Francisco Navarro Mart´ınez APUNTES DE ANÁLISIS

Click here to load reader

  • date post

    20-Nov-2021
  • Category

    Documents

  • view

    0
  • download

    0

Embed Size (px)

Transcript of Francisco Navarro Mart´ınez APUNTES DE ANÁLISIS

Libro.dvimarta
Tema 2o - Derivadas
1. Velocidad Media
2. Tasa de Variaion Media de una Funcion en un Intervalo
3. Velocidad Instantanea
5. Funcion Velocidad Instantanea
10. Derivada de una Funcion Elevada a otra Funcion
11. Definicion de Recta Tangente a una Grafica en un punto
12. Interpretacion Geometrica de la Derivada
13. Recta Tangente y Recta Normal
14. Relacion entre la Continuidad y la Derivabilidad de una Funcion
15. Derivadas Laterales
17. Ejercicios Resueltos
18. Derivadas Sucesivas
13Vamos a darle una introduccion fsica al concepto de derivada
Velocidad Media
Supongamos que queremos calcular la velocidad media de un movil que sigue una funcion que depende del tiempo que llamaremos e(t) en el intervalo de tiempo [ t1 , t2 ]
t1 t2
e (t1)
e (t)
e (t2)
t2 ! t1
t2 ! t1
Si esta definicion la trasladamos a cualquier funcion, obtenemos el concepto de Tasa de Variacion Media
Tasa de Variacion Media de una Funcion en un Intervalo
Sea f(x) una funcion real de variable real ( f : dominio " R !# R ) ; Sean x1 , x2 $ R
Llamamos Tasa de Variacion Media del intervalo [ x1 , x2 ] al no f(x2) ! f(x1)
x2 ! x1
Ejemplo : Calcula la TVM de la funcion f(x) = x2 en el intervalo [ 1 , 3 ]
TVM x2
[1,3] = 32 ! 12
3 ! 1 = 4
Ejemplo Fsico : Un coche ha recorrido durante la primera hora 80 Km; a las 2 horas y media 210 y a las cinco
horas 500. Calcula la velocidad media en cada tramo de tiempo
En la primera hora la velocidad media fue 80 ! 0
1 ! 0 = 80 Km/h
En la siguiente hora y media la velocidad media fue 210 ! 80
2 ! 5 ! 1 = 86 ! 67 Km/h
En las siguientes 2 horas y media la velocidad media fue 500 ! 210
5 ! 2 ! 5 = 116 Km/h
14 Velocidad Instantanea
Supongamos ahora que queremos calcular la velocidad en un instante determinado t0 de un movil que sigue una funcion e(t)
t0 t
e (t0)
e (t)
e (t)
t ! t0
e (t) ! e (t0)
Acerco t a t0
Para calcular la velocidad en el instante t0, acercamos la variable t hasta t0 ( tomamos lm t!t0
de la Velocidad Media )
Por tanto, tenemos que Velocidad Instantanea en el instante t0 = lm t!t0
e(t) ! e(t0)
t ! t0
Si esta definicion la trasladamos a cualquier funcion, obtenemos el concepto de Derivada de una Funcion en un Punto
Derivada de una Funcion en un Punto
Sea f(x) una funcion real de variable real ( f : dominio " R !# R ) ; Sea x0 $ R
Decimos que f(x) es derivable en el punto de abscisa x0 si existe lm x!x0
f(x) ! f(x0)
x ! x0
En ese caso, a dicho lmite se le llama derivada de la funcion f(x) en el punto de abscisa x0 y se nota por f "(x0)
Equivalentemente ( haciendo h = x ! x0 ) , podemos definir f "(x0) = lm h!0
f(x0 + h) ! f(x0)
Ejemplo : Consideramos la funcion f(x) = x2 .
Calcula la derivada de f(x) en los puntos x = 1 , x = 2 , x = !2 y x = !3
f "(1) = lm x!1
f(x) ! f(!2)
f(x) ! f(!3)
= !6
15 Ejemplo Fsico : La distancia recorrida por un coche en funcion del tiempo t ( en horas ) viene dada por la funcion
e(t) = 40t2 ! 45t ( en Km ) . Calcula la velocidad que llevaba el coche justo a la hora despues de haber salido,
media hora despues y una hora despues
Justo una hora despues de salir la velocidad era e !(1) = lm t"1
e(t) ! e(1)
= 35 Km/h
Media hora despues ( a la hora y media de salir ) la velocidad era e !(1!5) = lm t"1!5
e(t) ! e(1!5)
= 75 Km/h
Una hora despues ( a la 2 horas de salir ) la velocidad era e !(2) = lm t"2
e(t) ! e(2)
Funcion Velocidad Instantanea
Se trata ahora de calcular la funcion que nos permita obtener la velocidad en cualquier instante de tiempo. Para ello, hay que utilizar la definicion equivalente de derivada ( la de h ) :
V ( t ) = lm h"0
h
