 MPa. Para ytf

mayor de 420 MPa, no deben usarse empalmes por traslapo de acuerdo con C.7.10.4.5(a).

Requerimientos de refuerzo para estribos laterales

C.7.10.5 — Estribos Los estribos para elementos sometidos a compresión deben cumplir con lo siguiente:

C.7.10.5.1 — Todas las barras no preesforzadas deben estar confinadas por medio de estribos transversales de por lo menos diámetro No. 3 (3/8”) ó 10M (10 mm), para barras longitudinales No. 10 (1-1/4”) ó 32M (32 mm) o menores; y diámetro No. 4 (1/2”) ó 12M

Page 248: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 247

(12 mm) como mínimo, para barras longitudinales No. 11 (1-3/8”) ó 36M (36 mm), No. 14 (1-3/4”) ó 45M (45 mm) y No. 18 (2-1/4”) ó 55M (55 mm) y paquetes de barras. En estructuras de capacidad de disipación de energía mínima (DMI) se permiten estribos de barra Nº 2 (1/4") ó 6M(6 mm) cuando las columnas soportan únicamente uno o dos pisos.

C.7.10.5.2 — El espaciamiento vertical de los estribos no debe exceder 16 diámetros de barra longitudinal, 48 diámetros de barra o alambre de los estribos, o la menor dimensión del elemento sometido a compresión.

C.7.10.5.3 — Los estribos deben disponerse de tal forma que cada barra longitudinal de esquina y barra alterna tenga apoyo lateral proporcionado por la esquina de un estribo con un ángulo interior no mayor de 135º, y ninguna barra longitudinal debe estar separada a más de 150 mm libres de una barra apoyada lateralmente. Cuando las barras longitudinales estén localizadas alrededor del perímetro de un círculo, se permite el uso de un estribo circular completo.

C.21.3.5. Columnas con capacidad moderada de disipación de energía (DMO)

C.21.3.5.1. La dimensión menor de la sección transversal, medida en una línea recta que pasa a través del centroide geométrico, no debe ser menor de 250 mm. Las columnas en forma de T, C o I pueden tener una dimensión mínima de 0,20 m pero su área no puede ser menor de 0,0625 m².

C.21.3.5.2. El área de refuerzo longitudinal, Ast, no debe ser menor que 0,01Ag ni mayor que 0,04Ag.

C.21.3.5.3. Los empalmes mecánicos deben cumplir C.21.1.6 y los empalmes soldados deben cumplir C.21.1.7. Los empalmes por traslapo se permiten únicamente en la mitad central de la longitud del elemento y deben diseñarse como empalmes en tracción.

C.21.3.5.6. En ambos extremos del elemento debe proporcionarse estribos cerrados de confinamiento con un espaciamiento de S0 por una longitud L0, medida desde la cara del nudo. El espaciamiento S0 no debe exceder el menor de (a), (b), (c) y (d):

(a) Ocho veces el diámetro de la barra longitudinal confinada de menor diámetro.

(b) 16 veces el diámetro de la barra del estribo cerrado de confinamiento.

(c) Un tercio de la menor dimensión de la sección transversal de la columna.

(d) 150 mm.

La longitud L0, no debe ser menor que la mayor entre (e), (f) y (g):

(e) Una sexta parte de la luz libre de la columna.

(f) La mayor dimensión de la sección transversal de la columna.

(g) 500 mm.

C.21.3.5.7. El área total de la sección transversal del refuerzo de estribos cerrados de confinamiento rectangulares, Ash, colocados en la longitud L0 no debe ser menor que la requerida por las ecuaciones (C.21-2) y (C.21-3).

Page 249: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 248

0, 20 1gch

yt h

cs

c

Asb f´A

f A

= × −

ó

0,06 ch

yt

cs

sb f´A

f=

C.21.3.5.10. El primer estribo cerrado de confinamiento debe estar situado a no más de S0/2 de la cara del nudo. Este requisito establece que el primer estribo debe ubicarse a una distancia, medida desde la cara del nudo, igual a S0/2 = 0,035 m en columnas o 0,05 m en vigas.

C.21.3.5.11. Fuera de la longitud L0, deben colocarse estribos de confinamiento con la misma disposición, diámetro de barra y resistencia a la fluencia, fyt, con un espaciamiento centro a centro que no debe ser mayor que 2 veces el espaciamiento utilizado en la longitud L0.

Ejemplos de configuraciones de estribos en columnas

Page 250: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 249

Figura 154

Page 251: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 250

Requerimientos de refuerzo para estribos en espiral

NSR-10

C.7.10 — Refuerzo transversal para elementos a compresión

C.7.10.4 — Espirales

El refuerzo en espiral para elementos a compresión debe cumplir con C.10.9.3 y lo siguiente:

C.7.10.4.1 — Las espirales deben consistir en barras o alambres continuos espaciados

uniformemente, con un tamaño y disposición que permitan su manejo y colocación sin distorsión

de las dimensiones de diseño.

C.7.10.4.2 — Para elementos construidos en obra, el diámetro de barra utilizada en espirales no

debe ser menor de 10 mm.

C.7.10.4.3 — El espaciamiento libre entre hélices de la espiral no debe exceder de 75 mm ni ser

menor de 25 mm. Véase también C.3.3.2.

C.7.10.4.4 — El anclaje de la espiral debe consistir en 1.5 vueltas adicionales de la barra

o alambre en cada extremo de la espiral.

Relación del refuerzo en espiral, sρ

Page 252: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 251

Figura 155

sD

A

c

sps

4

Núcleo delVolumen

Espiral delVolumen ==ρ

sp cs 2

c

A D

1 4 D s

πρ

π=

gs

c yt

0,45 1cA f´

A fρ

= × − ×

Donde

spA = Área de sección transversal del refuerzo en espiral

cA =

2c

4

Dπ = Área central

cD = Diámetro central. Borde exterior al borde exterior de la espiral.

s = Espaciamiento del acero en espiral (centro a centro)

ytf = Resistencia a la fluencia del acero en espiral (≤ 420 MPa)

Diseño de columnas para cargas axiales concéntricas

Requerimientos de resistencia general

NRS-10

C.9.3 — Resistencia de diseño

C.9.3.1 — La resistencia de diseño proporcionada por un elemento, sus conexiones con otros

elementos, así como sus secciones transversales, en términos de flexión, carga axial, cortante

y torsión, deben tomarse como la resistencia nominal calculada de acuerdo con los requisitos

y suposiciones del Título C del Reglamento NSR-10, multiplicada por los factores φ de

reducción de resistencia dados en C.9.3.2, C.9.3.4. y C.9.3.5.

C.9.3.2 — El factor de reducción de resistencia, φ , debe ser el dado en C.9.3.2.1 a C.9.3.2.7.

C.9.3.2.1 — Secciones controladas por tracción como se define en 10.3.4…...…0.90

(Véase también C.9.3.2.7).

Page 253: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 252

C.9.3.2.2 — Secciones controladas por compresión como se definen en C.10.3.3:

(a) Elementos con refuerzo en espiral según C.10.9.3…………….…………..0.75

(b) Otros elementos reforzados. …………………………………………….….0.65

Para las secciones en las que la deformación unitaria neta a la tracción en el acero extremo en

tracción en el estado de resistencia nominal, tε , se encuentra entre los límites para secciones

controladas por compresión y las secciones controladas por tracción, se permite que φ aumente

linealmente desde el valor correspondiente a las secciones controladas por compresión hasta 0.90,

en la medida que tε aumente desde el límite de deformación unitaria controlado por compresión

hasta 0.005.

En forma alternativa, cuando se usa el Apéndice C-B, para elementos en los cuales fy no exceda

420 MPa, con refuerzo simétrico, y cuando (d - d´ )/ h no es menor de 0,70, se permite

aumentar φ linealmente hasta 0.90, en la medida que Pnφ disminuye desde 0,10 gcf´ A hasta

cero. Para otros elementos reforzados φ puede incrementarse linealmente a 0.90 en la medida

que Pnφ disminuye desde 0,10 gcf´ A ó Pnφ , el que sea menor, hasta cero.

Expresiones para el diseño de columnas

tg

g

sA

Aρ = g0,01 0,04ρ≤ ≤

( ) ( )0,85 0,85g t yn c s c u

AceroConcreto

P r A f´ A f f´ Pφ φ= + − ≥

1444244431442443

( )0,85 0,85g g yn c c u P r A f´ f f´ Pφ φ ρ = + − ≥

Cuando gρ es conocido o asumido:

( )0,85 0,85g

g y

u

c c

PA

r f´ f f´φ ρ≥

+ −

Cuando gA es conocido o asumido:

( ) ( )10,85

0,85t gy

us c

c

PA A f´

f f´ rφ ≥ − −

Page 254: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 253

EJEMPLO 28 Diseño de columna corta para carga axial concéntrica.

750 ; 1500 ; 300

28 420dl ll w

yc

P KN P KN P KN

f´ MPa f MPa

= = == =

Diseñar una columna cuadrada con 0,03gρ = y seleccionar el refuerzo longitudinal

transversal. Determinar la carga

1,2 1 ,6

1,2 750 1 ,6 1500

3300

dl llu

u

u

P P P

P KN KN

P KN

= += × + ×=

( ) ( ) ( )1, 2 1 ,0 1 ,6

1, 2 750 1 ,0 1500 1 ,6 300

2880

dl ll wu

u

u

P P P P

P KN KN KN

P KN

= + += + +=

Chequear la compresión o tensión en la columna

Para una columna cuadrada 0,75; 0,65 0,03gr yφ ρ= = =

( )( )2

0,85 0,85

1 89689

gg

g

y

u

c c

PA

r f´ f f´

A mm

φ ρ≥

+ −

2 435 450 gA b b mm b mm= ⇒ = ⇒ =

Para una columna cuadrada ( )2 20,03 450 6075 ρ= = =s g gA A mm mm

( )2

10,85

0,85

4922

t g

t

y

us c

c

s

PA f´ A

f f´ r

A mm

φ ≥ − × −

Usar 8 #9; ( )2 28 645 5160tsA mm mm= × =

Chequear Po

( )0

0

0

0 85

6864

0 65 0 75 6864

3346 3300

g t tc s s y

n

n

P , f´ A A A f

P KN

P rP , , KN

P KN KN OK

φ φφ

= − +

== = × ×= >

( ) ( ) 0,9 1,6

0,9 750 1,6 300

1 95

dl wu

u

u

P P P

P KN KN

P KN

= −= × − ×=

Page 255: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 254

Usar estribo #3 y calcular el espaciamiento

( )( )

( )#

# 2

1

450 3(29 ) 2 40 10

2132 150

b estriborecubrimiento

barras

b d ds

mm mm mm mms

s mm mm OK

− − +=

− − +=

= <

Diseño del estribo

( )( )

1 6 16 29 464

48 = 48 10 480

450

b

estribo

d mm mm

s d mm mm

menor b ó d mm

= = ≤ = =

espaciamiento estriboss →

Usar estribo #3 con 450mm de espaciamiento en la columna.

