integracion metabolica

53
INTEGRACIÓN DEL METABOLISMO

Transcript of integracion metabolica

Page 1: integracion metabolica

INTEGRACIÓN DEL

METABOLISMO

Page 2: integracion metabolica

1. EL ATP ES LA UNIDAD BIOLÓGICA UNIVERSAL DE ENERGÍA

Potencial para transferir fosforilos:

Page 3: integracion metabolica

2. EL ATP SE GENERA EN LA OXIDACIÓN DE MOLÉCULAS COMBUSTIBLES, COMO GLUCOSA, ÁCIDOS GRASOS Y AMINOÁCIDOS

Transfieren sus electrones a la cadena respiratoria

Al O2 origina el bombeo de protones a través de la MIM

Este gradiente de protones se utiliza para sintetizar ATP.

CO2NADH FADH2

Intermediario comúnAcetil-CoA

Glucólisis: proceso generador de ATP (menos que en la F.O.).

De glucosa a Piruvato = 2ATPs.

Cuando se oxida a CO2 = 30 o 32.

Pero, la G transcurre en poco tiempo en condiciones anaeróbicas a dif. De la F.O.

Page 4: integracion metabolica

3. EL NADPH ES EL PRINCIPAL DADOR DE ELECTRONES EN LAS BIOSÍNTESIS REDUCTORAS

En la mayoría de las biosíntesis, los productos finales están más reducidos que sus precursores y por eso, además de ATP, se requiere poder reductor.

Los electrones de potencial elevado requeridos para realizar estas reacciones normalmente proceden del NADPH.

Cantidades notables de este transportador de electrones se forman por acción de la lanzadera mitocondrial citrato-Piruvato y de la enzima malato del citosol.

Page 5: integracion metabolica

4. LAS BIOMOLÉCULAS SE CONSTRUYEN A PARTIR DE UNA SERIE RELATIVAMENTE PEQUEÑA DE PRECURSORES

Las moléculas de los seres vivos se sintetizan a partir de un número mucho menor de precursores.

Las vías metabólicas que generan ATP y NADPH producen también precursores para la biosíntesis de moléculas más complejas.

Page 6: integracion metabolica

Por ejemplo:

Dihidroxiacetona fosfato

Fosfoenolpiruvato

Acetil CoA

Succinil-CoA

Page 7: integracion metabolica

5. LAS VÍAS BIOSINTÉTICAS Y DEGRADATIVAS SON CASI SIEMPRE DIFERENTES

La vía de síntesis de ácidos grasos ≠ de la de su degradación, Igual el glucógeno.

Esta separación posibilita que las vías sintéticas y degradativas sean termodinámicamente favorables en todo momento.

La separación de las vías biosintéticas y degradativas contribuye en gran manera a la efectividad del control metabólico.

Page 8: integracion metabolica

MECANISMOS FRECUENTES EN LA REGULACIÓN METABÓLICA

Interacciones alostéricas

Modificación covalente

Niveles enzimáticos

Compartimentación

Especializaciones metabólicas de los órganos

Page 9: integracion metabolica

PRINCIPALES VÍAS METABÓLICAS Y CENTROS DE CONTROL

GLUCÓLISIS Cumple dos funciones principales: degrada la

glucosa para producir ATP y suministra esqueletos carbonados para la biosíntesis.

La fosfofructoquinasa, que cataliza la etapa limitante de la glucólisis, es el centro de control más importante.

En el hígado, el regulador más importante de la actividad de la fosfofructoquinasa es la fructosa-2,6-bifosfato.

Page 10: integracion metabolica

CICLO DEL ÁCIDO CÍTRICO

La mayoria de los combustibles entran en el ciclo en forma de acetil CoA.

La oxidación completa de una unidad acetilo genera un GTP, tres NADHs y un FADH2.

Estos 4 pares de e- se transfieren al O2 a através de la cadena de transporte de electrones, de lo cual resulta la formación de un gradiente de protones responsable de la síntesis de 9 ATPs.

Page 11: integracion metabolica

VÍA DE LAS PENTOSAS FOSFATO

Esta serie de reacciones, que tienen lugar en el citosol, cumple 2 funciones: genera NADPH para la biosíntesis reductoras y forma ribosa-5-fosfato para la síntesis de nucleótidos.

