Integración Indefinida

15
Derivada La derivada de la función en el punto marcado equivale a la pendiente de la recta tangente (la gráfica de la función está dibujada en rojo; la tangente a la curva está dibujada en verde). En matemáticas , la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente . La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se toma cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado. En términos físicos, representa la cuantía del cambio que se produce sobre una magnitud. Un ejemplo habitual aparece al estudiar el movimiento : si una función representa la posición de un objeto con respecto al tiempo , su derivada es la velocidad de dicho objeto. Un avión que realice un vuelo transatlántico de 4500 km en entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintos tramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad 1

description

Integración Indefinida, Calculo. Integrales elentales, racionales, trigonometricas, por partes.

Transcript of Integración Indefinida

Page 1: Integración Indefinida

Derivada

La derivada de la función en el punto marcado equivale a la pendiente de la recta tangente (la gráfica de la función está dibujada en rojo; la tangente a la curva está dibujada en verde).

En matemáticas, la derivada de una función es una medida de la rapidez con la que cambia el valor de dicha función matemática, según cambie el valor de su variable independiente. La derivada de una función es un concepto local, es decir, se calcula como el límite de la rapidez de cambio media de la función en un cierto intervalo, cuando el intervalo considerado para la variable independiente se toma cada vez más pequeño. Por ello se habla del valor de la derivada de una cierta función en un punto dado. En términos físicos, representa la cuantía del cambio que se produce sobre una magnitud.

Un ejemplo habitual aparece al estudiar el movimiento: si una función representa la posición de un objeto con respecto al tiempo, su derivada es la velocidad de dicho objeto. Un avión que realice un vuelo transatlántico de 4500 km en entre las 12:00 y las 18:00, viaja a una velocidad media de 750 km/h. Sin embargo, puede estar viajando a velocidades mayores o menores en distintos tramos de la ruta. En particular, si entre las 15:00 y las 15:30 recorre 400 km, su velocidad media en ese tramo es de 800 km/h. Para conocer su velocidad instantánea a las 15:20, por ejemplo, es necesario calcular la velocidad media en intervalos de tiempo cada vez menores alrededor de esta hora: entre las 15:15 y las 15:25, entre las 15:19 y las 15:21, etc.

El valor de la derivada de una función en un punto puede interpretarse geométricamente, ya que se corresponde con la pendiente de la recta tangente a la gráfica de la función en dicho punto. La recta tangente es a su vez la gráfica de la mejor aproximación lineal de la función alrededor de dicho punto. La noción de derivada puede generalizarse para el caso de funciones de más de una variable con la derivada parcial y el diferencial.

1

Page 2: Integración Indefinida

La derivada de una función f en un punto x se denota como f′(x). La función cuyo valor en cada punto x es esta derivada es la llamada función derivada de f, denotada por f′. El proceso de encontrar la derivada de una función se denomina diferenciación, y es una de las herramientas principales en el área de las matemáticas conocida como cálculo infinitesimal. Concretamente, el que trata de asuntos vinculados con la derivada se denomina cálculo diferencial.1

Definiciones de derivada

Esquema que muestra los incrementos de la función en x y en y.

En terminología clásica, la diferenciación manifiesta el coeficiente en que una cantidad cambia a consecuencia de un cambio en otra cantidad .

En matemáticas, coeficiente es un factor multiplicativo que pertenece a cierto objeto como una variable, un vector unitario, una función base, etc.

En física, coeficiente es una expresión numérica que mediante alguna fórmula determina las características o propiedades de un cuerpo.

En nuestro caso, observando la gráfica de la derecha, el coeficiente del que hablamos vendría representado en el punto de la función por el resultado de la división

representada por la relación , que como puede comprobarse en la gráfica, es un valor que se mantiene constante a lo largo de la línea recta azul que representa la tangente en el punto

de la función. Esto es fácil de entender puesto que el triángulo rectángulo formado en la

2

Page 3: Integración Indefinida

gráfica con vértice en el punto , por mucho que lo dibujemos más grande, al ser una

figura proporcional el resultado de es siempre el mismo.