Page 256: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 255

22. DIAGRAMA DE INTERACCIÓN

Comportamiento bajo cargas combinadas de flexión y axial

Generalmente el momento está representado por la carga axial de excentricidad

Figura 156

La interacción entre el diagrama de carga axial y el momento (envolvente de falla).

Figura 157

Nota: Cualquier combinación de P y M fuera de la envolvente provocará la falla.

Page 257: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 256

Diagrama de interacción de carga axial y el momento.

Figura 158

Fuerzas de acción resultante en el centroide

(h / 2 en este caso)

s1 c s2

La comprensiónes positiva

nP C C T= + −14243

Momento en el centro geométrico

s1 1 c s2 22 2 2 2n

h h a hM C d C T d

= × − + × − + × −

Columnas en tracción pura

La sección está completamente agrietada (sin capacidad axial de resistencia en el concreto).

Deformación uniforme y ε≥ −

( )

N

Tracción ii 1

yn sP A f=

= − ×∑

Columnas

Factor de reducción de resistencia ,φ , NSR-10

• Tracción axial, y tracción axial con flexión. 0,9φ =

• Compresión axial y compresión axial con flexión.

Miembros con refuerzo en espiral 0,75φ =

Otros miembros reforzados 0,65φ =

Excepto para valores bajos de compresión axial, φ puede ser aumentado de la siguiente manera:

Cuando 420 M Payf ≤ y el refuerzo es simétrico y ( )s 0,70

′− −>

h d d

h

Page 258: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 257

sd Distancia desde la fibra de tracción extrema al centroide del refuerzo a tracción.

Entonces φ puede aumentar linealmente hasta 0,9 Pnφ decrece de 0,10 cf´ a cero.

Figura 159

Diseño de columnas para carga combinada de flexión y axial (columna corta)

Seleccionar la sección transversal y el refuerzo para resistir la carga axial y momento.

Tipos de columnas

• Columna reforzada con espiral - Más eficiente para e/h <0,1, pero más costosa la

formación y la espiral.

• Columna reforzada con estribos – Barras en cuatro caras usadas cuando e/h < 0,2 y para

flexión biaxial

Procedimiento General

El diagrama de interacción para una columna se construye utilizando una serie de valores para

Pn y M n. El gráfico muestra la envolvente fuera del problema.

Procedimiento general para la construcción de diagramas de interacción

• Calcular P0 y determinar el máximo Pu en compresión.

• Seleccione un valor de c.

• Calcular el esfuerzo en los componentes de acero.

Calcular las fuerzas en el acero y el concreto, CC, CS1 y Ts.

Determinar el valor Pu.

Calcular el Mu alrededor del centro.

Calcular el brazo del momento, e = /Mn Pn

• Repetir con una serie de valores de c.

Page 259: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 258

• Obtener el valor de máxima tensión.

• Graficar Pu versus Mu

• Determinar nPφ y nMφ

Encontrar el nivel de compresión máxima.

Tener presente que el valor de φ variará linealmente desde 0,65 hasta 0,9 para los valores de

deformación, para el caso de columnas con estribos.

El componente de la tensión será φ= 0,9

EJEMPLO 29

Considerar una columna cuadrada (500mm x 500mm) reforzada con 8 barras #10 y 28cf´ MPa=

y 420yf MPa= . Se especifica una distancia desde la cara externa de la columna al eje del

refuerzo longitudinal de 66 mm. Dibujar el diagrama de interacción.

La deformación última del concreto cuε y el acero yε :

0,003

4200,0021

200000

cu

yy

sf

E

ε

ε

=

= = =

Se hallan las áreas del acero tsA y de la sección gA :

( )

2

2 2

8 819 6552

500 250000

t

g

sA mm mm

A mm mm

= × =

= =

Carga 0P :

( )( )

0

2 20

0

0,85

0,85 28 250000 6552 420 6552

8546

g t tyc s sP f´ A A f A

P MPa mm MPa mm

P KN

= − +

= × × − + ×=

Page 260: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 259

Columna con estribos r = 0.75, en espiral r = 0.8, Carga nominal Pn:

0 0,75 8546

6409,4

n

n

P rP KN

P KN

= = ×=

Determinar la localización del punto de balance bc , este se puede encontrar usando semejanza

de triángulos.

434

0,003 0,003 0,0021

0,003434

0,0051

255,3

b

b

b

c mm

c mm

c mm

=+

⇒ = ×

=

Determinar el esfuerzo del acero

1

1

66 255,3 660,003

256,8

0,00222

bS cu

b

S

c mm mm mm

c mmε ε

ε

− − = = ×

=

2

2

250 255,3 2500,003

255,3

0,00006

bS cu

b

S

c mm mm mm

c mmε ε

ε

− − = = ×

=

3

3

434 434 255,30,003

255,3

0,00210

bS cu

b

S

mm c mm

c mmε ε

ε

− − = = ×

=

1 1

1

2 2

2

3 3

3

200000 0,00222

444 420

200000 0,00006

12,46

200000 0,00210

420

S S S

S

S S S

S

S S S

S

f E MPa

f MPa MPa compresión

f E MPa

f MPa compresión

f E MPa

f MPa tensión

ε

ε

ε

= = ×= ⇒ →= = ×= →= = ×= →

Calcular las fuerzas en la columna

10,85 0,85 28 500 0,85 255,3C cC f´ b c MPa mm mmβ= × × × = × × × ×

Page 261: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 260

( ) ( )

( ) ( )

21 1 1

1

22 2 2

2

23 3 3

3

2582,4

0,85 3 819 420 0,85 28

973,5

0,85 2 819 12,46 0,85 28

18,58

3 819 420

1031,88

C

S S S

S

S S S

S

S S S

S

c

c

C KN compresión

C A f f´ mm MPa MPa

C KN compresión

C A f f´ mm MPa MPa

C KN compresión

T A f mm MPa

T KN ten

= →

= − = × − ×= →

= − = × − ×= − →

= = × ×= → sión

2582,4 973,5 18,58 1031,88

2505,44

n

n

P KN KN KN KN

P KN

= + − −=

Calcular el momento cerca del centro

1 1 3 32 2 2 2

500 0,85 255,3 5002582,4 973,5 66

2 2 2

5001031,88 434

2

365,4 179,1 189,9

734,4

C S S

h a h hM C C d T d

mm mm mmM KN KN mm

mmKN mm

M KN m KN m KN m

M KN m

= − + − + −

× = − + −

+ −

= − + − + −= −

Un solo punto del diagrama de interacción (2505,44KN, 734,4KN-m). La excentricidad del

punto está definida como

734,40,293 293

2505,44

M KN me m mm

P KN

−= = = =

Ahora seleccionar una serie de puntos adicionales seleccionando valores de c. Seleccionar c=d=434mm. Determinar el esfuerzo del acero,

1

1 1

66 434 660,003

434

0,00254 508,8 420

S cu

S S

c mm mm mm

c mm

f MPa MPa compresión

ε ε

ε

− − = = ×

= ⇒ = →

2

2 2

3

250 434 2500,003

434

0,00127 254,38

0

S cu

S S

S

c mm mm mm

c mm

f MPa compresión

ε ε

ε

ε

− − = = ×

= ⇒ = →

=

Page 262: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 261

Calcular las fuerzas en la columna

( ) ( )

( ) ( )

1

21 1 1

1

22 2 2

2

0,85 ' 0,85 28 500 0,85 434

4390

0,85 ' 3 819 420 0,85 28

973,5

0,85 ' 2 819 254,38 0.85 28

377,7

C

C

S S S

S

S S S

S

C f c b c MPa mm mm

C KN

C A f f c mm MPa MPa

C KN

C A f f c mm MPa MPa

C KN

β= × × × = × × × ×=

= − = × × − ×=

= − = × × − ×=

23 819 0

0

s s s

s

T A f mm MPa

T KN

= = × ×=

4390 973,5 377, 7

5741

n

n

P KN KN KN

P KN

= + +=

Calcular el momento cerca del centro

1 12 2 2

500 0,85 434 5004390 973,5 66

2 2 2

467

C S

h a hM C C d

mm mm mmM KN KN mm

M KN m

= − + −

× = − + −

= −

Un solo punto del diagrama de interacción (5741KN, 467KN-m). La excentricidad del punto

está definida como:

4670, 0813 81

5741

M KN me m mm

P KN

−= = = =

Hay un punto especial el cual representa el límite de la zona controlada por compresión, en la

cual se tiene el siguiente dato según el método de los esfuerzos límites.

0,6 0,6 0,6 434 260,4= → = × = × =tt

cc d mm mm

d

Seleccionar c=260,4mm Determinar el esfuerzo del acero

1

1 1

2

66 260,4 660,003

260,4

0,00224 447,9 420

250 260,4 2500,003

260,4

S cu

S S

S cu

c mm mm mm

c mm

f MPa MPa compresión

c mm mm mm

c mm

ε ε

ε

ε ε

− − = = ×

= ⇒ = →

− − = = ×

Page 263: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 262

2 20,00012 23,96S Sf MPaε = ⇒ =

( )3

3 3

434 434 260.40,0021

434 434 260.4

0,0021 420

S y

S S

mm c mm mm

mm c mm mm

f MPa tensión

ε ε

ε

− − = = − −

= ⇒ = →

Calcular las fuerzas en la columna

( ) ( )

( ) ( )

1

21 1 1

1

22 2 2

2

0,85 ' 0,85 28 500 0,85 260,4

2634

0,85 ' 3 819 420 0,85 28

973,5

0,85 ' 2 819 23,96 0,85 28

0,27

C

C

S S S

S

S S S

S

C f c b c MPa mm mm

C KN

C A f f c mm MPa MPa

C KN

C A f f c mm MPa MPa

C KN

β= × × × = × × × ×=

= − = × × − ×=

= − = × × − ×=

23 819 420

1032

2634 973,5 0,26 1032

2576

s s s

s

n

n

T A f mm MPa

T KN

P KN KN KN KN

P KN

= = × ×=

= + + −=

Calcular el momento cerca del centro

1 1 32 2 2 2

500 0,85 260,4 5002634 973,5 66

2 2 2

5001032 434

2

736

C S S

h a h hM C C d T d

mm mm mmM KN KN mm

mmKN mm

M KN m

= − + − − −

× = − + −

+ −

= −

Un solo punto del diagrama de interacción (2576KN, 736KN-m). La excentricidad del punto

está definida como:

736

0, 2857 2862576

M KN me m mm

P KN

−= = = =

Hay un punto especial el cual representa el límite de la zona controlada por tensión, en la cual se

tiene el siguiente dato según el método de los esfuerzos límites.