Page 12: integracion metabolica

GLUCONEOGÉNESIS

La glucosa puede sintetizarse, en hígado y riñón, a partir de precursores no glicídicos como lactato, glicerol y aminoácidos.

La gluconeogénesis y la glicolisis están normalmente reguladas de forma recíproca, de modo que una de las vías está detenida cuando la otra es muy activa.

Page 13: integracion metabolica

SÍNTESIS Y DEGRADACIÓN DEL GLUCÓGENO

El glucógeno, un almacén de combustible fácilmente movilizable, es un polímero ramificado de la glucosa.

La síntesis y degradación del glucógeno están controladas coordinadamente por una cascada amplificadora disparada por hormonas, de modo que la sintasa es inactiva cuando la fosforilasa es activa y viceversa.

Page 14: integracion metabolica

LA SÍNTESIS Y DEGRADACIÓN DE LOS ÁCIDOS GRASOS

En el citosol, el citrato estimula la acetil-CoA carboxilasa, la enzima que cataliza la etapa limitante.

Page 15: integracion metabolica

CONEXIONES CLAVE: GLUCOSA-6-FOSFATO, PIRUVATO Y ACETIL-COA

Glucosa-6-fosfato El bajo nivel de glucosa en sangre estimula a

la vez la glucogenolisis y la gluconeogénesis, tanto en hígado como en riñón. Estos órganos se distinguen por tener glucosa-6-fosfatasa, que posibilita la liberación de glucosa hacia la sangre.

Page 16: integracion metabolica

PIRUVATO

Destinos: Carboxilación a oxalacetato en el interior de

la mitrocondria. Descarboxilación oxidativa a acetil-CoA

Page 17: integracion metabolica

Principales fuentes:

• Descarboxilación oxidativa del piruvato• Beta oxidación de los ácidos grasos• Aminoácidos cetogénicos

Destino (Restringido):

• Oxidación del fragmento acetilo a CO2 en el ciclo de Krebs• 3 moléculas de acetil CoA forman una unidad de 6 carbonos

llamada 3-hidroxi-3-metilglutaril-CoA, precursor del colesterol y de los cuerpos cetónicos

• Salida al citosol en forma de citrato para sintetizar ácidos grasos

Acetil CoA

Page 18: integracion metabolica

Perfiles metabólicos de los órganos más importantes

Page 19: integracion metabolica

CerebroRequiere sumistro contínuo de glucosa

Consume unos 120 g al día (420 kcal) - 60% de la glucosa total

Cuerpos cetónicos sintetizados en el hígado, reemplazan en parte a la glucosa como combustible durante el ayuno

Page 20: integracion metabolica
Page 21: integracion metabolica

MúsculoCombustibles: glucosa, ácidos grasos y cuerpos cetónicosAlmacena ¾ partes del glucógeno corporal (1200 kcal) que se convierte rapidamente en glucosa-6-fostato.Carece de glucosa-6-fosfatasa por lo cual no puede liberar glucosa, solo laretiene.

Glusosa-6-fosfato + H2O Glucosa-6-fosfatasa Glucosa + Pi

En el músculo activo: En el músculo en reposo: - Piruvato se reduce a lactato Combustible: ácidos grasos - Piruvato se transamina y forma Alanina

Los dos pueden reconvertirse a glucosa en el hígado

Page 22: integracion metabolica

Intercambios metabólicos entre el músculo y el hígado

Page 23: integracion metabolica

Tejido AdiposoImportante depósito de combustible gracias a los trigliceridos almacenados

Activa los ácidos grasos sintetizados en el hígado y transferir los CoA resultantes al glicerol

Page 24: integracion metabolica

HígadoSu actividad es escencial para suministrar energía al cerebro, músculo y otro órganos periféricos.

Regula la cantidad de metabolitos en sangre

Libera glucosa degradando el glucógeno almacenado y a través de la gluconeogénesis.