Si esta definicion la generalizamos a cualquier funcion, obtenemos el concepto de funcion derivada
Funcion Derivada
Llamamos D al conjunto de puntos donde la funcion f(x) es derivable
A la funcion f : D !" R
x #!" f !(x) se le llama Derivada de la funcion f(x)
La funcion derivada se nota por f !(x). Para calcularla, se utiza la definicion equivalente ( la de la h )
Por tanto , f !(x) = lm h"0
f(x + h) ! f(x)
h
Ejemplo : Consideramos la funcion f(x) = x2 . Calcula la Funcion Derivada de f(x)
f !(x) = lm h"0
16 Ejemplo Fsico
La distancia recorrida por un coche en funcion del tiempo t ( en horas ) viene dada por la funcion
e(t) = 40t2 ! 45t ( en Km ) . Calcula la funcion velocidad que lleva el coche con respecto al tiempo
v(t) = e !(t) = lm h"0
e(t + h) ! e(t)
f(x) = x3 " f !(x) = lm h"0
f(x + h) ! f(x)
f(x + h) ! f(x)
f(x + h) ! f(x)
f(x + h) ! f(x)
h
WIRIS
= 1
x
De esta manera, podemos construir una tabla con la derivada de todas las funciones elementales que conocemos
17 TABLA DE DERIVADAS
FUNCION DERIVADA FUNCION DERIVADA
k 0 x 1
xn n · xn!1 [ f(x) ] n n · [ f(x) ] n!1 · f "(x)
! x
1
2 !
x
ax ax · ln a af(x) af(x) · f "(x) · ln a
lnx 1
f "(x)
sen x cos x sen f(x) f "(x) · cos f(x)
cos x " sen x cos f(x) "f "(x) · sen f(x)
tg x 1 + tg2 x = 1
cos2 x tg f(x) 1 + tg2 f(x) =
f "(x)
cos2 f(x)
!
!
f "(x)
1 + f(x)2
2) [ k · f(x) ] ! = k · f !(x)
3) [ f(x) · g(x) ] ! = f !(x) · g(x) + g !(x) · f(x)
4)
g2(x)
Regla de la Cadena
Sean f(x) y g(x) 2 funciones que se pueden componer. Se tiene que :
[ ( f o g )(x) ] !
= f ! [ g(x) ] · g !(x)
Si tuvieramos 3 funciones f(x) , g(x) y h(x) que se puedieran componer, se tendra que:
[ ( f o g o h )(x) ] !
= f ! [ ( g o h )(x) ] · g ![ h(x) ] · h !(x)
As, sucesivamente
Derivada de una Funcion Elevada a otra Funcion ( Derivacion Logartmica )
Sea h(x) = f(x)g(x) ; Vamos a calcular h !(x) , tomando logaritmo neperiano en ambos miembros :
ln [ h(x) ] = ln [ f(x)g(x) ] = g(x) · ln [ f(x) ] ; a continuacion, derivamos en ambos miembros :
h !(x)
!
#
#
$
Formula que no es preciso aprenderse de memoria, sino que hay que seguir el mismo proceso en cada caso particular
19 Ejemplo
f(x) = xx
Derivamos en ambos miembros:
Solucion : f ! (x) = xx · ( lnx + 1 )
Definicion de Recta Tangente a una Grafica en un Punto
Sea f(x) una funcion ; sea x0 ! R
x0 x1x2x3x4· · · · · · · · ·
T E
A toda recta que pase por ( x0 , f(x0) ) y corte a la grafica en cualquier otro punto, la llamamos Recta Secante a f(x) en el punto de abscisa x0. Obtenemos una sucesion de rectas secantes rx1
, rx2 , rx3
, · · · · · · = { rxn }
Llamamos recta tangente a la grafica de f(x) en el punto de abscisa x0 a la recta lm xn"x0
rxn = rx0
Sea f(x) una funcion ; sea x0 ! R
x0 x
x " x0 = f "(x0)
Por tanto, la derivada de f(x) en x0 coincide con la pendiente de la recta tangente a la grafica de f(x) en el punto de abscisa x0
Recta Tangente y Recta Normal
Como consecuencia de la interpretacion geometrica de la derivada, tenemos que la recta ( en forma punto pendiente ) tangente a la grafica de la funcion f(x) en el punto de abscisa x0 viene dada por :
y " f(x0) = f "(x0) · ( x " x0 )
Evidentemente, solo es valida cuando f(x) sea derivable en x0
Llamamos recta normal a la grafica de la funcion f(x) en el punto de abscisa x0 a la recta perpendicular a la recta tangente. Teniendo en cuenta que si dos rectas son perpendiculares, la pendiente de una es la opuesta de la inversa de la pendiente de la otra, en forma punto pendiente, esta recta vendra dada por :
y " f(x0) = " 1
21 Ejemplo
Halla la ecuacion de la recta tangente y de la recta normal de la curva y = x4 en los puntos de abscisa x0 = 1 y x1 = !2
f(x) = x4 f !(x) = 4x3
x0 = 1 f(1) = 1 f ! (1) = 4
Recta Tangente ! y ! 1 = 4 · ( x ! 1 ) " y = 4x ! 3
Recta Normal ! y ! 1 = ! 1
4 · ( x ! 1 ) " y = !
Recta Tangente ! y + 1 = !4 · ( x + 1 ) " y = !4x ! 3
Recta Normal ! y + 1 = 1
4 · ( x + 1 ) " y =