0,375 0,375 0.375 434 162,75= → = × = × =tt

cc d mm mm

d

Page 264: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 263

Seleccionar c=162,75mm Determinar el esfuerzo del acero

1

1 1

2

2 2

3

66 162,75 660,003

162,75

0,00178 356,68

250 162,75 2500,003

162,75

0,00161 321,66

434 434

434

S cu

S S

S cu

S S

S y

c mm mm mm

c mm

f MPa

c mm mm mm

c mm

f MPa tensión

mm c m

mm c

ε ε

ε

ε ε

ε

ε ε

− − = = ×

= ⇒ =

− − = = ×

= − ⇒ = →

− = = −

3 3

260,40,0021

434 260,4

0,0021 420S S

m mm

mm mm

f MPa tensiónε

− × −

= ⇒ = →

Calcular las fuerzas en la columna

( ) ( )

1

21 1 1

1

22 2 2

2

23 3 3

3

0,85 ' 0,85 28 500 0,85 162,75

1646,2

0,85 ' 3 819 356,68 0,85 28

817,9

2 819 321,66

526,99

3 819 420

1031,94

C

C

S S S

S

S S S

S

S S S

S

C f c b c MPa mm mm

C KN

C A f f c mm MPa MPa

C KN

T A f mm MPa

T KN

T A f mm MPa

T KN

β= × × × = × × × ×=

= − = × × − ×=

= = × ×=

= = × ×=

Calcular el momento cerca del centro

1 1 32 2 2 2

500 0,85 162,75 5001646,2 817,9 66

2 2 2

5001031,94 434

2

297,7 150,5 189,9

638,1

C S S

h a h hM C C d T d

mm mm mmM KN KN mm

mmKN mm

M KN m KN m KN m

M KN m

= − + − − −

× = − + −

+ −

= − + − + −= −

1646,2 817,9 526,88 1031,94

905,3

n

n

P KN KN KN KN

P KN

= + − −=

Page 265: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 264

Un solo punto del diagrama de interacción (905.3KN; 638.1 KN-m). La excentricidad del punto

está definida como:

638,10,7048 705

905,3

M KN me m mm

P KN

−= = = =

Seleccionar c=153mm. Determinar el esfuerzo del acero

1

1 1

2

2 2

3

66 153 660,003

153

0,00171 341,18

250 153 2500,003

153

0,00190 380,39

434 434

434

S cu

S S

S cu

S S

S y

c mm mm mm

c mm

f MPa compresión

c mm mm mm

c mm

f MPa tensión

mm c mm

mm c

ε ε

ε

ε ε

ε

ε ε

− − = = ×

= ⇒ = →

− − = = ×

= − ⇒ = →

− = = −

3 3

1530,0021

434 153

0,0021 420S S

mm

mm mm

f MPa tensiónε

− × −

= ⇒ = →

Calcular las fuerzas en la columna

( ) ( )

1

21 1 1

1

22 2 2

2

23 3 3

3

0,85 ' 0,85 28 500 0,85 153

1547,6

0,85 ' 3 819 341,18 0,85 28

779,8

2 819 380,39

623,08

3 819 420

1031,94

C

C

S S S

S

S S S

S

S S S

S

C f c b c MPa mm mm

C KN

C A f f c mm MPa MPa

C KN

T A f mm MPa

T KN

T A f mm MPa

T KN

β= × × × = × × × ×=

= − = × × − ×=

= = × ×=

= = × ×=

1547,6 779,8 623,08 1031,94

672,4

n

n

P KN KN KN KN

P KN

= + − −=

Calcular el momento cerca del centro

1 1 32 2 2 2

500 0,85 153 5001547,6 779,8 66

2 2 2

5001031,94 434

2

C S S

h a h hM C C d T d

mm mm mmM KN KN mm

mmKN mm

= − + − + −

× = − + −

+ −

Page 266: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 265

286,3 143,5 189,9

619,6

M

M KN m

= + += −

Un solo punto del diagrama de interacción (672.4KN, 619.6KN-m). La excentricidad del punto

está definida como

619,6

0,9216 922672,4

M KN me m mm

P KN

−= = = =

La máxima tensión en la columna

28 819 420

2751,84

yn s

n

P A f mm MPa

P KN

= × = × ×=

Punto c (mm) Pn (KN) Mn (KN.m) e (mm) 1 0 6409 0 0 2 434 5741,1 466,9 81 3 260,4 2575,7 736 286 4 255,3 2505,4 734,4 293 5 162,75 905,3 638,1 705 6 153 672,4 619,6 922 7 0 -2751,84 0

-4000

-2000

0

2000

4000

6000

8000

0 100 200 300 400 500 600 700 800

Pn

(K

N)

Mn (KN.m)

Diagrama de interacción

Page 267: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 266

Los datos anteriores deben ser afectados por el coeficiente de reducción de resistencia φ cuyo

valor depende de la zona en la que se encuentre el elemento (compresión, transición o tensión).

Punto c (mm) Pn (KN) Mn

(KN.m) φ φ Pn (KN) φ Mn

(KN.m) e (mm)

1 0 6409,4 0 0,65 4166,13,05 0 0 2 434 5741,1 466,9 0,65 3731,72 303,49 81 3 260,4 2575,7 736 0,65 1674,21 478,40 286 4 255,3 2505,4 734,4 0,66 1653,56 484,70 293 5 162,75 905,3 638,1 0,9 814,77 574,29 705 6 153 672,4 619,6 0,9 605,16 557,64 922 7 0 -2751,8 0 0,9 -2476,66 0

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 100 200 300 400 500 600 700

φP

n (

KN

)

φ Mn (KN.m)

Diagrama de interacción

Page 268: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 267

Diseño de columnas para carga combinada de flexión y axial (columna corta)

Columna con estribos

- Barras en dos caras (más alejado del eje de flexión)

- Más eficiente cuando e / h> 0,2

- Forma rectangular incrementa la eficiencia

Empalmes

-Normalmente, las barras longitudinales empalmadas justo por encima de cada planta. (No

sísmicas).

-Tipo de estribo que depende del estado de esfuerzo (C.12.17)

Para todas las barras en compresión Use estribos a compresión (C.12.16)

0 0, 5 ysf f≤ ≤ Sobre la cara a tracción Estribo a tracción Clase A

Barras de empalme <1/2

Clase B

Barras de empalme >1/2

0,5 ysf f> Estribo a tracción Clase B

Revisión cortante en columnas

Recordar (Compresión Axial)

uw

g

0,17 1 14

c cN

V f´ b dA

λ

= +

C.11-4 Si

0,5u cV Vφ> Las sujeciones deben satisfacer a C.7.10

Recordar

0,01 0,04ρ≤ ≤

NSR-10

C.10.8 — Dimensiones de diseño para elementos a compresión (columnas)

C.10.8.1 — Elementos en compresión aislados con espirales múltiples

Los límites exteriores de la sección transversal efectiva de un elemento en compresión,

con dos o más espirales entrelazados, debe tomarse a una distancia fuera de los límites

extremos de los espirales igual al recubrimiento mínimo del concreto requerido en C.7.7.

C.10.8.2 — Elementos en compresión construidos monolíticamente con muros

Page 269: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 268

Los límites exteriores de la sección transversal efectiva de un elemento en compresión

con espirales o estribos, construido monolíticamente con un muro o pilar de concreto, no deben

tomarse a más de 40 mm fuera de la espiral o estribos de dicho elemento.

C.10.8.3 — Elementos en compresión de sección circular equivalente

En lugar de utilizar el área bruta para el diseño de un elemento sometido a compresión

de sección transversal cuadrada, octogonal o de otra forma geométrica, se permite utilizar una

sección circular con diámetro igual a la menor dimensión lateral de la sección real. El área bruta

considerada, las cuantías requeridas de refuerzo y la resistencia de diseño deben basarse en dicha

sección circular.

C.10.8.4 — Límites de la sección

Para un elemento a compresión que tenga una sección transversal mayor que la requerida por las

consideraciones de carga, se permite emplear un área efectiva reducida gA , no menor que la mitad

del área total, con el fin de determinar el refuerzo mínimo y la resistencia. Esta disposición no se

aplica en elementos (pórticos resistentes a momento o muros estructurales) con capacidad de

disipación de energía moderada (DMO) o especial (DES) diseñados de acuerdo con el

Capítulo C.21.

Diagramas de interacción adimensionales

g g

versus n n

c c

P M

f´ A f´ A h

ó

n ng g

n n

c c

P P eK versus R

f´ A f´ A h= =

Procedimiento de diseño de columnas usando diagramas de interacción adimensionales

• Calcular los factores de carga Pu , Mu y e para las combinaciones de carga pertinentes

• Seleccionar caso potencialmente crítico • Utilice un estimativo de h para determinar , /h e hγ para el casa crítico

• Usar diagramas de interacción adimensionales

Leer g

n

c

P

f´ A

Para el cálculo requerido g

g

u c

n

c

P f´A

P

f´ A

φ×

×

=

Page 270: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 269

• Determinar g = ×A b h

• Si las dimensiones son significativamente diferentes de los estimados (paso 3), calcular (e / h) y rehacer los pasos 4 y 5.

Revisar gA si es necesario.

• Determinar t gsA Aρ=

• Utilizando las dimensiones reales y tamaños de barras para comprobar todas las combinaciones de carga (utilizar los gráficos o exactamente los diagrama de interacción).

• Diseño de refuerzo lateral.

La utilización de estos diagramas de interacción adimensionales dependerá del manual o la referencia usada para determinar los parámetros adimensionales.

Page 271: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 270

23. COLUMNAS BIAXIALES

Carga axial y flexión biaxial

Figura 160

Momentos de flexión biaxial

x y

y x

M = P e

M = P e

×

×

Figura 161

Page 272: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 271

Métodos de análisis aproximados

Utilizando la superficie de falla

2x yn

1S

P ,e ,e

La ordenada n

1

P sobre la superficie 2S se aproxima por la ordenada

n

1

P sobre el plano

2x yn

1S'

P ,e ,e

. El plano 2S es definido por los puntos A, B y C.

Figura 162

0P = Resistencia a la carga axial bajo compresión axial pura

(Corresponde al punto C) x yn nM = M = 0

0xP = Resistencia a la carga axial bajo excentricidad uniaxial, ye

(Corresponde al punto B) x yn nM = P e

0yP = Resistencia a la carga axial bajo excentricidad uniaxial, xe

(Corresponde al punto A)

Page 273: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 272

Diseño de y x

x y

u u u

u u u

P , M , M

P , P e , P e

Figura 163

'

1 1 1 1 1

11 1 1

0x 0y 0

0x 0y 0

n n

n

P P P P P

P

P P P

≈ = + −

⇒ ≈+ −

nP = Resistencia nominal de carga axial a excentricidades, xe y ye limitados a los

casos cuando 0,1 gn cP f´ A≥

Procedimiento de análisis: Método de Bresler

Fórmula: 0x 0y 0

1 1 1 1

nP P P P≅ + −

Pasos:

• Calcular 0P

• Calcular 0yP ( )x xpara e = e , e 0nP =

• Calcular 0xP ( )x ypara e = 0, e enP =

• Calcular nP (de la fórmula de Bresler)

u nP Pφ≤ Donde, 0, 65φ = (columna reforzada con estribos)

Page 274: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 273

EJEMPLO 30 La sección de una columna corta es (400mm x 600mm) y esta reforzada con 8 barras #10.