Esta noción constituye la aproximación más veloz a la derivada, puesto que el acercamiento a la pendiente de la recta tangente es tanto por la derecha como por la izquierda de manera simultánea.

Definición como cociente de diferencias

Recta secante entre f(x) y f(x+h).

La derivada de una función es la pendiente geométrica de la recta tangente del gráfico de en . Sin el concepto que se va a definir, no es posible encontrar directamente la

pendiente de la línea tangente a una función dada, porque solamente se conoce un punto en la línea tangente: . La idea es aproximar la línea tangente con múltiples líneas secantes que tienen distancias progresivamente más pequeñas entre los dos puntos que cruzan. Cuando se toma el límite de las pendientes de las líneas secantes de esta progresión, se consigue la pendiente de la línea tangente. Se define, pues, la derivada tomando el límite de la pendiente de las líneas secantes, al acercarlas a la línea tangente.

Para encontrar las pendientes de las líneas secantes próximas, se elige un número relativamente pequeño. representa un cambio relativamente pequeño en , el cual puede ser positivo o negativo. La pendiente de la recta que pasa por los dos puntos y

es:

.

3

Page 4: Integración Indefinida

Inclinación de la secante de la curva y=f(x).

expresión denominada «cociente de Newton».2

La derivada de en es entonces el límite del valor del cociente diferencial, conforme las líneas secantes se aproximan a la línea tangente:

.

Si la derivada de existe en todos los puntos , se puede definir la derivada de como la función cuyo valor en cada punto es la derivada de en .

Puesto que sustituir por 0 produce una división por cero, calcular directamente la derivada puede no ser intuitivo. Una técnica posible consiste en operar en el numerador, de manera que se pueda cancelar la del denominador. Y eso es posible fácilmente en los polinomios. Pero para muchas otras funciones el resultado es incierto. Afortunadamente, hay reglas generales que facilitan diferenciar la mayoría de las funciones simples.

Continuidad y diferenciabilidadArtículo principal: Función continua

Una condición necesaria pero no suficiente para que una función sea derivable en un punto es que esta sea continua. Intuitivamente, una función continua es aquella en la cual pequeños incrementos en los elementos del dominio de la variable dependiente produce pequeños incrementos en el valor de dicha función, de manera que

.

Haciendo estos incrementos cada vez más pequeños, las variaciones se hacen más pequeñas; cuando estos se aproximan a cero, en el límite,

4

Page 5: Integración Indefinida

con lo que se obtiene, f(x)=y. Para un punto particular a, quiere decir que , y si este último límite existe significa en consecuencia por un teorema de límites (un límite existe si y sólo si los dos límites laterales existen y son iguales) que toda función f(x) que cumpla con

es continua en el punto a. Como consecuencia lógica, toda función derivable en el intervalo abierto I, es continua en I.

Condición no recíproca

La función valor absoluto no tiene derivada en el punto (0,0).

La relación no funciona a la inversa: el que una función sea continua no garantiza su derivabilidad. Es posible que los límites laterales sean iguales pero las derivadas laterales no; en este caso concreto, la función presenta un punto anguloso en dicho punto.

Un ejemplo — recurrente en la literatura usual — puede ser la función valor absoluto (también llamada módulo) en el punto . Dicha función se expresa:

Para valores infinitamente cercanos a 0, por ambas ramas, el resultado tiende a 0. Y el resultado en el punto 0 es también 0, por lo tanto es continua. Sin embargo, las derivadas resultan:

5

Page 6: Integración Indefinida

Cuando vale 0, las derivadas laterales dan resultados diferentes. Por lo tanto, no existe derivada en el punto, a pesar de que sea continuo.