Principales precursores de la glucosa:• Lactato• Alanina• Glicerol• Aminoácidos glucogénicos de la dieta (excepto lisina y leucina)

Combustibles abundantes: Ayuno:Esterificación de ácidos grasos Ácidos grasos a cuerpos cetónicosy segregación en forma VLDL

Niveles de Malonil-CoA

VS

Page 25: integracion metabolica

Reguladores hormonalesdel metabolismo energético

Page 26: integracion metabolica

InsulinaSu secreción en las céulas beta del páncreas es estimulada por la glucosa

Funciones:

• Estimula la síntesis de glucógeno en el músculo y en el hígado

• Suprime la gluconeogénesis en el hígado

• Acelera la glucólisis hepática, la cual incrementa la síntesis de ácidos grasos

• Promueve la entrada de glucosa en células musculares y adiposas

• Su abundancia en el tejido adiposo promueve la síntesis y almacenamiento de triglicéridos

• Favorece la captación de ácidos grasos ramificados (valina, leucina e isoleucina) que facilitan la síntesis de proteínas musculares

Page 27: integracion metabolica

GlucagónSegregada por las células alfa del páncreas como respuesta a un bajo nivel de azúcar sanguíneo (Ej: ayuno).

Órgano diana: HÍGADO

Importancia: Aumento de la disponibilidad de combustibles

Funciones:• Estimula la degradación del glucógeno e inhibe su síntesis

• Inhibe la síntesis de ácidos grasos

• Favorece la gluconeogénesis y bloquea la glucólisis

Todas sus acciones están mediadas por proteína quinasas, activadas por el cAMP

Page 28: integracion metabolica
Page 29: integracion metabolica

Adrenalina y NoradrenalinaHormonas secretadas por la médula suprarrenal como respuesta a un bajo nivel de glucosa en sangre

Su efecto glucogenolítico es mayor en el músculo que en el hígado

Funciones:

• Estimulan la movilización del glucógeno y triacilgliceroles

• Inhibe la captación muscular de glucosa

• Promueve la utilización de los ácidos grasos como combustible

• A. estimula la secreción de glucagón e inhibe la liberación de insulina

La cantidad de glucosa liberada por el hígado

La utilización de glucosa por el músculo

Page 30: integracion metabolica

Hígado: amortiguador El hígado controla la glucemia ya que puede captar o liberar grandes cantidades de glucosa como respuesta a señales hormonales o al propio nivel de glucosa

Nivel de glucosa durante el día: 80 mg/dl a 120 mg/dl

Se mantiene gracias a tres factores principales:

• Movilización del glucógeno y liberación de glucosa por el hígado

• Liberación de ácidos grasos por el tejido adiposo

• Cambio de combustible utilizado por el músculo e hígado, que pasa de glucosa a ácidos grasos

Page 31: integracion metabolica

LAS ADAPTACIONES METABÓLICAS AL AYUNO PROLONGADO REDUCEN AL MÍNIMO LA DEGRADACIÓN DE PROTEÍNAS

Kcal en glucógeno Kcal en proteínas movilizables

Kcal en triacilgliceroles

1600 24000 135000

Page 32: integracion metabolica

Energía que necesita en un período de 24 horas esta entre 1600 kcal en estado basal y 6000 kcal en actividad intensa.

Los combustibles almacenados serían suficientes para cubrir las necesidades calóricas durante un ayuno de 1 a 3 meses.

Pero las reservas de azúcar se agotan en un solo día.

Page 33: integracion metabolica

EN ESTAS CONDICIONES

Nivel de glucosa en sangre 2.2 mM (40 mg/dl)

La primera necesidad del metabolismo en el ayuno es suministrar suficiente cantidad de glucosa al cerebro y a otros tejidos que son totalmente dependientes de este combustible.

Page 34: integracion metabolica

Ac. Grasos no pueden convertirse en glucosa porque el acetil-CoA no puede transformarse en piruvato.

El glicerol de los triacilgliceroles sí puede convertirse en glucosa pero sus disponibilidades son limitadas.

La única fuentes de glucosa disponible son los aminoácidos derivados de la degradación de proteínas.

Page 35: integracion metabolica
Page 36: integracion metabolica

Ayuno la mayor fuente de potencial de aminoácidos es el músculo.

La segunda prioridad en el metabolismo del ayuno es preservar las proteínas. Esto se consigue cambiando el combustible utilizado desde la glucosa a ácidos grasos y cuerpos cetónicos.

Page 37: integracion metabolica
Page 38: integracion metabolica

El nivel bajo de azúcar sanguíneo disminuye la secreción de insulina e incrementa la secreción de glucagón.