Determinar la carga última permitida en la sección nPφ con las consideraciones: d’=64mm,

200xe mm= y 300ye mm= .Usar 28cf´ MPa= y 420yf MPa=

Calcular la carga P0, a compresión sin los momentos.

( )( )

2 2

0

2 2 20

0

8 819 6552

0,85

0,85 28 240000 6552 6552 420

8308

t

g t t y

s

c s s

A mm mm

P f´ A A A f

P MPa mm mm mm MPa

P KN

= × =

= − +

= × × − + ×

=

0 0, 75 8308 6231nP rP K N K N= = × = Calcular Pnx empezando con el término ey verificando que la compresión controla. Chequear para

300 0,6 0,6 536 321,6ye mm d mm mm= ≤ = × =

Calcular la carga nominal, Pnx y asumir que el segundo acero a compresión no contribuye.

1 2C S SnP C C C T= + + −

Los componentes de la ecuación de equilibrio son:

( )21

2

2457 420 0,85 28 973,5

2457

5361 200000 0,003 1 600

S

s

s

C mm MPa KN

T mm f

d mmf MPa MPa

c c

= − × =

= ×

= − × × = − ×

Usar semejanza de triángulos para encontrar el esfuerzo en el acero, sf

Calcular el momento cerca del acero a tensión:

( )11' '

2C Snc

P e C d C d dβ = − + −

Donde

( ) ( ) ( )' 236 300 536

536 7616 536 0,4 973,5 536 64n

e mm mm mm

P mm c mm c KN mm mm

= + == − + −

El resultado de la ecuación es:

27616 5,68 459,5nP c c= − +

Combinando las dos ecuaciones y solucionando para Pn usando una solución iterativa: 27616 973,5 2457n sP c KN mm f= + − ×

Page 275: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 274

27616 5,68 459,5nP c c= − +

Igualando y despejando fs

20,21 0,0023sf c= +

5361 600sf

c = − ×

Combinando las dos ecuaciones y resolviendo para c usando una técnica iterativa.

2 5360,21 0,0023 1 600c

c + = − ×

2

2

7616 973,5 2457

7616 353,82 973,5 2457 309

1936

n s

n

n

P c KN mm f

P mm KN mm MPa

P KN

= + − ×= × + − ×=

Entonces

1936xnP KN=

Empezar con el término ex y asumir que la compresión controla.

64 0,6 0,6 336 201,6xe mm d mm mm= ≤ = × =

Calcular la carga nominal, Pny y asumir que el segundo acero a compresión no contribuye.

1 2C S SnP C C C T= + + −

Los componentes de la ecuación de equilibrio son:

( )( )

21

2

0,85 28 600 0,8 11424

2457 420 0,85 28 973,5

2457

3361 200000 0,003 1 600

C

S

s

s

C MPa mm c c

C mm MPa KN

T mm f

d mmf MPa MPa

c c

= × × × =

= − × =

=

= − × × = − ×

Usar semejanza de triángulos para encontrar el esfuerzo en el acero, fs.

Calcular el momento cerca del acero a tensión:

( )11' '

2C Snc

P e C d C d dβ = − + −

Donde

( ) ( ) ( )' 136 200 336

336 11424 336 0,4 973,5 336 64n

e mm mm mm

P mm c c

= + == × − + × −

El resultado de la ecuación es:

Page 276: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 275

211424 13,6 788nP c c= − +

Combinando las dos ecuaciones y solucionando para Pn usando una solución iterativa

211424 973,5 2457n sP c KN mm f= + − ×

211424 13,6 788nP c c= − +

Igualando una ecuación a la otra y despejando fs

20,075 0,0055sf c= +

3361 600s

mmf MPa

c = − ×

Combinando las dos ecuaciones y resolviendo para “c” usando una técnica iterativa.

2 3360,075 0,0055 1 600

mmc

c + = − ×

( )2

2

11424 973,5 2457

11424 227,7 973,5 2457 285,37

1901,1

n s

n

n

P c KN mm f

P mm KN mm MPa

P KN

= + −

= × + − ×=

Entonces

1901,1ynP KN=

Calculando la carga nominal

0

1 1 1 1

1 1 1 1

1936 1901,1 6231

1133,72 0,65 1133,72 736,9

x yn n n n

n

n u n

P P P P

P

P KN P P KN KNφ

= + −

= + −

= ⇒ = = × =

Page 277: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 276

24. EFECTOS DE ESBELTEZ

Columna larga

Columna cargada excéntricamente con pasador al principio y al final de esta.

Deflexión lateral M = P ( e + )× ∆

Figura 164

Deflexión por cargas

Page 278: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 277

o = ∆ Deflexión de primer orden, debido a oM

a =∆ Deflexión de segundo orden, debido a oP

OA - curva de momento final

OB - curva para el máximo

Momento de la columna (a la mitad de altura)

NSR-10

C.10.10 — Efectos de esbeltez en elementos a compresión

C.10.10.1 — Se permite ignorar los efectos de esbeltez en los siguientes casos:

a) en elementos sometidos a compresión no arriostrados contra desplazamientos laterales

cuando:

u 22kl

r≤ (C.10-6)

b) en elementos a compresión arriostrados contra desplazamientos laterales cuando:

u 1

2

34 12kl M

r M

≤ −

(C.10-7)

Donde el término 1 2M /M es positivo si la columna está flectada en curvatura simple y negativo

si el elemento tiene curvatura doble.

Se permite considerar los elementos a compresión como arriostrados contra desplazamientos

laterales cuando los elementos de arriostramiento tienen una rigidez total que restringe los

movimientos laterales de ese piso de al menos doce veces la rigidez bruta de las columnas dentro

del piso.

C.10.10.1.1 — La longitud no apoyada lateralmente de un elemento en compresión, ul , debe

tomarse como la distancia libre entre losas de piso, vigas u otros elementos capaces de

proporcionar apoyo lateral en la dirección que se está considerando. Cuando existan capiteles o

cartelas en las columnas, ul debe medirse hasta el extremo inferior del capitel o cartela en el

plano considerado.

C.10.10.1.2 — Se puede tomar el radio de giro, r , igual a 0.3 veces la dimensión total de la sección

en la dirección en la cual se está considerando la estabilidad para el caso de elementos

Page 279: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 278

rectangulares y 0.25 veces el diámetro para elementos circulares en compresión. Para otras

formas, se permite calcular r para la sección bruta de concreto.

k = Factor de longitud efectiva (en función de las restricciones finales).

Marcos arriostrados 0, 5 1, 0k≤ ≤

Marcos no arriostrados 1, 0 k≤ ≤ ∞

Relación de esbeltez

Relación de esbeltez para columnas

a) Conexión Simple – no resistente a momento

b) Conexión empotrada – resistente a momento

Figura 165

Page 280: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 279

Relación de esbeltez para columnas en pórticos con desplazamiento lateral

Figura 166

Page 281: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 280

Relación de esbeltez para columnas en pórticos sin desplazamiento lateral

Figura 167

Page 282: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 281

ul = La altura de la columna sin apoyo desde la parte superior del piso hasta la

parte inferior de las vigas o losas en el piso

r = Radio de giro

A

Ir =

Profundidad total de columnas rectangulares0 3 ( )r ,= ×

( )Profundidad total de columnas circularesr = 0.25× NSR-10 (C.10.10.1.2)

1 2M /M = Relación de los momentos en los dos extremos de las columnas

Donde

2 1M > M (Con un rango de -1 a 1)

Figura 168

Curvatura Simple

Page 283: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 282

Figura 169

Curvatura Doble

1

2

0 5

k 1,0

M,

M= =

Suele ser conservador (Marcos no arriostrados)

1 2M /M 0,5≥− Marcos no balanceados

Nota:

El código define que:

1

2

0,5M

M≥ − (Marcos no arriostrados)

Rango posible de

u de 22 a 40r

kl⇒

Factor de magnificación en marcos no arriostrados

Si los efectos de esbeltez deben ser considerados, la magnificación del factor para el marco no

arriostrado, nsδ , causará un aumento en la magnitud del momento de diseño.

Page 284: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 283

c ns 2M Mδ=

Donde

mns 1,0

10,75

u

c

C

P

P

δ = ≥ −

Los componentes de la ecuación para una carga de pandeo de Euler para una columna con apoyo

fijo al extremo.

( )2

2

u

cEI

Pkl

π=

Y la rigidez, EI es tomada como

{c g s se c g

conservativamented d

0,2 0,4

1 1

E I E I E IEI EI

β β+

= ⇒ =+ +

Un factor de coeficiente que relaciona el diagrama de momento real con el diagrama de

momento uniforme equivalente.

Para los miembros sin cargas transversales se toma la ecuación (10-16):

1m

2

0,6 0, 4 0, 4M

CM

= + ≥

Para otras condiciones, como los miembros con cargas transversales entre apoyos, mC = 1,0

El valor mínimo permitido de M2 es:

( )2,min 15 0,03uM P h= +

Donde 15 y h están en milímetros. Para los elementos en que M2,min , excede a M2 , el valor de Cm

en la ecuación (10-16) debe ser igual a 1.0, ó estar basado en la relación de los momentos

calculados en los extremos, M1 M2 .