De manera informal, si el gráfico de la función tiene puntas agudas, se interrumpe o tiene saltos, no es derivable. Sin embargo, la función y=x|x|es diferenciable para todo x. Hállese su función derivada.

Derivada de una función

Considerando la función f definida en el intervalo abierto I y un punto a fijo en I, se tiene que la derivada de la función f en el punto se define como sigue:

,

si este límite existe, de lo contrario, , la derivada, no está definida. Esta última expresión coincide con la velocidad instantánea del movimiento continuo uniforme acelerado en cinemática.

Aunque podrían calcularse todas las derivadas empleando la definición de derivada como un límite, existen reglas bien establecidas, conocidas como teoremas para el cálculo de derivadas, las cuales permiten calcular la derivada de muchas funciones de acuerdo a su forma sin tener que calcular forzosamente el límite. Tales reglas son consecuencia directa de la definición de derivada y de reglas previas, como puede apreciarse en todo buen texto de cálculo infinitesimal.

También puede definirse alternativamente la derivada de una función en cualquier punto de su dominio de la siguiente manera:

,

La cual representa un acercamiento de la pendiente de la secante a la pendiente de la tangente ya sea por la derecha o por la izquierda según el signo de . El aspecto de este límite está relacionado más con la velocidad instantánea del movimiento uniformemente acelerado que con la pendiente de la recta tangente a una curva.

No obstante su aparente diferencia, el cálculo de la derivada por definición con cualquiera de los límites anteriormente expresados, proporciona siempre el mismo resultado.

Ejemplo

Sea la función cuadrática f(x)= x2 definida para todo x perteneciente a los reales. Se trata de calcular la derivada de esta función para todo punto x ∈ R — puesto que es continua en

6

Page 7: Integración Indefinida

todos los puntos de su dominio —, mediante el límite de su cociente de diferencias de Newton. Así,

Integración indefinida

El campo vectorial definido asignando a cada punto (x, y) un vector que tiene por pendiente ƒ(x) = (x3/3)-(x2/2)-x. Se muestran tres de las infinitas primitivas de ƒ(x) que se pueden obtener variando la constante de integración C.

En cálculo infinitesimal, la función primitiva o antiderivada de una función f es una función F cuya derivada es f, es decir, F ′ = f.

Una condición suficiente para que una función f admita primitivas sobre un intervalo es que sea continua en dicho intervalo.

Si una función f admite una primitiva sobre un intervalo, admite una infinidad, que difieren entre sí en una constante: si F1 y F2 son dos primitivas de f, entonces existe un número real C, tal que F1 = F2 + C. A C se le conoce como constante de integración. Como

7

Page 8: Integración Indefinida

consecuencia, si F es una primitiva de una función f, el conjunto de sus primitivas es F + C. A dicho conjunto se le llama integral indefinida de f y se representa como:

  ó  

El proceso de hallar la primitiva de una función se conoce como integración indefinida y es por tanto el inverso de la derivación. Las integrales indefinidas están relacionadas con las integrales definidas a través del teorema fundamental del cálculo, y proporcionan un método sencillo de calcular integrales definidas de numerosas funciones.

Una primitiva de la función en es la función ya que:

Dado que la derivada de una constante es cero, tendremos que cos(x) tendrá un número infinito de primitivas tales como sin(x), sin(x) + 5, sin(x) - 100, etc. Es más, cualquier primitiva de la función f(x) = cos(x) será de la forma sin(x) + C donde C es una constante conocida como constante de integración.

Constante de integraciónArtículo principal: Constante de integración

La derivada de cualquier función constante es cero. Una vez que se ha encontrado una primitiva F, si se le suma o resta una constante C, se obtiene otra primitiva. Esto ocurre porque (F + C) ' = F ' + C ' = F ' + 0 = F '. La constante es una manera de expresar que cada función tiene un número infinito de primitivas diferentes.