Los procesos metabólicos dominantes son la movilización de los triacilgliceroles en el tejido adiposo y la gluconeogénesis hepática.

El hígado obtiene la energía para sus propias necesidades mediante la oxidación de ac. grasos liberados en el tejido adiposo.

Page 39: integracion metabolica

La captación de glucosa por el músculo decrece debido al bajo nivel de insulina, mientras que los ácidos grasos llegan al músculo libremente.

El músculo cambia de combustible pasando de glucosa a ácidos grasos.

Page 40: integracion metabolica

Acetil CoA estimula la fosforilación del complejo piruvato deshidrogenasa, que se vuelve inactivo.

El hígado importa piruvato, lactato y alanina para su conversión en glucosa.

Page 41: integracion metabolica

El glicerol procedente de la degradación de triacilgliceroles es otra materia prima para la síntesis de glucosa.

El cambio más importante a los 3 días de iniciación es la gran cantidad de acetacetato y 3-hidroxibutirato que forma el hígado.

Page 42: integracion metabolica
Page 43: integracion metabolica

El cerebro empieza a consumir notables cantidades de acetacetato en vez de glucosa.

A los 3 días de ayuno 1/3 de las necesidades energéticas del cerebro son satisfechas por cuerpos cetónicos.

El corazón también utiliza este combustible (aumento de concentración de cuerpos cetónicos en plasma).

Page 44: integracion metabolica

Los cuerpos cetónicos se convierten en el combustible principal del cerebro. El cerebro solo necesita 40 gramos de glucosa por día, a diferencia de 120 gramos que necesitaba el primer día de ayuno.

La eficaz transformación de asidos grasos en cuerpos cetónicos realizada por el hígado y su utilización por el cerebro disminuye los requerimientos de glucosa. Así pues, se degrada menos tejido muscular que el primer día de ayuno.

Page 45: integracion metabolica

LAS AVES MIGRATORIAS PUEDEN VOLAR A ENORMES DISTANCIAS DEBIDO A SUS GRANDES DEPÓSITOS DE GRASA.

Algunas aves vuelan sobre el mar unos 2400 km sin detenerse y mantienen una velocidad de 40 km por hora durante 60 hrs.

Es gracias a la existencia de unos depósitos de grasa muy grandes que se movilizan durante el vuelo.

Page 46: integracion metabolica

Su indice de grasa de aproxima a 3. 0.15 g de triacilgliceroles por gramo de peso

corporal.

Page 47: integracion metabolica

La oxidación de la grasa también suministra a estas aves el agua necesaria para reponer las perdidas sufridas a través del aparato respiratorio.

Los triacilgliceroles almacenan, a igualdad de peso, 6 veces más energía que el glucógeno porque son anhidros y muy reducidos.

Page 48: integracion metabolica

EN LAS CARRERAS DE VELOCIDAD Y EN LAS PRUEBAS MARATONIANAS LA ENERGÍA LA PROPORCIONAN COMBUSTIBLES MUY DIFERENTES

La creatina fosfato puede transferir rapidamente un grupo fosforilo de elevado potencial al ADP para generar ATP.

Pero es bastante limitada Se puede generar ATP convirtiendo glucógeno

muscular en lactato pero la velocidad es menor.

Page 49: integracion metabolica

CARRERA 100 METROS

Page 50: integracion metabolica

La energía proporciona ATP almacenado, la creatina fosfato y la glucolisis anaeróbica del glucógeno muscular.

Nivel de ATP muscular desciende de 5.2 a 3.7 mM y la creatina fosfato de 9.1 a 2.6 mM durante 10 segundos.

Page 51: integracion metabolica

1000 METROS Y MARATÓN

Parte del ATP que se consume debe proceder de la fosforilación oxidativa.

En el maratón se necesitan 150 moles de ATP y es escencial generarlos a partir de ácidos grasos.

Page 52: integracion metabolica

LOS DESAJUSTES METABÓLICOS DE LA DIABETES DERIVAN DE LA DEFICIENCIA RELATIVA DE INSULINA Y DEL EXCESO DEL GLUCAGÓN

Page 53: integracion metabolica

LA GLUCOSA REACCIONA CON LA HEMOGLOBINA PARA FORMAR UN INDICADOR QUE REVELA EL NIVEL DE AZÚCAR SANGUÍNEO.