EJEMPLO 31

Una columna de sección cuadrada de 400 mm x 400 mm y reforzada con estribos está sometida

a la acción de dos momentos en sus extremos M1=100 KN-m y M2=120 KN-m, en condición de

curvatura simple. La carga última actuando en la columna es Pu=400 KN formando parte esta

columna de un pórtico arriostrado contra desplazamiento lateral. Si lu es igual a 5 m, k=1.0, fy=

420 MPa y f´c=28 MPa, determinar el momento de diseño de la columna. Asumir PD=200 KN.

Page 285: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 284

Verificar si deben ser considerados los efectos de esbeltez:

( )Profundidad total de columna rectangular= 0,3

= 0,3 400 120

r

r mm mm

×× =

u 1, 0 500041, 67

120

kl mm

r mm

×= =

1

2

10034 12 34 12 24

120

M

M

− = − =

Como u 1

2

34 12kl M

r M

> −

Se deben considerar los efectos de esbeltez

( )2,min

2,min 2

15 0, 03 (15 0,03 400) 400 0,027 10,8u u

como cumple

M P h P KN m KN m

M M

= + = + × = × = −<

4700 4700 28 24870c cE f´ MPa= = =

3 440,4

0,00213312 12g

bhI m= = =

4c g 2

d

0,4 0,4 24870000 0,00213314146

1 1 200 / 400

E I KPa mEI KN m

KN KNβ× ×= = = −

+ +

Determinación de la carga crítica

( ) ( )2 2

2 2

u

141465585

1, 0 5, 0c

EIP KN

kl

π π ×= = =×

1m

2

1000,6 0, 4 0,6 0, 4 0,93 0, 4

120

MC

M

= + = + = ≥

mns

0,931,03 1,0

4001 1

0,75 0,75 5585u

c

C

P

P

δ = = = ≥ − − ×

Momento de diseño de la columna

ns 2 1,03 120 123,6cM M KN mδ= = × = −

Page 286: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 285

25. CIMENTACIONES

Por lo general las losas reciben las cargas generadas por los elementos no estructurales y las cargas

generadas por uso de la estructura transmitiendo estas cargas a las vigas que delimitan las losas,

a su vez los esfuerzos generados en las vigas son transmitidos a las columnas o muros que

finalmente se apoyan en el suelo de fundación de la estructura. Los elementos utilizados para

realizar la transferencia de cargas entre columnas o muros al suelo de fundación reciben el nombre

de cimentación. Antes de comprender el funcionamiento de las cimentaciones de estructuras de

concreto reforzado es importante comprender los aspectos generales que rigen el comportamiento

de suelos o rocas que se usan como soporte de una estructura, este tema debe ser tratado en el

curso de cimentaciones por lo que en el presente documento solo se mencionarán los aspectos

relevantes dentro del diseño de los elementos de concreto reforzado de cimentación. El suelo de

cimentación debe tener la capacidad de recibir las cargas provenientes de la estructura sin exceder

la capacidad portante del suelo. No es suficiente que el suelo sea resistente sino que además los

asentamientos inducidos por las cargas aplicadas al suelo de fundación no superen los máximos

permisibles buscando que los esfuerzos sobre el suelo se apliquen lo más uniformemente posible

para evitar asentamientos diferenciales, los cuales pueden inducir esfuerzos adicionales a los

generados por las cargas transmitidas de la estructura al suelo de fundación. Adicionalmente a

estos dos aspectos, el suelo de fundación debe tener la capacidad de resistir esfuerzos generados

por cargas ambientales de variada intensidad para evitar el colapso de la estructura.

Existe una gran número de tipos de cimentaciones por lo que es una gran responsabilidad la

adecuada selección del tipo de cimentación de una estructura, aspectos relacionados con el tipo

de estructura, el sistema estructural empleado, las condiciones del suelo de cimentación,

estructuras colindantes, tecnología disponible en el lugar de localización de la estructura, nivel

freático y otros aspectos deben ser considerados para una adecuada selección del tipo de

cimentación. Es importante resaltar que en suelos agresivos debe darse especial cuidado a la

durabilidad del concreto. Arcillas expansivas presentan una variación alta de volumen según su

contenido de humedad, este tipo de suelo debe en lo posible evitarse como suelo de fundación

buscando estratos de suelo más competentes. Una adecuada exploración de terreno debe incluir

entre otros más datos, la profundidad de la capa freática, estudio detallado de los diferentes

estratos del suelo indicando su espesor, características mecánicas (compresión simple, ensayo

triaxial, etc.) y características químicas (sulfatos, carbonatos, etc.)

La interacción suelo estructura ha cobrado recientemente gran importancia para lo cual se

requieren estudios adicionales a los mencionados relacionados con las propiedades del suelo a fin

Page 287: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 286

de determinar en la forma más aproximadamente posible los efectos de interacción suelo

estructura necesarios para optimizar el diseño de la estructura y considerar los efectos inducidos

sobre el suelo de fundación por la estructura bajo el efecto de cargas ambientales. Las

cimentaciones de concreto reforzado pueden ser clasificadas en dos tipologías: superficiales y

profundas.

Cimentaciones superficiales:

Las cimentaciones superficiales generalmente se usan cuando es suelo presenta buenas

propiedades mecánicas y químicas a profundidades no mayores a los 4 m. Para edificaciones de

baja altura cimentadas sobre suelos de muy buena resistencia se utilizan zapatas, que son

ensanchamientos de la sección de la columna en la parte de contacto con el suelo de cimentación,

las cimentaciones superficiales definidas como zapatas pueden ser céntricas, medianeras,

esquineras, combinadas o corridas. Para edificaciones de mayor altura con el fin de evitar el

traslapo de las zapatas se utilizan losas de cimentación que consiste en una losa sobre la cual se

apoyan las columnas o muros y que generalmente abarca la totalidad del área que ocupa la

edificación. Generalmente se usan en edificaciones que no abarcan un área extensa sino que

predominan en altura, deben tener un espesor mínimo de 30 cm, pero se recomiendan espesores

no inferiores a los 50 cm y van hasta los 120 cm. Uno de los problemas que presenta este tipo de

cimentación es la localización de las tuberías de desagüe dado que deben ubicarse embebidas

dentro de la losa de cimentación lo cual puede causar problemas futuros de deterioro de las

tuberías o daño por rompimiento de tuberías lo cual resulta bastante costoso y complejo de reparar

y que en algunos casos puede causar corrosión del acero de refuerzo de la losa de cimentación. El

coeficiente de balastro es un parámetro importante en la determinación de los parámetros de

diseño de la losa de cimentación. Es de obligatorio cumplimiento enlazar las zapatas con vigas

centradoras o vigas de atado para contrarestar posibles asentamientos diferenciales y garantizar

una respuesta adecuada ante solicitaciones de cargas ambientales.

Las cimentaciones profundas se usan cuando las propiedades mecánicas y químicas del suelo son

bajas, otros aspectos que pueden influir en la selección de este tipo de cimentación tienen que ver

con niveles freáticos muy altos, capas superficiales de terrenos con variaciones volumétricas

considerables por efecto de cambio de la humedad, y en casos de cimentaciones de edificios de

altura considerable o en zonas de ladera donde se generan fuerzas de tracción en la cimentación

a fin de garantizar su estabilidad.

Page 288: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 287

Cimentaciones profundas:

Las cimentaciones profundas se clasifican en pilotes y pilas. Los pilotes se consideran como

elementos tipo columnas que se encuentran hincadas o fundidas dentro de las capas del suelo de

fundación, su característica principal es que presentan una sección transversal es pequeña con

respecto a la altura. Por las limitaciones de carga de un pilote individual, frecuentemente es

necesario utilizar varios elementos para un mismo apoyo de la estructura, este es caso se requiere

de un elemento de enlace entre la columna y el grupo de pilotes llamado comúnmente encepado.

Dependiendo de las características del suelo los pilotes pueden trabajar por transmisión de cargas

en la punta, a este tipo de pilote se le conoce como pilote columna y el otro tipo de pilote es el

que trabaja por fricción en el fuste el cual se conoce comúnmente como pilote flotante.

En algunos casos se tienen pilotes trabajando por punta y por fricción en el fuste. Según el

procedimiento de construcción los pilotes se clasifican en pilotes de desplazamiento y pilotes de

extracción. Los pilotes de desplazamiento se clasifican a su vez en pilotes hincados prefabricados

y pilotes hincados mediante tubería y fundidos in situ. Los pilotes de extracción son aquellos que

se construyen una vez se realiza la perforación mediante una barrena o hélice, su uso solo debe

ser considerado en suelos donde no se presenten niveles freáticos que afecten las excavaciones.

Tambien se usan pilotes con camisa perdida o recuperable dependiendo de las condiciones del

suelo, en estos casos se introduce una tubería que sirve de camisa al pilote. En la actualidad se

han desarollado un gran número de procedimientos de pilotaje, los cuales deben ser evaluados

bajo criterios de seguridad. Los micropilotes se recomiendan en casos de reforzamiento

estructural de edificaciones existentes donde las áreas disponibles limitan el uso de pilotes, debe

darse especial cuidado a la falla de estos elementos ante eventos sísmicos por efectos de la gran

esbeltez que presentan y la baja resistencia a cortante, adicionalmente al tener secciones tan

reducidas que oscilan entre los 10 y 15 cm impidien dar cumplimiento al refuerzo mínimo de

acuerdo a lo estipulado en la tabla C.15.11-1 de la NSR-10

Finalmente, el uso de pilas como sistema de cimentación, generalmente se emplea en conjunto

con un elemento por apoyo. Las pilas están asociadas a cargas muy altas, a condiciones del suelo

superficialmente desfavorables y a condiciones aceptables en los estratos profundos del suelo, a

donde se transmitirán las cargas de la estructura. Las pilas siempre son pre-excavadas y vaciadas

in situ.

Page 289: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 288

Vigas de cimentación:

Las vigas de cimentación son los elementos estructurales que se emplean para amarrar estructuras

de cimentación tales como zapatas, encepados, pilas y que tienen como funciones principales la

reducción de asentamientos diferenciales, soporte a momentos generados por excentricidades de

cargas, y mejorar el comportamiento sísmico de la estructura. Presentan otras funciones

secundarias como ser el arriostramiento en laderas, la disminución de la esbeltez en columnas, y

aporte en estabilización de zapatas medianeras. Las vigas de fundación se pueden diseñar bajo

dos criterios:

Criterio 1:

Diseñar la viga de fundación para que tome los momentos y la zapata solo la carga axial.

Criterio 2:

Diseñar la zapata para que atienda el momento biaxial. La viga se diseña sólo para carga axial.

Las vigas de fundación deben resistir en tensión o compresión una fuerza no menor de (A.3.6.4.2

– Vigas de amarre en la cimentación – NSR-10):

o 0,25 a uC T A P=

Aa: Coeficiente que representa la aceleración horizontal pico efectiva, para diseño, dado en

A.2.2 – NSR-10.

Pu: Valor de la fuerza axial mayorada o carga última correspondiente a la columna más

cargada (comparando las dos fuerzas axiales a las cuales están sometidas las dos columnas

unidas por la viga de amarre).

En el caso de Medellín con el nuevo código Aa = 0.15, luego:

o 0,0375uC T P=

En la mayoría de los casos prácticos la fuerza a compresión o tensión puede ser soportada por la

viga con refuerzo mínimo (C.10.9 – Límite del refuerzo de elementos a compresión – NSR-10):

,min 0,01s gA A=

Ag: Área bruta de la sección, expresada en 2m m .

Suponiendo una viga de 300 300mm mm× , tenemos Ag = 90000 mm 2.

Page 290: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 289

2 2,min 0,01 90000 900sA mm mm= × =

2,min 4 3 4 1136sA mmφ ′′≈ =

Supóngase que la viga está sometida a una carga de compresión C. De acuerdo con C.10.3.6.2 de

la NSR-10, la resistencia de diseño a fuerza axial de un elemento no pre-esforzado, reforzado con

estribos cerrados, sometido a compresión, está dada por la expresión:

( )0, 75 0,85 g st y stC f c A A f Aφ ′= − +

ϕ: Coeficiente de reducción de resistencia, que para elementos reforzados con estribos

cerrados es igual a 0.65 (C.9.3.2.2).

f'c: Resistencia nominal del concreto a la compresión, expresada en MPa. Supóngase

f‘c=21Mpa.

Ag: Área bruta de la sección, expresada en mm2. Suponiendo una viga de 300mmx300mm,

tenemos Ag=90000mm2.