Para interpretar el significado de la constante de integración se puede observar el hecho de que la función f (x) es la derivada de otra función F (x), es decir, que para cada valor de x, f (x) le asigna la pendiente de F (x). Si se dibuja en cada punto (x, y) del plano cartesiano un pequeño segmento con pendiente f (x), se obtiene un campo vectorial como el que se representa en la figura de la derecha. Entonces el problema de encontrar una función F (x) tal que su derivada sea la función f (x) se convierte en el problema de encontrar una función de la gráfica de la cual, en todos los puntos sea tangente a los vectores del campo. En la figura de la derecha se observa como al variar la constante de integración se obtienen diversas funciones que cumplen esta condición y son traslaciones verticales unas de otras.

Otras propiedades

Linealidad de la integral indefinida

La primitiva es lineal, es decir:

8

Page 9: Integración Indefinida

1. Si f es una función que admite una primitiva F sobre un intervalo I, entonces para todo real k, una primitiva de kf sobre el intervalo I es kF.

2. Si F y G son primitivas respectivas de dos funciones f y g, entonces una primitiva de f + g es F + G.

La linealidad se puede expresar como sigue:

La primitiva de una función impar es siempre par

En efecto, como se ve en la figura siguiente, las áreas antes y después de cero son opuestas, lo que implica que la integral entre -a y a es nula, lo que se escribe así: F(a) - F(-a) = 0, F siendo una primitiva de f, impar. Por lo tanto siempre tenemos F(-a) = F(a): F es par.

La primitiva F de una función f par es impar con tal de imponerse F(0) = 0

En efecto, según la figura, la áreas antes y después de cero son iguales, lo que se escribe con la siguiente igualdad de integrales:

Es decir F(0) - F(-a) = F(a) - F(0). Si F(0) = 0, F(-a) = - F(a): F es impar.

9

Page 10: Integración Indefinida

La primitiva de una función periódica es la suma de una función lineal y de una función periódica

Para probarlo, hay que constatar que el área bajo una curva de una función periódica, entre las abcisas x y x + T (T es el período) es constante es decir no depende de x. La figura siguiente muestra tres áreas iguales. Se puede mostrar utilizando la periodicidad y la relación de Chasles, o sencillamente ¡con unas tijeras! (cortando y superponiendo las áreas de color).

En término de primitiva, significa que F(x + T) - F(x) es una constante, que se puede llamar A. Entonces la función G(x) = F(x) - Ax/T es periódica de período T. En efecto G(x + T) = F(x + T) - A(x + T)/T = F(x) + A - Ax/T - AT/T = F(x) - Ax/T = G(x). Por consiguiente F(x) = G(x) + Ax/T es la suma de G, periódica, y de Ax/T, lineal.

Relación entre la integral de una función y la de su recíproca

Para simplificar, se impone f(0) = 0; a es un número cualquiera del dominio de f. Entonces tenemos la relación:

10

Page 11: Integración Indefinida

El área morada es la integral de f, el área amarilla es la de f -1, y la suma es el rectángulo cuyos costados miden a y f(a) (valores algebraicos). Se pasa de la primera curva, la de f, a la segunda, la de f -1 aplicando la simetría axial alrededor de la diagonal y = x.

El interés de esta fórmula es permitir el cálculo de la integral de f -1 sin conocer una primitiva; de hecho, ni hace falta conocer la expresión de la recíproca.

Existencia de primitivas

Cualquier función continua sobre admite localmente una antiderivada o primitiva. Sin embargo en espacios de dimensión finita la continuidad no garantiza la existencia de antiderivadas. Una condición suficiente de existencia de antiderivadas es que la imagen pertenezca a un espacio vectorial conveniente, también llamado -completo. La propiedad definitoria de dichos espacios es que toda función con

admite una función primitiva. Si el espacio no es -completo la continuidad o incluso la suavidad de una función no garantiza la existencia de antiderivadas.

11