Ast: Área total de refuerzo longitudinal, expresada en mm2. Para el caso Ast=1136mm2.

fy: Resistencia nominal a la fluencia del acero de refuerzo, expresada en MPa. Supóngase

fy = 420 Mpa.

( )( )

0,75 0,85

0,75 0,65 0,85 21 90000 1136 420 1136

1005879,42 101

101 0,0375 2693

g st y st

u

C f c A A f A

C

C N ton

P ton

φ ′= − +

= × × × × − + ×

= == =

Para una carga superior a 2693 toneladas se debería aumentar la sección de la viga.

Supóngase que la viga ahora está sometida a una carga de tensión T. En este caso, la resistencia

de diseño a fuerza axial de la viga (despreciando la resistencia a tracción del concreto), está dada

por la expresión:

0,90

0,90 420 1136 429408

43

43 0,0375 1147

y st

u

T f A

T N

T ton

P ton

=

= × × === =

Page 291: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 290

La viga reforzada de 300× 300mm, funciona adecuadamente siempre y cuando, la fuerza axial

(Pu) que actúa sobre la columna más cargada no sea superior a 1147 toneladas, equivalente a la

carga gravitacional que sobre esta columna transmitiría un edificio de aproximadamente 30 pisos.

Dimensiones mínimas

El artículo C.15.13.3 de la NSR-10 establece las dimensiones mínimas para las vigas de

cimentación.

Mayor dimensión de la viga de fundación

Estructuras con capacidad de disipación de energía (DES) >=L/20

Estructuras con capacidad moderada de disipación de energía (DMO) >=L/30

Estructuras con capacidad mínima de disipación de energía (DMI) >=L/40

En Medellín (DMO) por ejemplo, la máxima dimensión de una viga de amarre de 6 m de longitud

sería mínimo L/30 = 6000/30 = 200 mm. Esta viga, con una dimensión mínima de 100 mm, podría

eventualmente desaparecer como elemento viga al quedar embebida en la losa de piso; situación

que obliga a diseñar la zapata por flexión biaxial.

Refuerzo longitudinal

El artículo C.15.13.2 de la NSR-10 establece lo siguiente acerca del refuerzo longitudinal.

Las vigas de amarre sobre el terreno que enlacen dados o zapatas deben tener refuerzo longitudinal

continuo, el cual debe ser capaz de desarrollar fy por medio de anclaje en la columna exterior del

vano final. Las varillas de 3/4” en nuestro ejemplo pasan de una zapata a otra con el fin de

garantizar el trabajo de tensión.

Refuerzo transversal

El artículo C.15.13.4 de la NSR-10 establece lo siguiente acerca del refuerzo transversal.

Deben colocarse estribos cerrados en toda su longitud, con una separación que no exceda la mitad

de la menor dimensión de la sección ó 300 mm. Las vigas de amarre que resistan momentos

flectores provenientes de columnas deben cumplir los requisitos de separación y cantidad de

refuerzo transversal que fije el Reglamento para el nivel de capacidad de disipación de energía en

el rango inelástico del sistema de resistencia sísmica. Para la viga mínima de 300 mm x 300 mm,

la separación será entonces de 150 mm.

Page 292: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 291

26. DISEÑO DE ZAPATAS

Para la localización de las secciones críticas de momento, cortante y desarrollo del refuerzo de

las zapatas, en columnas o pedestales de concreto no cuadrados, la NSR 10 en su artículo C.15.3,

permite, por simplicidad, trabajar con columnas o pedestales cuadrados equivalentes en área.

Figura 170

Para el diseño de una zapata concéntrica se deben tener en cuenta los siguientes pasos:

i. Obtener la carga de servicio P

ii. Determinar el ancho de la zapata

iii. Suponer espesor h de la zapata

iv. Revisar punzonamiento o cortante bidireccional.

v. Revisar cortante unidireccional

vi. Revisar el momento para calcular el acero de refuerzo

vii. Revisar el aplastamiento

viii. Detalles de refuerzo

i. Obtener la carga de servicio Ps: se desmayora la carga última Pu obtenida en el análisis

estructural.

a. Dividiendo la carga por el factor de seguridad FG (1.5 para estructuras de concreto, 1.4

para estructuras de acero).

Page 293: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 292

b. Calcularla con cargas de servicio.

us

G

PP F=

P se compara con la capacidad admisible qa (Calculada a partir de qu). Por medio de la

siguiente expresión válida para suelos cohesivos.

u c fq cN Dγ= +

ca f

cNq D

Fsγ= +

c: Cohesión del suelo (ton/m2)

Nc: Factor de capacidad de carga

γ : Peso unitario de la masa del suelo (ton/m3)

Df: Profundidad de desplante de la zapata (m)

Fs: Factor de seguridad

ii. Determinar el ancho B de la zapata: Para ello se emplea la expresión:

s

a

PB q=

iii. Suponer espesor h de la zapata: La NSR-10 expresa:

a. dmin > 150 mm para zapatas apoyadas en suelo, dmin > 300 mm para zapatas apoyadas

en pilotes (C.15.7).

b. El recubrimiento mínimo debe ser de 75 mm cuando la zapata este apoyada en terreno

natural (C.7.7.1(a)).

c. El recubrimiento mínimo debe ser 50 mm para barras No. 6 a No. 18 y 40 mm para barras

No.5 y menores, cuando estén expuestas a suelo de relleno o a la intemperie (C.7.7.1 (b)).

De acuerdo a lo anterior el espesor mínimo de una zapata será 190 mm (150 mm + 40 mm).

iv. Revisar punzonamiento o cortante bidireccional: Es el efecto en que la zapata trata de fallar

en forma piramidal debido a la carga transmitida por la columna (C.11.11.2 – NSR-10).

Page 294: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 293

Figura 171

En la práctica se trabaja con una sección crítica perpendicular al plano de distancia d/2 de la

columna o placa.

iv. Revisar punzonamiento o cortante bidireccional: Para el caso supuesto de zapata cuadrada,

el esfuerzo cortante bidireccional será:

( )( )( )( )

21 2

21 22

uup

B b d b dP

B b d b d dν

− + +=

+ + +

Pu: Carga última que se trasfiere a la zapata por la columna o pedestal

B: Ancho de la zapata (mm)

h: Distancia desde la fibra extrema a compresión hasta el centroide del refuerzo a tracción

(mm, d = h - recubrimiento)

b1: Lado corto de la columna o pedestal (mm)

b2: Lado largo de la columna o pedestal (mm)

Page 295: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 294

De acuerdo al artículo C.11.11.2.1 de la NSR-10 se debe cumplir lo siguiente:

0

00

0

20,17 1

0,083 2

0,33

c

sup c

c

V f cb d

dV V f cb d

b

V f cb d

λβ

α λ

λ

′= +

′< = +

′=

Vc: Resistencia nominal al cortante proporcionada por el concreto.

f’c: Resistencia nominal del concreto expresada en MPa

d: Distancia desde la fibra extrema en compresión hasta el centroide del refuerzo

longitudinal a tracción (mm)

b0: Perímetro de la sección crítica a cortante para losas y zapatas.

β: Relación de la dimensión larga a corta de la columna.

sα : Constante usada para calcular el cortante en losas y zapatas. 40 para columnas interiores,

30 para columnas de borde, 20 para columnas de esquina.

λ : Factor de modificación que tiene en cuenta las propiedades mecánicas del concreto de

peso liviano relativa a los concretos de peso normal de igual resistencia a la compresión.

v. Revisar cortante unidireccional: Se refiere al comportamiento de la zapata como un

elemento viga (C.11.11.1.1 – NSR-10).

Para el caso supuesto de zapata cuadrada el cortante unidireccional estará dado por:

1 1

2 2

2 2 2 2u uud

b bB BB d d

P P

B Bd B dν

− − − − = =

Y debe cumplirse que:

0,17ud c wV V f cb dλ ′< =

wb : Ancho del alma o diámetro de la sección circular (mm).

vi. Revisar el momento para calcular el acero de refuerzo: El momento máximo mayorado

para una zapata aislada debe calcularse pasando un plano vertical a través de la zapata y

calculando el momento de las fuerzas que actúan sobre el área total de la zapata que quede

Page 296: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 295

a un lado de dicho plano vertical (C.15.4.2). Para las secciones críticas localizadas como

se indica a continuación:

a) En la cara de la columna, pedestal o muro, para zapatas que soporten una columna,

pedestal o muro de concreto.

Figura 172

b) En el punto medio entre el eje central y el borde del muro para zapatas que soporten muros

de albañilería (Figura A).

c) En el punto medio entre la cara de la columna y el borde de la platina de base de acero,

para zapatas que soporten una columna con platina de acero de base (Figura B).

El momento mayorado máximo será igual al momento de las fuerzas que actúan sobre la totalidad

del área de la zapata, en un lado de ese plano vertical. Se puede expresar entonces:

2 2

1 12 2 2 2 2 2 2u uu

P Pb bB B BM

B B = − = −

Figura 173

Page 297: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 296

De acuerdo con los artículos C.15.4.3 y C15.4.4, el refuerzo resultante debe repartirse

uniformemente a todo lo ancho de la zapata, con excepción del refuerzo transversal de zapata

rectangulares, en donde una banda central de ancho igual al menor de la zapata debe tener

uniformemente repartida una porción del refuerzo total dada por la ecuación:

Refuerzo en el ancho de la banda

Refuerzo total en la dirección corta

2

1sγβ

= =+

Donde:

Longitud larga

Longitud cortaβ =

Banda central: s sAγ

Fuera de la banda central: ( )1 s sAγ−

• En cualquier caso, el refuerzo a flexión debe tener una cuantía mínima de 0,0020 en ambas

direcciones.

• En el evento en que la zapata pueda quedar sometida a solicitaciones de tensión, debe

considerarse un refuerzo para flexión en su parte superior (o parrilla de acero superior), en

la cuantía requerida o mínima y revisarse el acero que pasa a la columna a tensión.

vii. Revisar el aplastamiento: Se suele considerar que la presión de compresión que transmite la

columna o pedestal se va disipando con el espesor h de la zapata, a razón de 2 horizontal por

1 vertical, desde el área A1 en su cara superior (área de contacto columna o pedestal –

zapata), hasta el área A2 en su cara inferior. La capacidad de carga por aplastamiento debe

ser tal que:

( )1 2 1 2 10,85 2uP f cA A A A Aφ ′< ∴ ≤

Page 298: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 297

Figura 174

Diseño de zapatas – zapatas medianeras

Las zapatas medianeras son aquellas que soportan una columna dispuesta de tal forma que una de

sus caras coincida con el borde de la zapata. La necesidad de su uso es muy frecuente debido a

las limitaciones de colindancia con las edificaciones adyacentes.

Figura 175

Existen varias teorías expuestas por algunos autores para modelar y resolver el problema de

zapatas medianeras.

Page 299: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 298

Caso de carga axial de valores bajos

Enrique Kerpel hace las siguientes recomendaciones:

El equilibrio exige que la resultante de las presiones sobre el terreno sea igual y opuesta a la carga

vertical que actúa sobre la columna.

Como la zapata no es simétrica con respecto a la columna y la condición anterior debe cumplirse

de todas maneras, es evidente que se deben tener presiones mayores del lado al lado de la columna,

o sea que no habrá reacción uniforme.

No se toma en cuenta el peso propio de la zapata.

Figura 176

Para el predimensionamiento se tienen en cuanta las siguientes expresiones:

2

3

2B b=

min

61 0

P eq

BL B = − =

max

61 a

P eq q

BL B = − =

Para que qmin = 0, se debe cumplir que e = B/6. Remplazando este valor en la expresión de qmax y

despejando L se obtiene:

2

a

PL

Bq= Zapatas Alargadas

Page 300: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 299

Caso de carga axial de valores medios

Análisis de zapata medianera con viga aérea, recomendado por José Calavera. Este autor supone

que bajo la cimentación existe una distribución de presiones uniforme o linealmente variable, y

realiza el análisis de cada una de ellas de la siguiente manera:

• Zapata medianera con distribución uniforme de presiones y reacción mediante viga aérea.

0yF P N R= ⇒ + =∑

( )20 02 2 2O

Pb NB RBM T C h M= ⇒ + + + − + =∑

( )( )

2 2

2

P B b MT

C h

− −=

+

Figura 177

• Zapata medianera con distribución variable de presiones y reacción mediante viga aérea. Se

considera efecto de reacción lineal no uniforme con mayor intensidad en el vértice de la zapata.

Se requiere ecuación de deformación para resolver el problema (ISE)

Figura 178

Page 301: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 300

Figura 179

Figura 180

max0

q

Kδ =

min1

q

Kδ =

max mins

q q

KBα −=

( ) 2 2

3c

cc

T M C

EI

λα

+=

λ : Coeficiente que depende del grado de empotramiento de la columna. 1λ = para

articulación. 0, 75λ = para empotramiento.

Ic: Inercia de la columna.

E: Modulo de elasticidad de la columna.

K: Modulo de reacción del suelo o módulo de balasto.

Page 302: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 301

Igualando los giros de las zapatas y la columna se obtiene:

2 2max min

3c

c

T C q q

EI KB

λ −=

( )max min02y

q qF P N R BL

+= ⇒ + = =∑

( ) ( ) ( )max min 20 2

210 0

2 6

q qM T C h NB Pb B L M

−= ⇒ + + + − + =∑

Resolviendo las ecuaciones anteriores se obtiene:

2

2 23

2

36 c

B bP M

TK C

C h B LEI

λ

− − =

+ +

2 2

max 6 ac

P K C Bq T q

BL EI

λ= + ≤

2

2 23

2

36 c

B bP M

TK C

C h B LEI

λ

− − =

+ +

2 2

min 06 c

P K C Bq T

BL EI

λ= − >

Debido a que los resultados obtenidos mediante la aplicación de esta expresión son inferiores a

los obtenidos mediante un análisis de Interacción suelo estructura, se recomienda, para el cálculo

del acero de refuerzo de la viga, duplicar este valor.

El valor del coeficiente de balasto K está dado por la expresión:

0, 67

fK kl=

Donde:

1 0,50

1,5

b

Lf

+ =

Page 303: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 302

( )21sE

klB µ

=−

Es: Modulo de elasticidad del suelo. Es=1/mv (mv: Modulo de compresibilidad obtenido en el

ensayo de consolidación).

µ: Relación de Poisson. Para suelos arcillosos = 0.35, para suelos arenosos= 0.25.

Caso de carga axial de valores altos

En este caso se recomienda el uso de una viga de enlace resistente a momentos conectada a una

zapata concéntrica.

EJEMPLO 32

Diseñar una zapata concéntrica que soporta una columna interior de 300x400mm, con los

siguientes datos:

21

420y

f'c MPa

f MPa

==

3 4 4 sP K N=

1 0 0 aq K P a=

1

2

300

400

b mm

b mm

==

Determinar ancho de la zapata

Se procede a dimensionar una zapata cuadrada de lado B que permita sostener la estructura. Esta

dimensión se calcula de la forma:

( )344 /100 1,85 S aB P q m m= = =

Suponer espesor h de la zapata

Se supone un espesor de 250mm y el recubrimiento del acero es 75 mm.

250 75 175 150 .d mm mm mm mm cumple= − = > →

Revisar punzonamiento o corte bidireccional

1, 5 5 1 6u sP P K N= =

Page 304: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 303

Como es el caso de una zapata cuadrada, asumiendo que debajo de ella se presenta una reacción

uniforme del suelo dada por 22

1,51 /uu

Pq KN m

B= = , el esfuerzo cortante bidireccionali`xn

está dado por:

( )( )( )( )

21 2

21 22bd

uu

B b d b dP

B b d b d dυ

− + +=

+ + +

1

2

300

400

b mm

b mm

==

Dimensiones de la columna.

uP = Carga última que baja por la columna (mayorada).

175 d mm= Profundidad efectiva del refuerzo para un recubrimiento de 80 mm. (d debe ser

mayor que 150mm) cumple.

La expresión anterior queda planteada de la siguiente manera:

( )( )( )( )

( )( )( )

22 2

2 2 2

1,85 0,3 0,175 (0, 4 0,175)516

1,85 2 0, 4 0,3 2 0,175 0,1754

1292,03 1, 29

bd

bd

uu

u

B b dP KN

B md b d

kPa MPa

υ

υ

− + − + += = =

× + + × ×+

= ≈

Se debe cumplir que

0

2 0,17 1 1,95

0,083 2 2,03

0,33 1,51

c

Sup

f c MPa

df c MPa

b

f c Mpa

λβ

αυ λ

λ

′+ =

′≤ + =

′ =

Parámetros

• 400 / 300 1, 33cβ = =

• 21f c MPa′ =

• 4 0Sα = , columna interior

• ( )0 1 22 2 2,1b b b d m= + + =

• 1λ =

Page 305: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 304

Al cumplir estos requisitos significa que la zapata no falla por punzonamiento, la columna no se

separa de la zapata.

Revisar cortante unidireccional

Para el presente caso de una zapata cuadrada el cortante unidireccional udVu está dado por la

ecuación:

2 2 2

1,85 0,30,175

5162 2 2 2516,9 0,52

1,85 0,175ud

uu

B bd

P KNKPa MPa

B d mυ

− − − − = = = ≈

Se debe cumplir que 0,52 0,17 0,78 . .udu Mpa f c MPa cumpleυ λ ′= ≤ = →

Finalmente, las dimensiones de la zapata son:

B=L=1,85 m

h=250 mm

Revisar el momento para calcular el acero de refuerzo

La sección crítica en una zapata en la cual se calcula el momento mayorado máximo se determina

pasando un plano vertical justo en la cara de la columna si la columna es de concreto. El momento

mayorado máximo es igual al momento de las fuerzas que actúan en toda el área de la zapata y se

expresa como:

2516 1,85 0,3

83,76 2 1,85 2 2

uM KN m KN m = − − = − ×

Diseño refuerzo

Para que el acero entre en fluencia se tiene que garantizar que el comportamiento de la franja

esté controlado por la tensión, es decir, 0,375c

d≤ y el coeficiente de reducción de resistencia

se puede tomar como φ = 0,9 .

Aplicando el principio de equilibrio de fuerzas, T = C

2ys

aMu A f dφ ×

= −

y 0,85

ysA fa

f c b

×=′ ×

Page 306: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 305

Iterando se obtiene: 21330,5As mm= y 16, 9a m m= 0,114c d =

Se escogen 7 No. 5 con un 21400 sA mm=

Cuantía: 14000,0043 0,002 .

1850 175SA

cumpleb d

ρ = = = > →× ×

Verificar longitud de desarrollo:

694 .2,1 '

t e bd

yf dL mm cumple

f c

ψ ψ× × ×= = →

Cumple la longitud de desarrollo, para ambos lados no es necesario utilizar gancho.

El refuerzo anteriormente calculado debe ubicarse sobre todo el ancho para cada una de las dos

direcciones con un espaciamiento de:

( )# 2 . 1850 7 15,9 2 75265

# 1 7 1bB barras d recub

S mmbarras

− × − − × − ×= = =− −

Revisar aplastamiento

21 1 2 0,12A b b m= × =

( )( ) 22 1 22 2 0,72A b h b h m= + + =

2

1

0,722, 44 2

0,12

A

A= = ≥ , se toma 2 dado que es el máximo admisible.

( )( ) ( )( )( )6 221

1

0,85 0,65 0,85 21 0,12 10 2 2784,6 n

AP f cA Mpa mm KN

Aφ φ ′= = × =

5 1 6 2 7 8 4 , 6 .u nP K N P K N cu m p leφ= ≤ = →

Solo se requiere pedestal para cubrir con un recubrimiento dentro del suelo, lo cual se cumple

con 50 mm más que la columna a cada lado.

Page 307: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 306

Detallamiento del refuerzo

EJEMPLO 33

Diseñar una zapata de lindero que soporta una columna de 400mm x 400 mm para los siguientes

datos:

220

330

250

' 21

420

1,2

D

L

a

y

P KN

P KN

q KPa

f c MPa

f MPa

desplante mm

===

==

=

(220 330) 550S D lP P P KN KN= + = + = 420 yf MPa=

250aq KPa= ' 21f c MPa=

400b mm= 0, 5C m=

Determinar dimensiones de la zapata

Para dimensionar la zapata se utiliza la expresión dada por Meyerhof:

( )max 2 2S

a

Pq q

B e L= ≤

• Para este caso como no existen momentos aplicados a la columna 0e=

Page 308: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 307

• La relación más eficiente para zapatas medianeras con viga aérea es 2, 2L

B=

Sustituyendo lo anterior en la ecuación, se obtiene:

5501, 05

2 2 250S

a

PB m

q≥ = =

×

Se asume 1,8 y 3, 6B m L m= =

Suponer espesor h de la zapata

Se supone un espesor de h=600mm y el recubrimiento del acero es 75 mm, por lo cual

525d mm=

Tensión en la viga aérea y presiones máximas y mínimas ejercidas por el suelo a la cara

inferior de la zapata

Según J. Calavera estas están dadas por las siguientes ecuaciones:

2

2 23

2

36

S

s

C

B bP

Tk c

c h B LEI

λ

− =

+ +

2 2

max 6S

s S aC

P k c Bq T q

BL EI

λ= + ≤

2 2

min 06

Ss s

C

P k c Bq T

BL EI

λ= − >

Donde:

• 0, 75λ = conexión viga columna empotrada

• 3 38, 5 1 0K N m m−= × coeficiente de Balasto (Supuesto)

• 24700 ´ 21538 21538 /E f c MPa N mm= = = Módulo de elasticidad del concreto.

• 3 6 412133,3 10

12CI lb mm= = × Momento de inercia de la columna.

Sustituyendo estos valores en las expresiones anteriores, se obtiene:

Page 309: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 308

( ) ( )

( )( ) ( )

2 233

3

6 42

1800 400550

2

8,5 10 0,75 500500 600 1800 3600

36 21538 2133,3 10

s

mm mmKN

TN

mmmm

mm mm mm mmN

mmmm

− =

× + + ×

385000345,24

500 600 15,17s

KN mmT KN

mm mm mm

−= =+ +

( )( )( ) ( ) ( )

( )( )

2 233

max6 4

2

max

max

8,5 10 0,75 500 1800550000

3452401800 3600 6 21538 2133,3 10

0,0848 0,00269

87,57 250 .

s

s a

s

Nmm mm

N mmq N

Nmm mmmm

mm

q MPa MPa q

q KPa KPa ok

− × = +

×

= + ≤

= ≤ →

( )( )( ) ( ) ( )

( )( )

2 233

min6 4

2

min

min

8,5 10 0,75 500 1800550000

3452401800 3600 6 21538 2133,3 10

0,0848 0,00269 0

82,18 0 .

s

s

s

Nmm mm

N mmq N

Nmm mmmm

mm

q MPa MPa

q KPa KPa cumple

− × = −

×

= − ≥

= ≥ →

Los valores de m axsq

y m insq para estado último de carga son:

m ax m ax1, 5 131, 36u sq q K P a= =

m in m in1, 5 1 2 3,1 6u sq q K P a= =

Cortante por punzonamiento (cortante bidireccional)

Las cargas mayoradas son:

( )1,2 1,6 1,2 220 1,6 330 792 u D LP P P KN KN= × + × = × + × =

Esfuerzo en la sección critica

max minmax 2

2 2u u

d uu

q q dq q b

B

− = − +

Page 310: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 309

2

131,36 123,16 0,52131,36 0,4

1,8 2du

KPa KPa mq KPa m

m

− = − +

2

128,35du

q KPa=

La fuerza total por punzonamiento que hace la columna sobre la placa es:

( )max

22 12 2

u du

up u

q qd

V P b d b

+ = − + × +

( )131,36 128,35 0,52792 0,4 0,52 0,4

2 2upV+ = − + × +

713,15 upV KN=

El esfuerzo cortante por punzonamiento es:

0

upup

V

b dυ =

Donde:

( )0 1 22 2,242

db b d b m

= + + + =

Se obtiene que:

( ) ( )713150

2240 520 up

N

mm mmυ =

×

0,61 up MPaυ =

Se debe de cumplir que:

0

2 20,17 1 0,17 1 1 21 2,33

1

30 0,52 0,083 2 0,083 2 1 21 3,41

2,24

0,33 0,33 1 21 1,51

Sup

f c MPa

dSea f c MPa

b

f c MPa

λβ

αυ λ

λ

′+ = + =

× ′≤ + = + =

′ = × × =

Donde:

Page 311: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 310

• 1cβ = columna cuadrada

• 21f c MPa′ =

• 30sα = , columna de borde

• 1λ = , concreto de peso normal

• 0 2,24b m=

Al cumplir estos requisitos significa que la zapata no falla por punzonamiento, la columna no se

separa de la zapata.

Cortante Unidireccional en sentido longitudinal (L)

[ ]max minmin 2

u uud u

q qq q B b d

B

−= + − −

[ ]131,36 123,16123,16 1,8 0,4 0,52

1,8udq−= + − −

2127,17ud

KNq

m=

La fuerza cortante en el sentido longitudinal es:

[ ]min22

u udud

q qV B b d L

+= − −

[ ]123,16 127,171,8 0, 4 0,52 3, 6

2udV+= × − − ×

396,52udV KN=

El esfuerzo cortante es:

udud

V

Ldυ =

( ) ( )396520

3600 520 ud

N

mm mmυ =

×

0,21 0,17 ' 0,78 .ud Mpa f c MPa cumpleυ = < = →

Cortante Unidireccional en sentido transversal (B)

La fuerza cortante en sentido transversal es:

Page 312: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 311

( )1min max

2 2u u

ud

L bq qV d B

− += −

( )3,6 0, 4123,16 131,360,525 1,8

2 2udV− += −

2 4 7 , 3 9 u dV K N=

El esfuerzo a cortante es:

udud

V

Bdυ =

( ) ( )247390

1800 520 ud

N

mm mmυ =

×

0,26 0,17 ' 0,78 .ud MPa f c MPa cumpleυ = < = →

Finalmente las dimensiones de la zapata son:

1,8

3,6

0,6

B m

L m

h m

===

Refuerzo en sentido longitudinal o largo

2min max

2 2u u vu

q q LM B

+ =

Donde:

1 1, 62 2v

bLL m= − =

Entonces

( )2123,16 131,36 1,6

1,82 2

uM+ =

293, 21 uM KN m= −

Aplicando el principio de equilibrio de fuerzas, T = C

2yu s

aM A f dφ ×

= −

y 0,85

s yA fa

f c b

×=′ ×

Iterando se obtiene: 21506 sA mm= y 19, 7 a mm= 0, 044c d =

Se escogen 8 No. 5 con un 21600 sA mm=

Page 313: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 312

Cuantía: usar cuantía mínima1600

0, 0017 0, 002, 1800 525

sA

b dρ = = = >

× ×

2min 0,002 1800 525 1890sA b d mmρ= × × = × × =

Entonces se escogen finalmente 7 No. 6 con un 21988 sA mm=

Verificar longitud de desarrollo:

834 .2,1 '

t e bd

yf dL mm cumple

f c

ψ ψ× × ×= = →

Cumple la longitud de desarrollo, no es necesario utilizar gancho.

Para el espaciamiento, se usa la fórmula:

( )# 2 .253

# 1bB barras d recub

S mmbarras

− × −= =

El refuerzo en la dirección larga debe distribuirse uniformemente a todo lo ancho de la zapata

con una separación de 253 mm.

Refuerzo en sentido transversal o corto

[ ]max minmin 2

u uuf u

q qq q B b

B

−= + −

[ ]131,36 123,16123,16 1,8 0,4

1,8ufq−= + −

129,54ufq KPa=

2 2min

min 2 2 3uf uv v

uuq qL L

M q L −

= +

Donde:

2 1,4 vL B b m= − =

Entonces:

2 21,4 129,54 123,16 1,4123,16 3,6

2 2 3uM

− = +

442, 01 uM KN m= −

Aplicando el principio de equilibrio de fuerzas, T = C

2yu s

aM A f dφ = × −

y

0,85

ysA fa

f c b

×=′ ×

Page 314: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 313

Iterando se obtiene: 22260 sA mm= y 14, 7 a mm= 0, 033c d =

Se escogen 8 No. 6 con un 22272 sA mm=

Cuantía: 22720, 0012 0,002

3600 525

sA

b dρ = = = >

× ×Se debe tomar cuantía mínima.

2min 0,002 3600 525 3780sA b d mmρ= × × = × × =

Se escogen 10 No. 7 con un 23870sA mm=

Verificar longitud de desarrollo:

1197 .1,7 '

t e bd

yf dL mm cumple

f c

ψ ψ× × ×= = →

Cumple la longitud de desarrollo, no es necesario utilizar gancho.

Para el refuerzo en la dirección más corta de la zapata, una porción del refuerzo total obtenido

debe distribuirse uniformemente sobre una faja centrada sobre el eje de la columna de igual

longitud a la del lado corto de la zapata.

Se tiene que:

Refuerzo en el ancho de la faja

Refuerzo total en la dirección corta

2

1β=

+

Donde 2β = → relación entre el lado largo y el lado corto de la zapata.

Refuerzo en el ancho de la faja Refuerzo total en la dirección corta2

1β=

+

( )2 2Refuerzo en el ancho de la faja2

3870 2580 2 1

mm mm= =+

El refuerzo en el ancho de la faja, distribuido uniformemente se logra con 7 No. 7 espaciadas a

274 mm.

#274

# 1bB barras d

S mmbarras

− ×= =−

2 2 2R efuerzo po r fuera de l ancho de la fa ja3870 2709 1161 m m m m m m= − =

El refuerzo por fuera de la faja equivale a 3 No. 7, pero para garantizar simetría se ubicarán dos

barras No. 7. Por lo cual se debe colocar dos barras por fuera de la faja central, dos a cada lado,

entre el borde de la faja y el borde de la zapata.

Page 315: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 314

Chequear aplastamiento

( )22 21 0,4 0,16 A b m m= = =

( ) ( ) 22 2 1,6 A b h b h m= + × + =

2

1

1,63,16 2

0,16

A

A= = ≥ , se toma 2 dado que es el máximo admisible.

( ) ( )( )( )( )6 221

1

0,85 0,65 0,85 21 0,16 10 2 3712,8 n

AP f cA MPa mm KN

Aφ φ ′= = × =

792 3712, 8 .u nP K N P K N cum p leφ= ≤ = →

Detalles del refuerzo

10 No 7 @ 183 mm

Page 316: ESTRUCTURAS DE HORMIGÓN - …aprendeenlinea.udea.edu.co/lms/moodle/pluginfile.php/265918/mod... · ANÁLISIS Y DISEÑO DE VIGAS T ... 10 y 11 presenta el diseño a flexión de elementos

ESTRUCTURAS DE HORMIGÓN: Programa de Ingeniería Civil - UdeA

Riveros Jerez, Carlos Alberto. Página 315

AGRADECIMIENTOS

El autor expresa sus más profundos agradecimientos al Profesor Eric W. Sandt, Departamento de

Ingeniería Civil, Universidad Texas A&M, por su amabilidad en permitirme usar como referencia

su material de clase del curso Structural Concrete Design.

BIBLIOGRAFÍA

• Asociación Colombiana de Ingeniería Sísmica, AIS. Normas Colombianas de diseño y Construcción Sismo Resistente: NSR-10.

• Calavera, José. Cálculo de estructuras de cimentación, 8ª Edición. Intemac Ediciones, 2000.

• Garza Vásquez, Luis. Diseño y Construcción de Cimentaciones, Universidad Nacional de Colombia: Sede Medellín, 2000.

• Kerpel, Enrique, Unigracon, 1978, Concreto II.

• McCormac, Jack C., and Brown, Russell. Design of Reinforced Concrete, 8ª Edición. Wiley, 2009.

• Nawy, Edward. Reinforced Concrete: A Fundamental Approach, 6ª Edición. Pearson/ Prentice Hall, 2009.

• Massachusetts Institute of Technology, Mechanics and Design of Concrete Structures, MIT Open Course Ware.

• Nilson, Arthur. Diseño de Estructuras de Concreto. 12ª Edición. Santafé de Bogotá, McGraw-Hill, 1999.

• Setareh, Mehdi, and Darvas, Robert. Concrete Structures, 1ª Edición. Pearson Education, 2007.

• Wight, James, and MacGregor, James. Reinforced Concrete: Mechanics and Design, 5ª Edición. Pearson Education, 2009.

• Winter, George. Proyecto de Estructuras de Hormigón, Reverte, reimpreso 2002, 1986.